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Abstract Photo-consistency estimation is an important part for many image-based modeling techniques. This

paper presents a novel radiance-based color calibration method to reduce the uncertainty of photo-consistency

estimation across multiple cameras. The idea behind our method is to convert colors into a uniform radiometric

color space in which multiple image data are corrected. Experimental results demonstrate that our method can

achieve comparable color calibration effect without adjusting camera parameters and is more robust than other

existing method. Additionally, we obtain an auto-determined threshold for photo-consistency check, which will

lead to a better performance than existing photo-consistency based reconstruction algorithms.
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1 Introduction

The development of low-cost acquiring devices and increasing popularity of multi-camera vision systems

are continuously escalating image-based modeling applications [1,2]. One kind of attractive applications

is to well reconstruct the real scene or object with multiple images [3,4]. Although multiple images

can be manually captured with a hand-held camera [5] or automatically using a turntable or robot

based system [6,7], they all suffer from a difficulty in modeling dynamic scenes. Unlike that, multi-

camera vision systems have been emerged as a popular platform for providing effective support for

applications with real-time requirement. However, it faces the challenge of how to decrease the influence

introduced by the differences between cameras, which might further affect many photo-consistency based

reconstruction algorithms [8,9]. Figure 1(b) and (c) illustrate some typical artifacts occurring in space

carving reconstruction caused by the inconsistency of color matching costs, even if camera settings and

types are virtually the same.

As mentioned in [10], different cameras-even if they are of the same type-do not exhibit consistent

response. Furthermore, camera responses may differ in settings, illuminations and so on. A direct and

effective method to eliminate these differences is to adjust camera settings to make their responses sim-
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Figure 1 Space carving [8] reconstruction of a rabbit toy from six different views. (a) One of input toy rabbit images.

(b)(c) A reconstruction using uncalibrated cameras with same settings. The artifacts are marked by circles. (d)(e) A

reconstruction after color calibration. The artifacts are eliminated.

ilar [11]. It assumes that cameras are adjustable and can be physically accessed by calibration system.

Consequently it is not suitable for many low-end acquiring devices.

Besides, color consistency can also be achieved by software processing of multiple images. Porikli [12]

explicitly models pair-wise transfer functions between images, and uses these functions to correct multiple

images. Although it shows consistent appearances, it is ineligible to guarantee numerical consistency for

ignoring differences between cameras. This would yield a poor reconstructed model with unwanted

artifacts, such as “outlier” or “gap” marked by circles in Figure 1(b) and (c).

Our goal is to achieve color consistency across multiple cameras so as to reduce matching noise for

photo-consistency estimation. The key idea here is to map all captured image data from multiple cameras

into a uniform radiometric color space and then correct them with estimated transformation matrices

to one manually or automatically selected image. After our color calibration, images are consistent

both visually and numerically. Photo-consistency based reconstruction algorithms can produce more

reasonable results, shown in Figure 1(d) and (e).

The remainder of this paper is organized as follows: Section 2 presents the related work. Section 3

discusses the motivation for our work. The detailed radiance-based color calibration method is described

in Section 4. Section 5 shows experiment results and evaluates photo-consistency measurements which

are further applied in 3D reconstruction applications. Finally, further steps are discussed in conclusions.

2 Related work

The direct way to perform color calibrate across multiple cameras is to repeatedly adjust camera pa-

rameters (such as gain and brightness) until all the camera responses are similar enough to each other.

Nanda et al. [11] use scene statistics as feedback to adjust the parameters of multiple cameras in their

RingCam system. The main drawback of this method is that the acquiring devices must be physically

accessible and it is not applicable for many low-end acquiring devices.

Furthermore, several software post processing techniques are proposed. Joshi [13] fits the response

function as linear function, while Ilie [10] tries to minimize a cost function among images by adjusting

hardware parameters. Based on their original work, Malik [14] uses a neural network based transform to

optimize the software correction process, while Yamamoto [15] uses scale invariant feature transform to

detect correspondences instead of a color chart board. However, all methods above need to perform hard-

ware parameter adjustment at first. In contrast, our method does not need to adjust camera parameters

but finally produces consistent colors both visually and numerically.

Another way to achieve color consistency across multiple cameras is by software processing of captured

images. Porikli [12] designs a method based on image color histograms to modeling transfer functions and

pair-wise correct multiple images. However, this method is difficult to ensure numerical color consistency

for ignoring physical differences between cameras, and it may cause distortions and quantization errors

when some parts of color spectrum are compressed or stretched. In our method, we first try to eliminate

the above noise for each camera and then perform color correction with multiple images. Moreover, we

address more attention to the issue of photo-consistency estimation and discuss the application of color

calibration for image-based modeling.
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To sum up, the characteristics of our method are in three aspects:

(1) Radiance-based color calibration. A uniform radiometric color space is defined for color correction

with multiple images. We argue that such space is a camera-independent linear space and show that

photo-consistency estimation will benefit from our radiance-based color calibration.

(2) Hardware-based configuration free. Unlike other multi-camera color calibration methods, our

method shows comparable color calibration effect without obtaining and adjusting any camera parame-

ters. It is much easier for our method to incorporate with unknown capturing devices.

(3) Auto-determined threshold for photo-consistency check. Through statistically analyzing photo-

consistency matching costs of color chart images, we find that matching at the white color will yield the

largest cost value. It helps us to automatically determine the photo-consistency check threshold instead

of setting them tentatively.

3 Motivation

Essentially, color calibration methods are closely related to the color imaging process. Based on this, we

classify these methods into three levels and define a uniform radiometric color space for color calibration.

Note that the definition of calibration varies in different areas. Here the term is typically used to

describe a correction process of turning a general model of the physical device to a standard specific

instance. Geometric calibration makes sure that all pinhole camera models reach geometry consistency

in the sense of projective, affine, or Euclidean geometry, while color calibration ensures color consistency

across multiple cameras at certain level in color imaging process. Different manufacturers usually imple-

ment this process in different ways. However, in theory, it is possible to statistically model color imaging

process by a general polynomial function [16]. Inspired by this empirical model, we show three different

color calibration levels on the basis of color imaging process in Figure 2.

The whole color imaging process consists of four sequential phases: (1) sensing and sampling spectral

irradiance, (2) color-space and white-balance transforming, (3) nonlinear color rendering, and (4) image

encoding. In this pipeline, color can be measured and expressed in different forms, such as irradiance,

raw data, colorimetric tristimulus values or image pixels. Accordingly, color calibration can be performed

within any color space at any level.

Different level color calibrations may yield different results. Since the lower level method puts more em-

phasis on differences between cameras, it will produce more consistent color calibration results. However,

we find that it is not always necessary to calibrate all cameras at as lowest level as possible. According to

the experimental results in [16], the first two phases of color imaging can be approximately modeled as a

linear operator, which means that colorimetric tristimulus values are linearly related to image irradiance

and scene radiance (assuming one compensates for optical effects like vignetting). Moreover, the main

differences between different camera types lie in the third nonlinear color rendering phase. Therefore,

we use colorimetric tristimulus values to define the uniform radiometric color space which can be seen

as approximately linear and camera-independent space. That is the original reason why we choose to

calibrate all cameras in this uniform radiometric color space at the middle level.

4 Multi-camera color calibration process

Our color calibration consists of two main phases: response function and transformation matrix recovery

phase and multi-image color correction phase. The first phase helps us to map all captured image data

from multiple cameras into the uniform radiometric color space described in Section 3. Transformation

matrices are then saved for the second color correction phase. Finally, pixel value truncation problem

and photo-consistency estimation issue are discussed.

Figure 3 shows an overview of our method, which proceeds in six steps:

Step 1. Recover the response function from five images with different exposures and select the target

image with the largest gamut range.
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Figure 2 Color calibration levels on the basis of color imaging process [16]. Our radiance-based color calibration method

lies in the middle level, which does not need to adjust camera parameters like low level calibration, but obtains a more

consistent result than pixel-based calibration.
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Figure 3 The overview of our multi-camera color calibration method, taking two cameras color calibrating for example.

The image captured by “Cam1” is simply selected as target image here. The upper row (a)–(e) shows the response function

and transformation matrix recovery phase, followed by color correction phase shown in lower row (f)–(i). In the first phase,

two sets of images with varying exposures (a) are inputted to calculate the response curves (b). Color chart images under

different camera settings (c) are inversely mapped by the response functions. Outputs (d) are then used to estimate the

coefficient matrix (e) by least squares matching. In the second phase, Rabbit toy images captured by the same cameras

(f) are inversely mapped to images (g) by the recovered response functions, and then corrected by linear transformation.

Calibrated images (h) can also be processed by a new response function for better appearances (i).

Step 2. Locate the color chart board by geometric calibration, sample 24 colors and inversely map

them with the previous response function.

Step 3. Estimate the coefficient vectors or matrix and save both response functions and transformation

matrices for the next phase.

Step 4. Process images of reconstructed scene with the corresponding recovered response function.

Step 5. Correct all the images by the estimated transformation matrices.

Step 6. Apply a new response function for better appearances if needed. More details are described in

the following subsections.

4.1 Response function and transformation matrix recovery

Researchers have proposed several methods to calculate the response function for a single camera. The

most popular methods involve taking multiple registered images of a static scene with varying camera

exposures [17] or illuminations [18]. The basic idea of these methods is to fully use statistics of images
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with different exposures or illuminations and then to fit them into an empirical mathematical polynomial

function. Lin et al. present a novel response estimation method by exploiting intensity statistics at edges

[19]. We simply choose Mitsunaga’s RASCAL software [20] to calculate response functions of all cameras

one by one for its robustness. The recovered function curves are shown in Figure 3(b). All images

captured in this phase contain the same GretagMacbeth ColorCheckerTM chart [21] for color sampling.

Instead of explicitly adjusting camera configurations, we have to carefully select the target image which

others correct to. If the target image has a limited gamut range, say too dark or too bright, the corrected

images may introduce distortions and quantization errors. So we search for all candidate images and

select the one which is both visually good and has the largest gamut range. This can be automatically

done by analyzing the range of 24 sampled colors. It is possible that no image satisfies the condition. In

this case, we generate a high dynamic range image from images with different exposures by RASCAL,

and then equalize it as the standard target.

After being inversely mapped to radiometric color space, the sampled colors are then used to model

the transfer function between the target image and each candidate image. Similar to [10], we estimate the

transformation matrix in two ways: linear least squares matching and a 3×3 RGB to RGB transformation.

The complicated general polynomial transformation is not necessary, since we explicitly compensate the

nonlinearities of camera response functions.

The linear squares matching is the simplest and fastest method to estimate the coefficient matrix. It

minimizes the following function in least square sense:

N∑

i=1

((acIci + bc)− Tci)
2, c ∈ {r, g, b}, (1)

where I and T refer to the color vectors in candidate and target images. We use N = 24 samples to fit

this function. A disadvantage is that linear squares matching scales and translates the color values of

each channel independently and ignores the inter-channel effects. Ilie [10] suggests using a 3× 3 RGB to

RGB transformation matrix to improve it, which is the solution to the following over-constrained system:

N∑

i=1

(Ici ·M3×3 − Tci) = 0, c ∈ {r, g, b}. (2)

We solve the problem of estimating matrix M3×3 using singular value decomposition. Here the coeffi-

cient vectors a and b in Eq. (3) and matrix M3×3 in Eq. (4) are calculated and saved for the next color

correction phase.

4.2 Color correction

The second phase’s goal is to correct multiple candidate images to the target one. With the same setting to

the previous phase, we capture a set of new images which contain the scene or object to be reconstructed,

as the input of the second phase.

The general formula of color correction can be written as

P ′
c = ac · f−1

c (Pc) + bc, c ∈ {r, g, b}, (3)

or

P ′
c = M3×3 · f−1

c (Pc), c ∈ {r, g, b}. (4)

Eqs. (3) and (4) respectively describe two color correction processes by least squares matching and

3×3 RGB to RGB transformation, where Pc and P ′
c represent the pixel values before and after correction.

In theory, color correction by 3 × 3 RGB to RGB transformation should yield a better result than the

correction by linear squares matching, but in our method we find that both methods produce nearly the

same results. Calibrated images are shown in Figure 3(h). In some cases, these images may be too dark

for observing. A new uniform response function is proposed to improve it (making gamma equal to 2.2

for example). Results are illustrated in Figure 3(i).



1514 Zhao X, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

Figure 4 Truncation problem example and analysis. (a) The over-exposure input image; (b) corrected image with

background pixels are truncated; (c) the least squares fitted lines of RGB channels. Note that the left-half part of each line

is below zero. (d) Truncation problem resolved by Ilie’s method [10].

4.3 Truncation problem

Truncation problem may occur when the input image is too dark or too bright as shown in Figure 4(a).

This is because background pixel values are beyond the range of sampled 24 colors. Any correction

methods cannot recover these colors when sampling range is too narrow. The left-half part of each fitted

line shown in Figure 4(c) is below zero, which yields meaningless pixels.

We then use statistic method to make analysis when our color calibration method can be correctly

used. Since the white color is expressed by red, green and blue components with max values, we choose

the variance of white color to predict whether the truncation problem would occur. We observe that

when the image is too dark (the RMSE value of white color is more than 200), our calibration method

cannot work correctly or with lots of noise. On the other hand, when the image is too bright (the RMSE

value of white color is less than the RMSE values of other colors), the truncation problem will happen

again. This can be automatically done to decide whether our method can be correctly used. In practice,

users can roughly adjust camera parameters to ensure they can distinguish black from dark grey or white

from light grey. Then, our method can further calibrate colors and achieve photo-consistency.

4.4 Photo-consistency estimation

Photo-consistency based reconstruction algorithms need a threshold which distinguishes the consistent

matches from the inconsistent matches. It is always determined by trial and error. We explicitly measure

and determine it by projecting the sampled points on color chart board back to images, computing

the matching costs and choosing the maximum value as threshold. In the next section, we argue that

matching at the white color will yield the largest cost value.

5 Experimental results

For experiment purposes, we set up a multi-camera acquiring platform shown in Figure 5(a). Cameras can

be fixed in the platform at arbitrary positions. The color chart board or objects to be reconstructed are

placed in the center to make sure all cameras can observe them. A synchronized multi-camera acquiring

system is developed and deployed on PCs. Multiple cameras are firstly calibrated by Bouguet’s geometric

calibration toolbox [22]. Then the color chart board with markers is located to obtain color sample 3D

position. Figure 5(b) illustrates calibrated extrinsic parameters and camera IDs.

5.1 Comparison before and after color calibration

Firstly, we use six Flea2 cameras provided by PointGrey, Inc. [23] with the same settings and capture

a toy rabbit for an implementation of space carving 3D reconstruction algorithm presented in [8]. The

threshold here is set to 20 by trial and error.
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Figure 5 Multi-camera acquiring system and camera distributions. (a) The acquiring platform with six fixed cameras;

(b) visualization of extrinsic parameters after geometric calibration.

Table 1 Different settings of six cameras

CameraID Acquisition case Shutter(ms) Exposure(EV) White balance(R/B)

1 As standard 100 0.38 550/650

2 Tend to dark 41.8 −1 550/650

3 Tend to bright 110 0.45 550/650

4 Tend to warm 100 0.38 680/650

5 Tend to cool 100 0.38 550/760

6 AVT Marlin 046C [24] Shutter=1000; Gain=0; WB=75/72; Gamma=1.0

In our first experiment, camera types and settings are all the same (the standard acquistion case as

shown in Table 1). However the estimated photo-consistency matching costs still contain too much noise

which yields artifacts as shown in Figure 1(b) and (c). After our color calibration, the reconstruction

results (Figure 1(d) and (e)) are improved and noticeable artifacts marked in circles are eliminated.

We made a second experiment using multiple cameras with different settings and types. The configu-

rations are listed in Table 1. The six images captured by these cameras are given in Figure 6. Figure 7

shows the corrected images after our color calibration.

Comparing with Figure 6 and Figure 7, we find that all candidate images are color consistent to

the target image (Figure 6(a)) after color calibration. It proves that our multi-camera color calibration

method is effective when cameras have different settings like exposures (by adjusting aperture, gain or

shutter time), white balances and even different types (mainly different response functions).

We have also compared our method with Ilie’s and Porikli’s methods under the same camera config-

urations listed in Table 1. Here we use 3 × 3 RGB to RGB transformation as color correction method

and use the mean inter-sample standard deviations to measure the color consistency. Table 2 shows the

comparison results. Both Ilie’s and our methods greatly reduce these values and achieve color consistency

numerically and Ilie’s method is better than ours. However, results are so close that difference can be

ignored when compared to Porikli’s method. Moreover, we do not need to adjust any camera parameters.

Porikli’s results seem bad in the figures. The main reason is that part of the pixels are truncated during

calibration.

Figure 8 shows sampled color distributions of input images before and after color calibration. The

measured color values approximately converge to a straight line. Note that the largest variation happens

when RGB values are the largest. It means that the white color has the maximum uncertainty, which

will be clearly shown in the next experiment.

5.2 Photo-consistency based multiview reconstruction

We further compute photo-consistency matching costs of 24 sampled colors across multiple cameras before

and after color calibration. Here we choose RMSE (root mean square error) and SAD (sum of absolute
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(a) (b) (c)

(d) (e) (f)
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Figure 6 Six images captured with different camera

settings and types. They visually look different. (a)

normal; (b) dark; (c) bright; (d) warm; (e) cool. Image

(f) is captured by another type of camera.

Figure 7 Six images corrected by our color

calibration. Images (b)–(f) are visually color consis-

tent to the target image (a) after our color calibration.

Table 2 Comparison between our, Ilie’s and Porikli’s color calibration methods

Channel Before calibrated Our method Ilie’s method [10] Porikli’s method [12]

Mean R 42.2093 3.9834 2.9864 37.2798

inter-sample G 39.7660 3.5263 2.3681 36.0696

st. dev. B 42.5107 5.5870 3.1840 39.4626
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Figure 8 The measured color for each channel, camera and sample, plotted with respect to the corresponding target

values. The six black lines in each figure represent the sampled color distributions of six images in Figure 6. The red,

green and blue lines represent the corrected color distributions of six images in Figure 7. The upper three figures (a)–(c)

show the corrected results by linear squares matching. The lower three figures (d)–(f) show the corrected results by 3 × 3

RGB to RGB transformation. Both linear squares matching and 3× 3 RGB to RGB transformation yield nearly the same

convergence results.

difference), two classic distance-based similarity measurements for image-based modeling, as matching

cost functions. The comparison is shown in Figure 9.

After color calibration, the RMSE and SAD photo-consistency matching cost values as well as variations

become significantly smaller. Both linear least squares matching and RGB to RGB transformation
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Figure 9 Photo-consistency matching costs before and after color calibration, plotted with respect to the sample number

in color chart. (a) Comparison of RMSE (root mean square error) matching costs of six images; (b) comparison of the

maximum SAD (sum of absolute distance) matching cost across each two images. Photo-consistency matching noises are

significantly decreased after our color calibration. The 19th sample reaches the maximum cost value, which is used as

photo-consistency check threshold.

Figure 10 Space carving [8] reconstruction of a toy rabbit. (a) and (d): Reconstruction with original images shown in

Figure 6. The threshold is set to 50 according to Figure 8(a). The appearance looks ugly due to the inconsistent colors.

Space carving algorithm hardly works and geometry model is just the same as visual hull. Wrongly reconstructed regions

are marked by circle. (b) and (e): Reconstruction with calibrated images shown in Figure 7. The threshold is set to 16. The

artifacts are eliminated. (c) and (f): Reconstruction with calibrated images processed by a new response function mapping.

produce similar matching costs. The 19th sample exactly refers to the white block in the color chart

and has the largest value. It means that the white color is the most ambiguous color of which photo-

consistency matching cost can be used as the threshold for multiview reconstruction algorithms.

Figure 10 shows the space carving reconstruction results of the toy rabbit images before and after our

color calibration with auto-determined thresholds (separately set to 50 and 16 according to the largest

RMSE values in Figure 9(a)). Because of inconsistent colors in Figure 6, space carving algorithm hardly

reconstruct the photo-consistency results and even wrongly remove lots of “correct” regions on surface,

shown in Figure 10(a) and (d). After color calibration, Figure 10(b) and (e) show a more reasonable

reconstruction result without noticeable artifacts. Additionally, we generate a set of images with a new

response function and reconstruct with them for better appearances (Figure 10(c) and (f)). We conclude

that photo-consistency based reconstruction results can be improved by our color calibration, even using

multiple cameras with different settings and types.

6 Conclusion

We have presented a novel radiance-based color calibration method to improve photo-consistency esti-

mation result for multi-camera vision system. Our method is software-based and independent of camera
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settings and types, which implements a two phase process: response function and transformation matrix

recovery, followed by color correction for multiple images. The calibrated images are consistent both

visually and numerically. We also found that the white color is the most ambiguous color of which

photo-consistency matching cost can be as the threshold for image-based modeling algorithms.

In this work, our effort is devoted to design a color calibration method without hardware parameter

adjustment, whereas pixel truncation problem might affect our calibration results. We have shown that

our method is more robust than Porikli 128s software-based method and presented some criteria to

decide whether the truncation problem would occur. In future, we will try to remove other hardware

dependences, such as color chart and a set of images with varying exposures. We think that the most

potential application using our method is multi-camera remote immersion system.
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