
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2012; 23:407–416

Published online 24 May 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1464

SPECIAL ISSUE PAPER

Detail-feature-preserving surface reconstruction
Xu Zhao1, Zhong Zhou1*, Ye Duan2 and Wei Wu1

1 State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang
University, Beijing, China

2 Computer Graphics and Image Understanding Lab, Department of Computer Science, University of Missouri – Columbia,
Columbia, MO, USA

ABSTRACT

In this paper, we propose a feature-preserving surface reconstruction method from sparse noisy 3D measurements such
as range scanning or passive multiview stereo. In contrast to earlier methods, we define a novel type of explicit 3D
filter—regularized weighted least squares filter—to characterize the detail features such as surface wrinkles and sharp
features. To account for noise, we rasterize input-oriented points into a probabilistic volume (base volume) and then create
a guidance volume by Gaussian filtering. Both the base volume and the guidance volume are further filtered by regularized
weighted least squares filter to detect and recover detail features. After the two-stage filtering, a global minimal surface is
computed by graph cut and meshed as a geometric model. Experimental results on various datasets show that our method
is robust to noise, outliers, and missing parts, which makes it more suitable to fit indoor/outdoor multiview stereo data.
Unlike other methods, our method can completely recover scene structures and preserve detail features from noisy point
samples. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reconstructing 3D surfaces from point samples is well
studied in many areas of computer graphics, including laser
scanning, reconstructing image-based surfaces, and repair-
ing of noisy meshes [1]. It focuses on approximately fitting
a surface to point samples, filling holes, or remeshing exist-
ing models with the use of information about the sampling
process, for example, bounds on the noise magnitude or the
sampling density.

There are many approaches for acquiring 3D shapes
from real-world objects, which can be basically classified
into two categories: active lighting systems and passive
stereo systems. Active lighting systems, such as laser-
based scanners, structured light scanners, and infrared
light devices, can produce more stable and accurate point
samples than passive stereo systems. Recently, however,
the passive stereo systems have become increasingly
popular for their low-cost acquiring devices and attrac-
tive indoor/outdoor applications [2,3]. Unfortunately, most
surface reconstruction algorithms cannot be directly used
for passive stereo systems. For example, in passive mul-
tiview stereo, reconstructed point samples are seriously

affected by insufficient images, illumination changes,
calibration errors, poor photo-consistent matches, and the
structure and appearance of the scene to be reconstructed.
Until recently, it has been a challenge to perform surface
fitting from such poor point samples.

The latest surface reconstruction algorithms, such as
Poisson surface [4] and touch expand [5], alleviate the poor
data fitting problem to some extent and are widely used in
image-based modeling systems. The key objective of these
two methods is to define a surface-fit quality function from
oriented points and then solve this optimization function. It
is important to note that they all implicitly use a Gaussian
filter in their algorithms to avoid the influence of noise and
outliers and to achieve a smooth mesh model. They per-
form well in many cases especially when the surface of the
reconstructed object is inherently smooth. But the smooth
shape prior assumption also ignores some important detail
features such as surface wrinkles as well as sharp edges and
corners that occur widely in natural and artificial objects.
Meanwhile, when considering points obtained using multi-
view stereo, detail features are difficult to distinguish from
the noisy or incomplete point samples because both details
and noise are high-frequency signals.
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To solve these problems, we present a novel feature-
preserving filter called regularized weighted least squares
(RWLS) filter. The key idea is to define the detail
features as the covariances between the input and a
Gaussian-smoothed intermediate result. Also, a regulariza-
tion parameter is added into the kernel function to balance
the two. To account for noise, we first rasterize oriented
points into a probabilistic volume (also called base volume)
and create a guidance volume by Gaussian filtering. This
filtering is completed using a large filter radius to ensure
the reconstruction completeness and suppress noise as well
as details. Only the significant high-frequency features that
are defined as detail features are detected and recovered
during RWLS filtering. Finally, meshes are generated from
the filtered volume by graph cut.

The advantages of our method include the following: (1)
the method has the ability to recover both sharp features as
well as surface wrinkle features, and the level of detail can
be easily controlled by adjusting filter parameters; and (2)
the method is robust to noise, outliers, and missing parts,
which cannot only be used for range scan data fitting but is
also suitable for indoor/outdoor multiview data.

2. RELATED WORK

The earliest surface reconstruction methods are primar-
ily designed for fitting 3D laser scanner data. They can
be roughly classified into two major categories: implicit
surface methods and Delaunay-based methods.

The goal of implicit surface methods is to implicitly
define a level-set surface function such as signed distance
function [6], radial basis function [7], or moving least
squares (MLS) [8]. Among them, the MLS scheme can
approximate the local surface from the point set with a
moderate amount of noise, and various methods are fur-
ther developed to improve its stability [9] or preserve sharp
features [10]. However, they always fail when the points
are irregularly sampled (e.g., incomplete) or too noisy. The
idea behind MLS is to perform a local polynomial fitting
in weighted least squares (WLS) sense, which can also be
seen as an optimization-based filter kernel. Similarly, we
define an RWLS filter for surface reconstruction. However,
there are two differences in our method: (1) the filtering
process is computed in 3D probabilistic space; (2) a guid-
ance volume is generated by Gaussian filtering to suppress
more noise and ensure the reconstruction completeness.
Note that the 2D RWLS filter has been recently proposed in
an image processing area [11]. Its applications include haze
removal, image matting, high dynamic range (HDR) com-
pression, noise reduction, and others [12]. An extensive
literature search led to the conclusion that our method is
the first attempt to extend the filter to 3D digital geometry
processing, which led to its successful application in
detail-feature-preserving surface reconstruction.

Delaunay-based methods typically interpolate all or
most of the points on the basis of combinatorial structures,
such as Delaunay triangulations [13], alpha shapes [14],

or Voronoi diagrams [15]. More recent work focuses
on combining with other techniques such as partition-
ing strategy [16], variation method [17], or energy opti-
mization framework [18] to improve the robustness to
noise, outliers, and irregular sampling. Most notably,
Salman et al. [19] addressed the problem of generating
surface meshes from 3D point samples while preserving
sharp features. They explicitly extract sharp features on
the basis of the covariance matrices of Voronoi cells and
then perform a feature-preserving variant of a Delaunay
refinement process. However, most of these methods are
not designed for the passive stereo system.

For the problem of surface reconstruction from multi-
view stereo (MVS) point sets to be solved, shape priors
and probabilistic optimization framework are often used.
The basic shape prior assumes that the surface to be
reconstructed is smooth, which yields to a regularized
optimization problem [5,20]. Poisson surface [4] and
touch expand [5] are two typical surface reconstruction
algorithms and are widely applied in MVS reconstruction
for their robustness. Kazhdan et al. [4] aligned the gradient
of the indicator function with a vector field from the
input-oriented points and compute it as a Poisson problem.
Lempitsky and Boykov’s global optimization approach [5]
is based on the minimal surface framework with graph cuts
in [21] and expresses the generic surface-to-data fit quality
measurement as a flux-based function. Both methods
implicitly use the Gaussian filter to handle sample noise,
which is equivalent to the smoothness shape priors.
Nevertheless, in practice, we found that if the filter radius
is large, both implicit model and globalization methods
will obtain a complete but oversmooth model. However, if
the filter radius is small, a detailed but incorrect geometric
model is produced. In many cases, both the completeness
(scene structure) and surface details are crucial to the
perception of 3D models. However, it is hard to make a
trade off between them. Unlike these methods, our method
first creates a guidance volume by Gaussian filtering
and then recovers detail features by RWLS filtering. The
two-stage filtering ensures that the resulting model can
contain both complete structures and detail features.
Moreover, the RWLS filter parameters can be easily
adjusted to control the level of detail features to be
preserved. Recently, more shape priors such as planar
plane [22] and basic geometric shape primitives [23] are
introduced. However, these assumptions are more suitable
for urban scenes, whereas the local shape priors in RWLS
filter are adaptively determined within a given neighbor-
hood and have no limitation of scene types.

3. METHOD OVERVIEW

The overall goal of our method is to reconstruct a mesh
surface from well/poor-sampled oriented points, to ensure
the completeness and to recover detail features as much
as possible. Figure 1 illustrates the basic step-by-step pro-
cess of our surface reconstruction method, which consists
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Figure 1. The overview of our surface reconstruction method. Oriented points (a) are first rasterized into a probabilistic base volume
(b). A complete but oversmoothing guidance volume (c) is created by Gaussian filtering with a large radius. Regularized weighted least
squares (RWLS) filter is then applied to the base and guidance volumes to preserve detail features (d). Desired surface corresponds

to s/t-cut on the constructed graph (e) and is finally extracted as mesh model (f).

of four main phases: point sample rasterization, two-stage
filtering, surface segmentation via graph cut, and isosur-
face extraction.

In the first rasterization phase, we fuse oriented points
(Figure 1(a)) into a base volume (Figure 1(b)). The base
volume is a probabilistic volume in which each voxel is
assigned a divergence value representing the probability of
a point belonging to the true surface. This phase also helps
us to solve the surface reconstruction problem in MRF
optimization framework.

The base volume has the most details but may also con-
tain noise, holes, and outliers. The first step of the follow-
ing two-step filtering phase is to apply a Gaussian filter
with a large radius. The result is a guidance volume that
is overly smoothed, but complete and without noise, as
shown in Figure 1(c). Then, we define the detail features as
the covariances between the base volume and the guidance
volume and implicitly detect and recover them by RWLS
filtering, as illustrated in Figure 1(d). The two-stage fil-
tering not only preserves surface details but also ensures
reconstruction completeness.

In the last two phases, we segment the filtered volume
into interior and exterior via the graph cut algorithm [21].
Adjacent nodes are connected via n-links representing
area-based regularization cost, whereas t -links connect
nodes to the terminals Rs or Rt according to each voxel’s
filtered divergence value, as shown in Figure 1(e). A sur-
face S corresponds to an s/t -cut on the constructed graph.
Finally, we extract an isosurface from the binary segmented
volume to get the final mesh model [24] (Figure 1(f)). In
the following sections, we will focus on the first two phases
in detail.

4. POINT SAMPLE RASTERIZATION

Considering that the input point samples may contain
noise, outliers, and missing parts, we rasterize the input-
oriented points into a regular grid (also called base

volume). Each cell of the grid (also called a voxel) contains
zero or several point samples (also called vectors fxpg). We
assume that a voxel is closer to the true surface when more
points are in the voxel. This can be quantified as the flux
for the vector field. According to the Gauss–Ostrogradsky
(also known as divergence) theorem, the flux is equiva-
lent to the vector field’s divergence div.xp/, which can be
computed by adding the gradient values of all vectors in
each voxel. As a result, every voxel in the base volume is
assigned a divergence value representing the probability of
a voxel belonging to the true surface. After being normal-
ized, these values can be seen as the intensities of image
pixels, except that positive and negative values indicate
whether the voxel is inside or outside of the surface.

Note that this phase also helps us solve the sur-
face reconstruction problem within the MRF optimiza-
tion framework, which can be expressed as the following
minimization problem:

arg min
S

0
B@
Z

S

�ds �
Z

inter.S/

div.xp/dp

1
CA ; (1)

where fxpg is the vector field representing point sam-
ples. The parameter � is an area-based regularization term,
which can be chosen as a constant or according to the sam-
pling density. Instead of directly solving Equation (1) by
graph cut, we first apply two filters to ensure the recon-
struction completeness and preserve detail features. We
will discuss this in the next section.

5. TWO-STAGE FILTERING

After rasterizing points into the base volume, we perform a
two-stage filtering. In the first stage, a Gaussian filter with a
large radius is applied to remove noise and outliers as well
as fill holes. In the second stage, we apply a novel RWLS
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filter to detect and recover detail features. Both filters can
be expressed as a general 3D filtering process:

qi D
X
j

Wij .vi I s0; s1; :::/pj ; (2)

where p and q respectively denote the base volume and
the output filtered volume and i and j are voxel indexes,
which indicate the corresponding divergence values. The
kernel function W is the local filter operator with several
parameters s D Œs0; s1; : : :�. v is the guidance volume,
which can be ignored in some filter operators, for example,
Gaussian filter.

5.1. Gaussian Filtering

In the first stage, we apply a Gaussian filter to make the
reconstructed surface smoother. We choose a large radius
for the Gaussian filter in order to fill holes and ensure the
reconstruction completeness. The result volume may be
oversmoothed, but it keeps the basic shape of surface topol-
ogy. It will be reserved as the guidance volume for the next
stage filtering.

The Gaussian filter behaves similarly with the weighted
average filter in the discrete approximation case. When
the standard deviation � is a constant, the kernel function
only depends on the filter radius r . The weight parameters
s D Œs0; s1; : : :� can be pre-computed by the following:

sn D
e�n

2=2�2

P
m2r e

�m2=2�2
(3)

We extend the integral image technique [25] to 3D
volume and implement the 3D box filter that can approx-
imately replace the Gaussian filter. Both the input base
volume and the Gaussian-smoothed volume are used for
the next stage filtering to recover detail features.

5.2. Detail-Feature-Preserving Filtering

Unlike other surface reconstruction methods that explicitly
extract features and refine the surface, we implicitly detect
and recover detail features in the RWLS filtering stage. The
detail features include surface wrinkles and sharp edges or
corners, which can be expressed as the differences between
base volume and guidance volume. In RWLS kernel func-
tion, we quantify them as the covariances between the base
volume and the guidance volume. Detail features will be
restored from the base volume if and only if these values
are significant.

Specifically, we define a novel filter, named RWLS fil-
ter, to preserve detail features. Similar to the traditional
MLS surface [8], the WLS filter kernel parameters can
adaptively be determined by local shape fitting in least
squares sense:

arg min
s

X
j

.gs � pi /
2�.jjpi � pj jj/; (4)

where gs corresponds to the local approximation polyno-
mial of the surface and �.p/ denotes the spatial weight
function. In general, the higher the degree of the polyno-
mial, the more accurate the surface fitting result will be [9].
However, when the voxels are assigned with probabilities
instead of point positions, the linear kernel function is good
enough to fit. Therefore, we assume that the output volume
q is a linear transform of v in a 3D window wk centered at
the voxel k:

qi D gs D akvi C bk ;8i 2 wk ; (5)

where .ak ; bk/ are linear coefficients assumed to be con-
stant in wk . If we take a differential operator to both sides
of Equation (5), we have rq D arv. This means that the
linear filter kernel ensures that the output volume has the
same basic structure as the guidance volume. Meanwhile,
coefficient a has an important effect on these structures.
Moreover, we add a regularization term to the WLS kernel
function in the window wk :

arg min
.ak ;bk/

X
i2wk

�
.akvi C bk � pi /

2C "a2k

�
; (6)

where " is a regularization parameter controlling the level
of surface details. We solve this minimization problem by
linear regression. Then, the RWLS filter kernel parameters
can be explicitly determined by the following:

ak D
covk.v; p/

vark.v/C "
D

1
jwj

X
i2wk

vipi �
�k

jwj

X
i2wk

pi

�2
k
C "

: (7)

bk D Npk � ak�k D
1

jwj

X
i2wk

pi � ak�k : (8)

Here, �k and �2 are the mean and variance of v in 3D
window wk , whereas jwj is the number of voxels in wk .

The definition of RWLS filter Equations (7) and (8) can
also be implemented via box filter, because the equation
form is basically

P
i2wk

fi . We will further investigate the
behavior of RWLS filter parameters in the next section.

5.3. Regularized Weighted Least Squares
Filter Analysis

Intuitively, we take 2D line fitting to illustrate the behavior
of the RWLS filter as shown in Figure 2. Here, we assume
that the guidance layer is always a straight line. For sim-
plicity, divergence values on the surface are set to one and
the others equal zero.

When the base layer is also a straight line or has no
signals (Figure 2(a)), the filtered output remains the same
to the guidance layer because cov.v; p/ D 0 ) qi D

bi D pi . Another case is that the base layer is curve and
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Figure 2. Two-dimensional line fitting example of regularized
weighted least squares filter. The regularization parameter con-

trols the detail levels.

different from guidance layer (Figure 2(b)–(d)). If the reg-
ularization parameter is zero, the filter kernel is simplified
to a linear WLS filter function and the output becomes
qi D

1
jwi j

P
i2wk

.akvi C bk/. As shown in Figure 2(b),
detail features are preserved by local filtering. If the regu-
larization parameter increases, ak becomes smaller and the
filtered output is closer to the guidance layer as shown in
Figure 2(c). If the regularization parameter tends to infin-
ity, ak tends to zero and the filtered output becomes the
same as the guidance layer again (Figure 2(d)).

In other words, the detail levels can be controlled by the
parameter " in RWLS filtering. The surface patches with
variance much larger than " .�2� "/ are preserved detail
features. Detail features belonging to surface patches with
variance much smaller than " .�2 � "/ are closed to the
guidance volume. Meanwhile, the radius of the 3D win-
dow determines the scale of detail features to be recovered.
Small-scale detail features cannot be well reconstructed
when the radius is too large.

On the basis of the property of RWLS filter, we assert
that the two-stage filtering can preserve detail features
while ensuring that the surface reconstruction process is
robust to noise, outliers, and missing parts. Take 2D shape
fitting as an example, shown in Figure 3. First, the Gaussian
filtering with a large radius in the first stage ensures that
the guidance volume is robust to noise (Figure 3(a)) and
holes (Figure 3(b)). Meanwhile, the surface may be over-
smoothed as shown in Figure 3(c). However, because the
surface patches around sharp features have a large covari-
ance value between guidance volume and base volume,
the RWLS filtering will further detect these features and
recover them from the base volume. Note that the covari-
ance may also be large at noisy patches, but the fitting
result is nearly the same to the guidance volume because
noise is always randomly distributed. Patches around holes
are similar to the guidance volume because the covariance
is zero. Finally, the locality of the filtering ensures that the
outliers do not affect the reconstructed result, as shown in
Figure 3(d).

Figure 3. Two-dimensional example analysis of surface recon-
struction with two-stage filtering. Guidance volume (blue line) is
first created by Gaussian filter to ensure that the fitting shape
is robust to noise, outliers, and missing parts. Next, regular-
ized weighted least squares filter implicitly detects and recov-
ers sharp features (red line) because of the large covariance

between the base volume and the guidance volume.

As mentioned previously, the parameters of RWLS filter
have an important effect on surface reconstruction. For the
challenging MVS point sets, we present a method to deter-
mine the filter parameters according to the MVS recon-
struction process. Assume that the largest image resolution
is m, the cell size is n (at least one point will be recon-
structed in n � n pixel square region), and the photocon-
sistency matching windows size is s. We respectively set
the Gaussian filter radius and the RWLS filter radius to 2s

n
and s

n . The latter one also implies the uncertainty of MVS
reconstruction. The volume resolution can be assigned in
Œms ;

m
n �. Generally, the larger the volume resolution cho-

sen, the better the visualization result achieved. The choice
of regularization parameter " depends on the variation
of guidance volume. After multiplying normalized diver-
gence values by a scale factor (� D 2000), we statistically
calculate a mean variation value of about 1000. So, we set
" to 100, and it works well for most datasets.

6. EXPERIMENTAL RESULTS

In this section, we test our surface reconstruction method
on various datasets including range scan data from
Stanford (Figure 1), computer-aided design (CAD) data,
and multiview stereo data from Middleburry [2] and
Furukawa [26]. We also compare our method with Poisson
surface [4] and touch expand [5]. By default, we set the
octree depth to eight in Poisson surface for all the datasets,
and the volume resolution and filter radius in touch expand
algorithm are equal to the parameters of RWLS filter. The
reason why we do not compare with other kernel-based
methods (e.g., [10]) is that most of them are not designed
to preserve features from noisy or incomplete point
samples such as multiview stereo data. All datasets and
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Table I. Summary of parameters used for each dataset in experiments.

Scene Point no. Image no. Image size Grid size RWLS filter parameters

Bunny 34,835 – – 201� 200� 161 r D 3, "D 100
CAD 50,000 – – 202� 202� 137 r D 6, "D 100
Temple 17,370 312 640� 480 102� 154� 77 r D 3, "D 100
Hall 213,682 61 3008� 2000 201� 316� 316 r D 3, "D 100

RWLS, regularized weighted least squares.

their parameters are listed in Table I. For the MVS data,
the point samples are computed by patch-based multi-view
stereo (PMVS) algorithm [26] (cell size n D 2 and
photoconsistency matching windows size s D 7), and most
parameters are determined using the method described in
Section 5.3.

We experiment the running time in a PC with 3:0 Hz
Intel Core 2 Duo CPU (Intel Corporation, Santa Clara,
CA, USA). The first two phrases cost less than 60 s for
all datasets listed in Table I. However, most of the time
(several minutes or more) is consumed during the other
two phases, especially when performing the graph cut with
a large volume resolution.

6.1. Fitting to Simulated CAD Data

In this experiment, we show that our method is robust in
four different cases. Case 1: The input point cloud is well
sampled from a CAD model. Case 2: We add N.0; 0:3/
random Gaussian noise to each point sample. The mean
distance between two nearest points is about 0:3. Case 3:
We add 500 random outliers that are uniformly distributed
in the space. Case 4: We remove a part of points from the
point cloud. All cases are shown in the first row of Figure 4.

As shown in Figure 4, to some extent, all three meth-
ods are robust to noise, outliers, and missing parts. More
specifically, Poisson surface can produce the smoothest

Figure 4. Comparison of our method with Poisson surface and touch expand on the CAD dataset. The quantitative results in terms
of Hausdorff distance (first number) and root mean square error (second number) are given. The proposed method is robust to all

cases and preserves sharp edges.
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reconstructed surface among the three methods but is most
sensitive to the outliers. Touch expand is robust to all cases;
however, the surface patches around sharp features are
overfitted. By contrast, our method does not suffer from
these issues, and the reconstruction errors are very close to
the smallest values among all results.

6.2. Fitting to Multiview Stereo Data

We also tested our method on MVS data, which contain
more noise, outliers, and missing parts owing to the wrong
photoconsistent matching errors, as shown in Figures 5(b)
and 6(a).

For indoor MVS data, Poisson surface reconstructs the
smoothest surface. However, it loses most detail features
in Temple dataset, shown in Figure 5(c). To recover these
features, we decrease the Gaussian filter radius in touch
expand method, but it becomes sensitive to the noise and
outliers, as illustrated in Figure 5(d). Comparing the three
methods, our method reconstructs a comparable result with
Poisson surface but keeps more details (Figure 5(e)). From
the quantitative evaluation results, we can see that all three
methods achieve nearly the same accuracy and signifi-
cantly improve the reconstruction completeness. It also
means that the RWLS filter can preserve detail features in
appearance without loss of accuracy (Reconstruction accu-
racy mainly depends on the multiview stereo algorithm).
Because we directly reconstruct surface from noisy points

Figure 5. Comparison of our method with Poisson surface and touch expand on indoor MVS dataset. The proposed method can
recover most details and is insensitive to the wrong matching points.
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(a) Input points (b) r=1, ε=100

(d) r=3, ε=100(c) r=3, ε=10000

Figure 6. Surface reconstruction on the outdoor MVS dataset (hall) with different parameters. The regularized weighted least squares
filter radius mainly affects the scene structures, whereas the regularization parameter can easily control the detail levels.

and do not refine it on the basis of photometric consistency,
some results are not as good as the submitted models in the
Middlebury website [2].

For outdoor MVS data, point cloud is usually incom-
plete and contains more noise and outliers that Poisson
surface cannot work with. By contrast, our method can eas-
ily make the tradeoff between reconstruction completeness
and detail feature preservation, as shown in Figure 6(d).
Moreover, we analyze how the RWLS filter parameters
affect the surface reconstruction result. If we set a small
filter radius, detail features are preserved, but some holes
appear owing to the low sampling rates in these parts
(Figure 6(b)). When we increase the regularization param-
eter, the reconstructed surface will become smooth but
will lose detail features (Figure 6(c)). For applica-
tions, users can manually adjust parameters to meet
their requirements.

7. CONCLUSION

In this paper, we have presented a novel surface reconstruc-
tion method that can completely recover scene structures
and preserve surface wrinkles or sharp features from noisy
point samples. This is mainly due to the nice property
of 3D RWLS filter, which balances between reconstruct-
ing a smooth surface and reproducing details. Our method
also provides a basic framework to apply other filters (e.g.,
anisotropic filter and bilateral filter) to process noisy 3D
point clouds. Moreover, our method is robust to noise,

outliers, and missing parts, and it is more suitable for pas-
sive 3D acquiring systems such as indoor/outdoor multi-
view stereo system.

The main limitation of our method is that the surface
reconstruction results are seriously dependent on the cho-
sen parameters, including volume resolution, filter radius,
and regularization parameter. Although we have presented
a method to determine these parameters for most cases, fur-
ther adjustment is sometimes needed to achieve the best
appearances. In some cases, when the surface of the recon-
structed object is inherently smooth, the Poisson surface
yields a more reasonable result than ours because of the
discretization errors introduced in the discrete graph cut
phrase. Besides, features smaller than a grid cell cannot
be well reconstructed. It seems that increasing the volume
resolution may improve the reconstruction results. How-
ever, in practice, the effect is limited by the (uncertain)
point’s density. In the future, we will consider improving
our method without turning any parameters and applying
continuous graph cut to avoid the discretization errors.
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