Journal of Network and Computer Applications 36 (2013) 388-401

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at SciVerse ScienceDirect

NETWORK&
COMPUTER
APPLICATIONS

Replica-aided load balancing in overlay networks

Yuehua Wang *P, Zhong Zhou *®*, Ling Liu ¢, Wei Wu ®P

2 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
b School of Computer Science and Engineering, Beihang University, Beijing 100191, China
€ College of Computing, Georgia Institute of Technology, Atlanta, GA30332, USA

ARTICLE INFO

Article history:

Received 18 June 2011
Received in revised form

15 February 2012

Accepted 11 May 2012
Available online 22 May 2012

Keywords:

Load balancing

Cost model

Load fluctuation

Overlay network
End-user communication

ABSTRACT

In recent years, there have been rapid advances in network infrastructure and technologies for end-user
communication. However, because of network dynamics and resource limitation, providing scalable
end-user communication services is challenging when the applications are utilized on a large-scale. To
address this challenge, a replica-aided load balancing scheme (RALB) is proposed for enabling the nodes
in an overlay networks to support the communication applications for a large number of users. This
paper makes three unique contributions. First, we study the existing load balancing schemes and
identify their weakness in handling time-varying workloads with frequent load fluctuations. Second,
we introduce a sophisticated cost model for load balancing cost estimation, which captures the
dependencies between the factors (e.g., the load, message number, and link latency). Third, we propose
a performance tuning technique to minimize the load balancing cost. The extensive experiments show
that RALB effectively reduces the load imbalance and eliminates the load balancing cost when

compared to the existing load balancing schemes.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of communication technology and the
rapidly growing popularity of hardware devices (e.g., PDAs, smart
phones, game consoles and computers), the ways of accessing
Internet services and applications (Kumar et al., 2003; Myles et al.,
2003; ComScore, 2007; Technologyreview, 2010; Techcrunch, 2011)
(e.g., e-commerce, web surfing, instant messaging, file fetching,
online game, email and multimedia dissemination) have changed
significantly. In many of these applications, a large number of
hardware device users share the resources and communicate with
each other anywhere and anytime. To meet the voluminous demand
of the users, service providers usually construct overlay networks
with a large number of nodes (servers) and spread applications over
the overlay networks (Knoll et al., 2007; Cannataro and Talia, 2003;
Delmastro et al, 2008; Avancha et al, 2002; INTRICE, 2009;
Warcraft, 2010; Google, 2010). Typically, the users with hardware
devices connect to the nearest nodes (servers), and fetch (publish)
the data that are interesting. However, the nodes (servers) usually
have are heterogeneous (homogeneous) and bounded capacities. If
one of the nodes (servers) is overloaded, then it could become a
bottleneck and degrade the system resource utilization and the
service quality (e.g., the loss rate and response time). In such a case,

* Corresponding author. Tel.: +86 10 82313085; fax: + 86 10 82339909.
E-mail addresses: yuehua.research@gmail.com (Y. Wang),
zz@vrlab.buaa.edu.cn (Z. Zhou), lingliu@cc.gatech.edu (L. Liu),
wuwei@vrlab.buaa.edu.cn (W. Wu).

1084-8045/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jnca.2012.05.001

load balancing is often used to alleviate the bottleneck so that the
system performance in terms of utilization and service quality can
be improved.

The primary goal of load balancing in a network is to balance the
workload of the nodes in proportion to their capacities, which is
measured in terms of their processor speed, storage capacity, and/or
bandwidth. However, this task is inherently difficult because of the
following: (1) the network dynamics, e.g., some nodes or network
links could become unavailable because of a node crash or improper
program termination; and (2) the time-varying load distribution, e.g.,
the load distribution can be changed as the popularity of files stored
on the nodes changes. Usually, the nodes with popular files or data
often have much heavier loads than the nodes with unpopular ones;
and (3) the frequent load fluctuations, e.g., frequent load movements
between nodes could be caused, which could further lead to
expensive and problematic load balancing.

To solve those issues, a substantial amount of work has been
performed recently on load balancing among the nodes in a dynamic
network. Examples include Proximity-aware load balancing (Zhu and
Hu, 2005), Address-space balancing (Karger and Ruhl, 2006), Multi-
parameter load balancing (Werstein et al., 2006), Adaptive replication
(Gopalakrishnan et al., 2004), Proportional replication (Tewari and
Kleinrock, 2006), Cluster-based load balancing (Shen and Xu, 2008;
Qiao and Bochmann, 2009; Kotoulas et al., 2010), and load balancer
based load balancing (Ranjan et al, 2010). However, most of the
existing load balancing approaches have some limitations in our
opinion. They either have a high communication cost during the load
balancing or they ignore the impact of the load fluctuation on the
system performance. In fact, the frequent fluctuations in the load are

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401 389

very common for Internet applications (e.g., online games, multi-
media dissemination, and web surfing). Surprisingly, we find that
most of the existing work to date (Byers et al., 2003; Gopalakrishnan
et al.,, 2004; Werstein et al., 2006; Tewari and Kleinrock, 2006; Qiao
and Bochmann, 2009; Kotoulas et al., 2010; Ranjan et al., 2010)
addresses only the load balancing without considering the frequent
load fluctuation. One intuitive approach, as mentioned in Kwon and
Ryu (2004), is to keep track of the load status of the nodes during a
time window in which the load movement is triggered when a
predefined load threshold is violated. Although this approach makes
the algorithm design easier, it could come at the cost of degraded
performance in the network resource utilization and the service
quality. We argue that in some cases, such approach can result in a
burst of messages that are sent to the network system for main-
tenance, and a loss of the messages transmitted between the nodes
from an unsuitable threshold setting.

In this paper, a novel load balancing scheme is proposed to
achieve load balancing efficiency and to minimize the cost in the
spite of a skewed load distribution and a frequent load fluctuation
in the overlay networks. Such a scheme can empower the nodes
to support the communication applications over the overlay
networks for a large and growing number of end-users. Each
end-user can access the services of an overlay network by
connecting to one of the nodes in the network, usually through
a wireless or wired network connection. Those nodes run the
middleware and serve as proxies for the end-users. In general,
this paper makes three unique contributions.

First, we study the existing load balancing schemes and
identify their weaknesses in dealing with time-varying workloads
with frequent load fluctuations. To overcome those weaknesses,
a replica-aided load balancing scheme (RALB) is proposed, which
deploys replica nodes for load sharing and intelligently avoids a
large volume of load movements to achieve load balancing
efficiency. In RALB, load movement is triggered only when there
is no light-load replica node that can be used to process the extra
load migrated from the others. This strategy greatly eliminates
the influence of load fluctuation on the system performance.

Second, we introduce a new cost model for estimating the load
balancing cost. This model captures the dependencies between
the important performance-related factors (e.g., load, cost, mes-
sage number, and link latency) in the load balancing.

Third, based on the cost model, we provide a performance tuning
scheme to minimize the load balancing cost. This scheme empowers
the nodes to explore different load balancing strategies and to
choose the best strategy for the load balancing and cost minimiza-
tion. The scheme that we presented in this paper, to the best of our
knowledge, is the first method that provides a combination of
techniques that allows nodes to adaptively make the best decisions
by utilizing replicas to alleviate the impact of frequent load fluctua-
tions and by introducing a sophisticated cost model to choose a
strategy that minimizes the load movement cost.

Many communication applications could benefit from a system of
nodes with our load balancing scheme, such as multimedia stream-
ing, multiparty online games, interactive web surfing, and location-
based advertising. For example, in the multimedia streaming, the
streams with a higher popularity are often demanded by a large
number of end-users. If only a few nodes with a limited capacity are
employed to serve the voluminous demand of the end-users, the
system performance would be significantly degraded in terms of
resource utilization and service quality. To avoid this scenario, our
scheme can be employed and can help the nodes to achieve load
balancing while meeting the various demands of the end-users.

The rest of this paper is organized as follows. Section 2 surveys
relevant literature and Section 3 defines the load balancing
problem. In Section 4, we present the details of RALB. Section 5
describes our cost model and presents the performance tuning

scheme. We introduce the experimental evaluation in Section 6
and conclude the paper in Section 7.

2. Related work

Many solutions have been proposed to tackle the load balan-
cing issue in networks. Based on their strategies for load assign-
ments, they are classified into two categories: centralized
schemes and distributed schemes.

In a centralized scheme (Surana et al., 2006; Werstein et al.,
2006; Zhu and Hu, 2005; Rao et al., 2003), head nodes are typically
required for load information aggregation and load reassignment.
At intervals, each node reports its latest load state to one head
node; then, the head node performs load reassignment with
respect to the load information of the nodes when there are nodes
with heavy loads. To improve the robustness of the head node, a
number of head nodes in Rao et al. (2003) are employed and the
nodes in the network can randomly choose their head nodes to
achieve better load balancing. The work conducted by Godfrey
et al. (Surana et al., 2006) extends the method proposed by Rao
et al. (2003) to provide an efficient load balancing method for the
nodes in a dynamic environment, where data items could be
continuously inserted or deleted, and nodes might join or leave
the system at any point in time. The scheme in Zhu and Hu (2005)
uses proximity information to guide load reassignment such that
the loads are reassigned between physically close nodes. While this
type of scheme has advantages in minimizing the difference
between the nodes in resource utilization, it suffers from both
scalability and reliability issues. In some cases, the overhead of
information aggregation can be large, and the failures of the head
nodes may lead to a complete failure of the load-balancing.

A distributed scheme addresses the load balancing issue in the
overlay network from a different viewpoint, which strives to balance
the load distribution among nodes intelligently based on the local
knowledge of the nodes about the other nodes in the network. In
Byers et al. (2003), a power of two choices approach is used to
achieve load balance for which each data item is hashed into a small
number of different IDs, which are then stored in the least loaded
node among the nodes that are responsible for those IDs. Karger and
Ruhl propose two load balancing protocols in Karger and Ruhl (2006).
One protocol is to balance the loads by changing the distribution of
the items among the nodes. It is useful when the distribution of items
in the address space cannot be randomized. The other protocol is to
balance the loads by changing the assignment of identifiers to the
nodes. This strategy improves the consistency of the hash table. CAN
(Ratnasamy et al.,, 2001) and GeoGrid (Zhang et al., 2007) attempt to
address the load balancing issue through ID space reassignment.
Steele et al. (2008) achieve load balancing with random peer
selection. Hu et al. (2010) provide a scheduling strategy on virtual
machine (VM) load balancing. According to historical data and the
current state of the system, this strategy computes the influence it
will have on the system after the deployment of the needed VM
resources and then chooses the least-affective solution to reduce the
dynamic migrations. In the above approaches, it is not clear how to
deal with the frequent load fluctuations in a dynamic network. In fact,
such load fluctuations could cause frequent and unnecessary load
movements due to unpredictable traffic jitters and momentary
fluctuations which are common in the underlay networks.

There are several methods that have been proposed to perform
dynamic load balancing with clustering technology (Shen and
Xu, 2008; Qiao and Bochmann, 2009; Kotoulas et al., 2010). Shen
and Xu (2008) propose a hash based proximity clustering
approach to address the load balancing problem in heterogeneous
DHTs. Such an approach groups the low-capacity nodes and
allocates them to the nodes in the system that have high

390 Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

capacities via consistent hashing of their physical proximity
information on the Internet. In Qiao and Bochmann (2009), a
global balance is achieved through balancing the neighborhoods
of all of the clusters within the existing overlay network. Kotoulas
et al. (2010) address the load balancing problem with a method
for data distribution that is based on clustering in elastic regions.
The data are not deterministically routed to one fixed peer;
instead, the data are attracted to a region of peers. In contrast,
GOGRID (2010) provides hardware load balancing services using
state-of-the-art F5 load balancer hardware. The load balancer
provides the round robin algorithm and least connect algorithm
for routing application service requests.

In Gopalakrishnan et al. (2004), Yamamoto et al. (2006),
Roussopoulos and Baker (2006), Xia et al. (2009), and Pitoura
et al. (2010), replication-based schemes are used for load balan-
cing. Their main concept is to place multiple object replicas to
maximize the availability of the data (file) in the network instead
of shifting the sole responsibility for the popular items to a more
powerful node. This type of strategy is derived from the fact that
highly skewed data access behaviors could lead to uneven load
placements, and the popular data could fall into a weak node that
is not capable of dealing with the high demands for the data.
Although replication is a good solution in the case of recorded data
(i.e., file music, movie), it would require complex algorithms to
maintain data consistency in the case of real-time data (i.e., news,
emergency alerts, location-based advertisements). It is common
that the popular data objects could become unpopular or useless as
time goes by. How to deal with the redundant data items is still an
open issue in this literature. In addition, there is usually difficulty
in determining a suitable replica number for the data items that
have different popularity. In fact, a large replica number often leads
to poor system performance in terms of resource utilization.

The work that we presented in this paper is somewhat similar
to previous work (Gopalakrishnan et al., 2004; Yamamoto et al.,
2006; Roussopoulos and Baker, 2006; Pitoura et al., 2010). For
example, we use the concept of replication to achieve load
balancing. However, two important features distinguish our
approach from the prior proposed approaches. First, by making
good use of replicas created for reliability purpose (Wang et al.,
2011), our approach is proposed to balance the load of the nodes
in an environment with time-varying load distributions and
frequent load fluctuations. This approach is an extension of our
previous work (Wang et al., 2011, 2010) in which the replication
problems such as the number of replicas and the location
of replicas were studied and addressed with a location-aware
replication scheme. Second, in this paper, a new cost model is
developed for load balancing cost estimation. By combining with
the performance tuning scheme, our approach empowers the
nodes to explore different load balancing strategies and to choose
the best strategy for load balancing and cost minimization.

3. Problem formulation and motivation

We study the load balancing problem in a general overlay
network S which can be described by a set of nodes N and a
d-dimensional coordinate space G (d>1) where |N|=n. This
coordinate space can be logical, such as a geographical area of
interest. At any point in time, the entire coordinate space G is
dynamically partitioned among n nodes such that each node owns
one individual rectangular region R within the space G, satisfying
G= U!_; Ri. Node E; manages the region R;, for all 0 <i<n.

We assume that the network nodes are not mobile. Compared to
mobile devices, desktop computers usually have more access to
network bandwidth, more stable connections, and more storage space.
We let ¢; denote the capacity of node E;. In our work, we use it to refer
to two types of node resources, storage space and bandwidth, because

those factors are the two main factors in applications such as content
searching (BitTorrent, 2011; eMule, 2010) and media streaming
dissemination (JOOST, 2008; Livestation, 2010; PPTV, 2011). For node
E; ¢;is denoted as a 2-d row vector in the form of [¢} ,c;’*bo]. where ¢ is
the maximum number of files that can be stored on node E; and ¢{ is
the maximum number of nodes that can be connected with E;
simultaneously. For simplicity, we assume that each node E; that has
connected to E; would consume the same bandwidth b, for data
propagation. Let utilizationuyt) denote the fraction of its capacities that
have been used at time t: u;(t)= loj(t)/ci(t) = [lof(t)/cf,lof(t)/c?],
where loj(t) denotes the workload of node E; at time t, which consists
of two elements Ioj(t) and lo?(t). The variable lo(t) refers to the
number of files stored on node E; and lo?(t) refers to the number of
connections linked to node E; at time t.

We consider S to be a system in which the workload and
available capacities of the nodes could change as the nodes
continuously access or leave the services provided by the other
nodes in the presence of frequent load fluctuations and time-
varying load distributions. In such a dynamic network, the
problem of load balancing is quite difficult to solve and, to the
best of our knowledge, has not been addressed before. Formally,
we define the load balancing problem as follows:

Problem Statement1: Given n nodes with uft), i e [1,n] at time t,
devise a load balancing algorithm that minimizes Y"ji_; |ui(t)—
>-i_q ui(t)| while minimizing the load balancing cost given the node
capacity limitations.

Solving this problem, however, is challenging, as it requires
careful handling of the time-varying load among the nodes in a
dynamic network that have unpredictable load fluctuations, and
practical systems often contain a large number of nodes with
heterogeneous capacities. Simple solutions such as applying mod-
ified space reassignment approaches either fail to minimize the
load balancing cost or ignore the impact of load fluctuations on the
system performance. We next present a motivating example to
show the reason as well as some insights into the solution.

3.1. Relevance of load balancing

In this subsection, three basic questions are first proposed to
provide a better understanding of the problem of load balancing
discussed in our work.

What is the load balancing cost? As mentioned in many studies
(Karger and Ruhl, 2006; Tewari and Kleinrock, 2006; Shen and
Xu, 2008), it is desirable to allow the nodes in the system to have
an amount of the load that is in proportion to their capacities.
To achieve this goal, a fraction of the workload at the nodes that
have a heavy load could need to be moved to the other nodes with
light loads. In this procedure, two types of costs are involved: the
load information collection cost and the load movement cost. We
denote the load information collection cost to be the communica-
tion cost of acquiring load information about the nodes that are
currently in the system. The load movement cost refers to the
communication cost of load redirection and migration.

Is the absolute load balancing achievable? This question has been
answered by many studies (Godfrey and Stoica, 2005; Surana et al.,
2006; Chen et al., 2008), in which the problem of load balancing in a
dynamic network has been classified as an NP-hard problem.
Furthermore, for a system, it is impractical to trigger the load
balancing mechanism once an imbalance of the loads occurs.
Therefore, a system parameter ¢, named the imbalance tolerance
(IT) is introduced, which we define as the maximum ratio between
the largest and smallest utilization. For node E; in a load balanced
system, it holds that max; . ;{u;j(t)/uc(t)} < 6,VEiEj € Bi(t),t eR,
where B{t) is a set of the nodes for which load information is
collected by node E; at time t. If such a condition is violated which
we refer to as load imbalance, then node E; notifies Ej of its state and
performs load balancing.

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401 391

12 3 456 7 8 910 111213 141516 17 18 19 20
Load Node B
12 3 45 6 7 8 910 111213 141516 17 18 19 20

a

Time
Unites

Time
Unites

Fig. 1. A motivating example.

Is load balancing of space reassignment feasible? To answer this
question, a motivating example is presented first.

3.2. System model

Figure 1 shows a snapshot of the load (lo(t)) of two nodes in a
distributed system, where time is slotted into 5-s units. For
simplicity, we set 0 =1, dim(u;(t)) = 1, c4=280 and cz=240. In this
example, nodes A and B are overloaded at time units 4, 16, and time
units 7-10, 14, 17, respectively, as indicated by bars with the height
exceeding c,4 (cp). Suppose that the procedure of load balancing is
triggered when a load imbalance or an overload occurs, as shown in
Fig. 1(b) and (e), respectively. To be specific, Fig. 1(b) depicts a
scenario of nodes with different utilization. At time unit 2, node A
moves a portion of its workload to node B according to the load

information of node B at time unit 1. After the load migration, lof\(tZ)
changes to lof\’(tZ) =240—01, where o1 =40 is the amount of load
moved from node A to node B. Correspondingly, log’(t2) =
log(t2)+a1. Because u4(t2) > up(t2), the procedure of load balancing
is triggered again, and then log(t3) and log(tB) update to loﬁ’(tB) and

log/(tB) at time unit 3, respectively, as shown in Fig. 1(d). This
procedure is repeatedly executed until the condition of u,(tn)=

ug(tn) is satisfied, vloy(tn), log'(tn)< min(ca,cp). Clearly, this
method is not an efficient way for balancing the loads with setting
of 6 =1 in terms of resource utilization. It could cause significant
bandwidth and storage consumption at the nodes, which reduces
the resource utilization and limits the scalability of the applications.

In fact, invoking the load balancing for every load imbalance is not
necessary. One could propose to allow ¢ < 1 to reduce the cost of load
migration and to gain immunity to momentary load imbalance.
However, this modified scheme performs poorly when frequent load
fluctuations shown in Fig. 1(e) occur. Figure 1(e) depicts a scenario for
one node that is overloaded temporarily, which satisfies {u4(t4)/up
(t4)} > 0. To reduce the heavy load that is imposed on node A, load
balancing is triggered and the operation of load migration is con-
ducted in a similar fashion, as shown in Fig. 1(f). After taking some
load from node A, log (t5) changes to log(t5)+a,». However, given the
heavy load of node B at time unit 5, load balancing is triggered again,
as shown in Fig. 1(g), which could cause frequent load migration and
inevitably reduce the load balancing efficiency.

One solution is to use the concept of redirecting, for which
some new incoming workload of the nodes is first redirected to
node B, which has few loads, and load migration is triggered when
an overload happens. When receiving the redirection load, node
B checks its latest state and determines how to handle the load.
If node B has available capacity, it processes the load. Otherwise, a
reject message with node B’s latest state is generated and sent to
node A. Node A then restarts the procedure of load balancing
based on the information included in the reject message and node
A’s current load state. This procedure is terminated when
{ua(t4)/up(t4)} < 0 is satisfied. Node B handles the load in a similar
manner. Figure 1(h) and (i) depicts a load balancing state of nodes
A and B that is achieved by using the load redirection.

To make the approach practical, we also must need to answer the
questions such as how to trigger the procedure of load balancing
and how to optimize the load balancing operations to eliminate the
load imbalance and reduce the load balancing cost? In consideration
of these questions, we developed a replica-aided load balancing
scheme, and we present its details in the following section.

4. Replica-aided Load Balancing scheme

A replica-aided load balancing scheme is designed to adap-
tively balance the loads among nodes in the presence of load
fluctuations. In this section, we first introduce load monitoring at
the nodes. Then the introduction of a replica placement strategy
and the details of the proposed load balancing scheme follow.

4.1. Load monitoring

Each node E; continuously monitors its workload based on two
parameters, lo;(t) and lo?(t). Node E; is marked as a heavily loaded
node if its current load holds the relationship T, <max {loj(t)/
cf,lo;-i(t) / cf’} < 1, where T, is a parameter defined as the phase threshold
of region reshaping. In such a case, node E; triggers region reshaping and
migrates some of its loads to the other nodes with a lower load.

If T < max{lof(t)/cf,lof(t)/c?} <Tj, then E; is lightly loaded,
where T is a parameter defined as the phase threshold of load
sharing. E; triggers load sharing, and starts to redirect a part of the
new incoming loads to its replicas for load balancing. It is worth
noting that both a lightly loaded node and a heavily loaded node
can receive loads migrated from the other nodes with heavier
load to achieve load balancing.

392 Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

If max{loj(t)/ cf,lo?(t) /cd} < T}, then E; is idle and can receive loads
issued by (or migrated from) the other nodes. The load balancing is
terminated when there is no node that can receive the loads or the
loads at the nodes are balanced within a ratio , which is expressed as
max; . j{u;(t)/u;(t)} < 6,VE; € peernodelist;(t),t € R, where peernodelis-
t(t) is a list of the nodes for whose the information is collected by
node E; at time t. It consists of a number of log entries, each of which
includes a node ID, an IP address and a transmission port, a region’s
coordinate, and a set of node properties (e.g., capacity and load
status). A region denotes a rectangular partition area in the coordinate
space G, which is managed by a node (as mentioned in Section 3).
Similar to CAN, each region in G is assigned to a node in the system.
Two nodes are considered to be immediate neighbors when their
rectangular areas’ intersection is a line segment. In general, there are
two types of nodes in peernodelist{t): immediate neighbor nodes and
shortcut nodes. The term shortcut node refers to the node that is an
old neighbor node for a given node. As nodes arrive or depart,
neighbor nodes could become shortcut nodes when they are not
adjacent to the given node. Instead of removing old neighbors from
the list, those nodes are kept in peernodelist{t) and are used to speed
up the procedure of message delivery. Detailed examples of the
immediate neighbors and shortcut nodes in the system are presented
in Wang et al. (2010). Note that the value of ¢ is highly related to the
specific requirements of the applications. As suggested by Ganesan
et al. (2004), we simply set 6 to 2 and trigger the load balancing when
the load balance is violated, i.e., max; . j{u;(t)/u;(t)} > 9.

4.2. Replica placement

In Wang et al. (2011), replicas are placed to improve the reliability
of the services offered by the unreliable nodes with consideration of
the failure patterns and replication cost. Each node p in the multicast
sessions deploys r nodes with a light load in the network as replica
nodes by performing a two-phase procedure: neighbor selection and
shortcut selection. In the first phase, (1—o)r neighbor nodes with a
light load are employed as replica nodes for the purpose of low cost,
where o is the importance parameter that is used to leverage the
benefits of neighbor replica nodes and shortcut replica nodes and r is
the number of replicas per node. In our system, the value of « is
dynamically determined based on the nodes’ state. Given the theore-
tical analysis and experimental results obtained through simulations,

Algorithm 1. Load sharing (E; Rg,, Tis)

we set r to 4 to maximize the service reliability while minimizing the
overhead caused by replica creation and maintenance.

Since the node p might not have “enough” light load nodes in its
peernodelist, the node p will extend the search range once this
condition occurs. In such a case, the nodes located within two hops
from node p are considered. The shortcut selection is performed in a
similar manner as in the first phase. It starts with the shortcut nodes
in the peernodelist of p. Then this procedure is continuously executed
at the next level until there are no or capable shortcut nodes.

In the replica placement, only the nodes in the peernodelists are
considered. The benefits are two-fold. First, this strategy reduces the
replication cost by employing the nodes that are located in the same
vicinity. Second, it alleviates the influence of network partitions on
the service quality by deploying the data copies on shortcut nodes.

4.3. Load balancing

The goal of the replica-aided load balancing scheme is to avoid
overloading by intelligently balancing the loads among nodes while
keeping the cost low. The most distinct feature of the scheme is its
use of replicas to reduce the heavy load imposed on the nodes and
to avoid unnecessary load movements caused by the frequent load
fluctuations. In our scheme, a part of the nodes’ workload is first
redirected to their replica nodes when they are in multicast sessions
and then load movements are triggered when there is no replica
node with few loads. Conceptually, the replica-aided load balancing
scheme entails two major phases: load sharing and region reshaping.

4.3.1. Load sharing

Load sharing is invoked when node E;’s load is large than T;. In
load sharing, node E; selects a set of replicas with available
capacities and shares a part of the workload with them. The
complete algorithm is sketched in Algorithm 1: E; first examines
which type of workload is slightly heavy at time t; then it
initializes a set R consisting of the replicas with a light load,
and it assigns a weight to each node in the set R;; then by taking
into account the utilization of the nodes, the strategies of load
redirecting f# and y are determined. In the following paragraphs,
we present the details of Algorithm 1.

Input: R, : the set of replicas of node £;, T7': the phase threshold parameter
Output: B,y: two vectors that correspond to the strategies of load redirections

1 flag « 0; mu « 0; mi < 0;¢c « 0; g < 0; U « u;(?);18

/*check the load’s type*/
if U(1,1) > T then

flag =1; mu = U(L,1)-T;
end if
if U(1,2) > TI.S then

flag =(1<1); mi = U(I,Z)-Tf;
end if

/[¥*initialize the replicas set */

~N N L AW

8 for mi,mu > 0 do

add node e to the list R:El_ ;
19 end if
20 end for
/*initialize the replicas’ weight*/
21 addnode E; to Ry,
22 for cach node e € R;fi do
23 V — ue(t); dli] = 1 — V[flagl/g; wli] = av[il/c;
24 end for
/*allocate the load to the nodes in R:Ei */

25 sort w and R,E_ in descending order of d;

1
9 for cach node ¢ € Rg; do 26 foreachnodee e R’E, do
1
10 V — ue(t); 27 if flag%2=1 then
s d
" if max (262 L0y < 1 then 28 Bi = mu x w[il;
P p
12 g — g+ V(flag); 29 else
13 if flag =1 then 30 yi = mi* w[i];
14 av[j] = ¢, = log; ¢ « c + av[/]; 31 end if
15 else 32 end for
16 av[jl=cf-lodic —c+avljl; 33 flag=2;
17 end if 34 end for

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

(i) Node E; examines its current workload loj(t) and lof(t) (lines
2-7).1f U1, 1) > T (i.e., loj(t) = ci(t)%T}), then E; is currently lightly
loaded, and E; starts to redirect some of the file transfer requests
to its replica nodes for load sharing, which we refer to as file
redirection. Similarly, if U(1,2)>T; (i.e., lo?(t)zc?(t)*Tf), then a
part of the new incoming connection requests will be selected
and forwarded to E/s replica nodes, which we refer to as
connection redirection. Both the file redirection and connection
redirection are implemented when the conditions U(1,1) > T; and
U(1,2) > T; fare true.

(ii) In each round, for each replica node e in Rg, E; checks
whether max{loZ(t)/c;,log(t)/cg} < 1. If so, it inserts node e into a
new set R; (lines 9-20). The intuition behind this step is to share
the loads with the replica nodes that have available capacity. Let
av[j] denote the available capacity vector of the node in the set Ry,

3j e[1,|Rg, |]. We measure av[j] with the following equation:
o (ctop if %0 =T, flag=1 1
avlj] =) (1)
cd—lo? if lé’;(g >T5, flag=2

If both lo3(t)/c3(t) = T; and log(t)/cg(t)zT,? are satisfied, then
the file redirection is first performed and then it is followed by a
connection redirection.

(iii) In each round, for each node e in Ry, E; computes d[j] and
[j] (lines 22-24), where d[j] and w][j] represent the priority and
importance of the node e at Ry (j) compared with the other nodes
in R; in terms of V[flag]) and av[j], respectively, where flag is the

393

set. For a given c, w[j] increases with the growth of av[j], which
means that a higher workload can be carried by e without causing
node overload. It is important to note that d[j] and wl[j] are two
different metrics. Given the definitions of those metrics, we can
easily find that there is no direct correlation between those
metrics: each is employed to describe the capacity of the node
in a certain respect. In practice, it is common that the nodes with
low utilization do not have high available capacities to serve the
other nodes in the system.

(iv) Based on the sorted list R;, a load assignment is performed
and the strategies of load redirection f and 7 are then determined
(lines 26-32). Specifically, in each strategy, each node in Ry is
assigned a portion of the loads mu or mi with respect to its
available capacities. With these strategies, E; forwards the loads to
the replica nodes via messages. Upon receiving those messages,
the nodes check their loads, and take or process the loads based
on the information included in the messages if they have avail-
able capacities. Otherwise, the redirection messages will be
abandoned because of the heavy loads on the nodes. Note that a
large number of the file transfer and connection requests could
cause a high cost in communication. A timer « is introduced for
message aggregation and elimination. This timer starts when the
node issues a request message. It terminates when the node
receives a response message or a data message with request
information sent from the node that receive the request. If none of
these requests are received in 120 s, then the request message is
reissued.

Algorithm 2. Region reshaping (E;,T{ K)

Input: R, : the set of replicas of node E, i,TI.r : the phase threshold parameter,
K: the maximum number of iterations

Output: None;

1 flag « 0; mu <« 0; mi — 0; U « u;(¢); 23
/*node selection*®/ 24
2 if U(1,1) > 7] then 25
3 flag=l;mu= U(lJ)—T}';
4 end if 26
5 if U(1,2) > T} then
6 flag =2+flag; mi = U(1,2)-T7; 27
7 end if 28
8 while k£ < K do 29
9 for each node e in peernode[isr](tdo 30
10 Ve up(0);
11 if flag =1 then 31
12 iflof < /oz.l_ && e ¢ O then; 32
13 d[i] = the distance between e and E;;33
14 add e into list 0; 34
15 end if 35
16 else 36
17 if log < la‘él_ &&e ¢ Q then; 37
18 d[i] = the distance between e and £;;38
19 add e into list Q, ; 39
20 end if 40
21 end if 41
22 end for 42

symbol bit of the node. It satisfies that V[flag] = l0}(¢) if flag=1;
Viflag) = log(t) if flag=2. Then, d[j] is computed as d[j]=
1-V[flag]/g. The larger V[flag] is, the smaller the value of d[j] is,
and the less priority the node e has. In our scheme, the use of d[j]
is to reduce the probability of the nodes with a high utilization
that are imposed on a heavy load by the load redirections.
Intuitively, a node with a higher capacity should carry or
process more loads than the nodes with lower capacity. Here,
oljl=av[jl/c is introduced to measure the capacity of nodes
taking more workload compared to the other nodes in the same

while 0" # @ do
sort list Q, in ascending order of d;
RRP = the first node of the list Q, ;
/[*reshaping the regions */
if LBCRRP > LBCR && /Og + /0’2; < T{ * LBCRRP &&
RRP is the sibling of node E; then
do region merging;
jump to line 42;
end if
if LBCrpp > LBCR && log < T} + LBCrpp &&
RRP is not the sibling of node E; then
do region swapping;
jump to line 42;
end if
if LBCRRP = LBCR && loé + /O; < T;‘ * LBCRRP then
do region splitting;
jump to line 42;
end if
remove RRP from Q, and add it to Q;
end while
end while
EXIT with failure
EXIT with success

After moving off a fraction of the workload, E; continues to
receive requests from the nodes in the network. It randomly
chooses some requests to process and forwards the rest to the
node in R; by applying Algorithm 1. Although the forwarded
workload is not handled by node E;, E; creates a new record with
workload information (e.g., size and load holder), and then adds it
into its load list. This method allows that E; to be able to easily
hand over all of its loads to others when it is overloaded. This
procedure continues until uy(t) is less than T; or increases up to T}
and there is no light load replica node around E;.

394 Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

4.3.2. Region reshaping

Node E; initiates region reshaping whenever T, < max{loj(t)/c,
lof(t)/c;i}. As sketched in Algorithm 2, node E; first performs node
searching within a search range in such a way that a node is found
with few loads for load migration (lines 2-22), which we refer
to as a region reshaping partner (RRP). Such a search range is defined
by node E; to be a region that covers the nodes in the
set peernodelist{.+1 (t) = {neighbors of the node in peernodelisti(t)},
vj > 1. Initially, j is set to 1 and node E; looks through the set
peernodelist{t) to check whether a node E,, with a lower load exists. If
so, then E; stops searching and reshapes the nodes’ region to balance
the loads between the nodes. Since there might be more than one
node that has a lower load in the set, the node with the shortest
geographical distance to the node E; will be selected as RRP to reduce
the cost of load migration in transmission. If there is no node with a
lower load in the set peernodelist(t), E; increases j by 1 so that its
search region is extended. Then, the node searching is conducted in a
similar manner. This procedure is executed repeatedly until either an
RRP node is detected or j reaches its maximum K = 2, where K is a
system constant that is configured by default (Wang et al.,, 2011). We
do not increase the value of K in the scheme of load balancing in such
a way that the overhead of the nodes’ information maintenance in the
system can be restricted within a certain level.

Reshaping region is performed to adjust the nodes’ load
assignment. In terms of the RRP capacity and location, three
scenarios are considered in our scheme.

Region merging (lines 26-29): We merge two regions to form a
new region when an RRP node with a higher capacity is a sibling
node of E;, as illustrated in Fig. 2(a). In our work, two nodes are
considered to be sibling nodes when they are neighbor nodes and
have the regions of the same size (Ratnasamy et al., 2001; Wang
et al., 2010). The newly formed region is assigned to the node that
has a higher capacity. Then, the other node works as a backup
node recorded in the owner node of the new region, where the
owner node denotes the node which manages the new region and
is responsible of collecting information about the region and
replying the related requests issued by other nodes in the system.
This scenario provides a new opportunity to the end system
recovery such that the backup node could be used temporarily to
take over the failed node’s region when a node failure occurs. For
brevity, we do not discuss this scenario in detail in this paper.

Region splitting (lines 34-37): This scenario is for an RRP node
that has a capacity that is comparable to E;. Before migrating into
E;'s region, the RRP node first merges its load into its neighbors.
Then, E; splits its region in half and assigns it to the RRP.
Consequently, the related load of that part is handed over to the
RRP node. An example of such a scenario is given in Fig. 2(b).

Region swapping (lines 30-33): This scenario is performed
when an RRP node with a higher capacity owns a smaller region.
In such a case, E; swaps its corresponding region with that of the
RRP. This action allows the node RRP with more capacity to
handle more workload than E; (see Fig. 2(c)).

For consistency, related update messages are sent out to notify
the changes after region reshaping. However, in some situations,
the selected RRP node may not have sufficient capacity to carry

a b

(serve) the workload migrated from node E; If this scenario
occurs, the Algorithm 2 is re-triggered at node E;. This procedure
is repeatedly executed until either an RRP node with sufficient
capacity is detected or Algorithm 2 exits with failure.

Consider the example mentioned in Section 1. In the multi-
media streaming application, the end users can subscribe to any
published stream in the network by sending subscription requests.
Such requests are continuously forward by the end users/nodes in
the network towards the end users/nodes that have the required
streams until the other subscriber nodes with similar interests are
reached. The subscriber nodes refer to the nodes that have already
subscribed to the streaming services of interest. They are respon-
sible of receiving the subscription requests from the end users/
nodes and disseminating stream content to them when new
stream contents arrive. At any point in time, a node can unsub-
scribe to a multimedia streaming service by sending a un-sub-
scription request to the upstream node along the service path.

Given the streams with a higher popularity are often
demanded by a large number of end-users. If only a few nodes
with a limited capacity are employed to serve the voluminous
demand of the end-users, they might turn to bottlenecks and
eventually degrade the system performance. To cope with this
situation, in RALB, a number of replica nodes that are placed for
reliability purpose as mentioned earlier are utilized to balance
loads between the nodes. Once a lightly loaded node is detected,
the node starts to redirect some of the multimedia streaming
subscription requests to its replica nodes for load sharing. Upon
receiving those redirected requests, the replica nodes check their
loads, and take or process the loads based on the information
included in the messages if they have available capacities. After
moving off a fraction of the workload, the node continues to
receive requests from the other subscriber nodes in the network.
Once the node is heavily loaded or overload, the operations of
region reshaping are performed to adjust the load assignment
between nodes. This procedure is repeatedly executed until either
the load balancing is achieved or it exits with a failure status if
there are no RRP nodes that are located in the search area.

Compared to the existing schemes, our load balancing scheme
has the following two advantages. First, the node searching
mechanism enables our approach to distribute the workload across
the nodes in a wide range, which gains immunity to the influence
of the skewed load distribution. This scenario occurs essentially
because the shortcut nodes maintained by the nodes are often far
away from them. Second, our scheme takes into account the
impact of load fluctuation on the system performance. Our
replica-aided load balancing scheme empowers nodes to adap-
tively switch their load balancing strategies to cope with sudden
and random load changes caused by the load fluctuations.

5. Performance tuning scheme
In this section, we study the problem of tuning local para-
meters for optimum resource utilization. We first introduce our

cost model for estimating the load balancing costs of RALB.

Cc

100 100

o | @

10

100

100 100]100,]1
1

&

100

Fig. 2. Region reshaping mechanism. (a) Region merging. (b) Region spliting. (c¢) Region swapping.

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401 395

5.1. Cost model

Load balancing in the RALB algorithm consists of load sharing
and region reshaping. We use Ibc; and lof} to denote the commu-
nication cost of redirecting a subscription (un-subscription)
request from node i to node j and the amount of workload
redirected from node i to node j, where the subscription (un-
subscription) requests are the messages issued to subscribe to
(unsubscribe from) the data delivery services provided by the
nodes. Given the deﬁmtlon mentioned in Section 3, lo can be
computed as lo = loj; +lo,j, where o and lof represent the
number of files and the link connections moved from node i to
node j, respectively. Given that the subscription requests are often
of fixed size and the link latency between nodes is of great
importance, we set Ibc; to lj, where [l; refers to the latency
required for a message to transmit from node i to node j on
average.

Estimating the cost of region reshaping LBCy is relatively
complicated as it depends on the specific state of the nodes’
workload. Therefore, the three scenarios mentioned in Section 4
are further studied below.

Region merging: Let node p be a node that triggers its load
balancing procedure and finds an RRP node g with the ability to
take extra loads from the other nodes in the system. In the
scenario of region merging, an RRP node with a higher capacity is
detected and employed as an owner node whose responsible
region is merged from two regions with the same size. For load
balancing, the RRP node absorbs all of the workload of node p and
p’s replicas and handles them correspondingly as the subscription
(or un-subscription) requests arrive. Thus, we can compute the
load balancing cost of region merging LBCgpe as

Ibcpg(lop+ 3 _ 1 log)
ML
Ibcpgas(lo +10% + S27_ (0% +10%)
= ML

where lo, and loﬁi are the amount of the workload on node p and
the workload redirected from node p to node i, respectively. ML is
the number of workload information units contained in a transi-
tion message. The heavier the load that node p and its replicas
have, the higher the load balancing cost is.

Region splitting: Once an RRP node g with a similar capacity to
node p is detected, region splitting is invoked. In this scenario, the
RRP node g will shed its load to one of its neighbors and gain half
of node p’s workload for load balancing. Thus, we have

Ibcpgis(lop+ S logy) . LBCyes(lop + Y7 _ lof)
2ML ML

where LBCg(lop+ Z}Zl logi)/ML is the cost of load migration
from node g to node k, which is a neighbor of node g. Given the
fact that the RRP node g has more available capacity than node p,
we obtain

LBCRme =

)

LBCgsp = 3)

LBCyes(lop+ 3 _; lof) - Ibcpg(lop+ 37 _ 1 log)

ML - ML “)
Thus, we have
LBCRsp < %*LBCRme (5)

Region swapping: Region swapping is triggered when an RRP
node with a higher capacity but a smaller region is found. In this
scenario, nodes q and p will switch their regions and workloads.
Thus, the cost of region swapping can be calculated as

LBCpg(lop+ Y27 lofy) . LBCpg#(lop+ S2)_ ; lof)

LBCrsw = ML ML

(6)

Given the observation that it is likely that a node with a bigger
region has a heavier load than the node with a smaller region in
the system, we have

LBCgey = 2%LBCRrime (7)

Based on the above analysis, the cost of load balancing LBC can
be computed as follows:

.
LBC = P3/'(1—-Pyys <Z LBcp,»*lopi> +(1-PJHPPLBCR 8)
i=1
where PSh is the probability of trlggermg load sharing on node p.
Pt =1 o(l —POy()_ 4 LBCp,*lop,) <PCy; otherwise P =0. PY
is the probablllty of lo, > T and no reglon reshapmg occurs at t,
Note that two 1ndependent workload factors lo and lo are
contained in the vector lo,. We have

P = P(loy(t; 1) > T}|lop(t) = loy(t)

=1-P(lol(t;, 1) < T} |lofi(t)

= 105(£)1P(l05 (¢ 1) < T |1of(£) = 105 (£)) 9

To compute P(loz(t,qr])sT;\log(t)zloﬂ(t,»)) and P(lo;(t,»ﬂ)g
T;\lof,(t)zlof,(t,v)). we choose discrete-time stochastic processes
for modeling the dependent workload values, since it is simple
and has been proven to be applicable to various real-world stream
data. Under this model, the values of future lo,(t;+1) and

past loy(t;) are independent, given the sequence of workload
values. Formally,

P(105(ti+1) <T,| 105(0 = log(ti)) = P(log(tm) <Tp)
S o G1050)

5o lop)
where g is an influence coefficient. If lop(l) > Tr a;=1. Otherwise,

a;=0. Similarly, P{lop(tl+1)< \lo (t)_lop(t)} can be computed
as

=1- (10)

L bilof(j
PGSt 1) < Th|l05(0) = o5) = PUoS . 1) < Ty = 1- 22=0 120

o lop()
(11)
Based on the above equations, we have
LBC € [LBCmin,LBCrmax] (12)

where

.
LBCpin = P3/'(1—Py)¢ <Z lbcpi*lopi> +(1=P)PYLBCrme

i=1

.
LBCiax = P (1P) (Z lbcpi*lopi> +(1=P)PRLBCraw
i=1
Then we can define our parameter tuning problem as follows:
Problem statement 2: Given the workload of node p and p’s r
replicas, determine the values of Tj so that the maximum load
balancing cost LBCy,qy is minimized.

5.2. Performance tuning scheme

To determine the best values for T}, we adopt a block search
scheme that divides a range of values into range partitions, and we
sequentially look for values until the value that minimizes LBCy,qy is
found in each range partition. To be specific, there are p range
partitions, with partition boundaries at Ry <Ry <Ry < --- <Rj <

- <R,, where Ry=0,R;,1=Ri+(1/p) for 0<i<p-1,ieR. In
each range partition (R;,R;], this scheme starts with the value of
Ri+(1/p?) and calculates its LBG,q value with the above equation.
Then it increases R; by 1/p? and repeats this process. Such process is

396 Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

executed until R;, ; is reached. From making a comparison between
the values of LBC. the one with minimum value of LBGCq is
selected in the range of (R;,R; 1]. Finally, the best T}, is found by
comparing the values of LBC,, of the range partitions.

The computational complexity of this block search scheme is
O(p?). The larger the p is, the more comparisons the search
scheme needs to conduct, the higher accuracy it has, and the
better performance it could achieve. To reduce the computational
complexity, a small value of p is preferred in the block search
scheme, which could come at the cost of system performance.
However, from the experimental results, we observe that there is
no apparent system performance improvement in node utiliza-
tion after p reaches 10. Given that, in this work, it is simply
set to 10. We plan to optimize this block search scheme in our
next study.

Thus far, a parameter tuning scheme has been introduced. It
runs at the nodes and determines the best parameter settings.
However, the question arises as to how to set parameter T} to
optimize the performance of the proposed approach in terms of
resource utilization and cost. Recall that the parameters T;, and T},
are used to minimize the cost caused by load balancing. Rather
than deterministically trigger massive load migration whenever a
load imbalance or a node overload occurs, the use of T, and T
allows the nodes to handle the loads in a gradual fashion such
that with a growth of a load on the nodes, the replicate nodes are
first used to relieve the high burden of the nodes, and the load
migrations are triggered only when the nodes are heavily loaded.
In such a way, the number of load migrations caused by the
frequent load fluctuations and slightly load imbalances is greatly
reduced, which leads to a better system performance in terms of
the resource utilization and cost.

In contrast to the parameter Tj, the setting of parameter T}
mainly focuses on how well the loads of the nodes are balanced.
For each node in the system, it requires max, . ;{u;(t)/up(t)} <
0,VE; € peernodelist,(t),t e R. Thus, we have Tf, = max{u;j(t)}/é. Per-
iodically, the nodes in peernodelist,(t) exchange heartbeat mes-
sages and update the values of utilization. Then, node p computes
T3 and invokes the procedure of load balancing when the current
workload exceeds T5.

6. Performance evaluation

In this section, we perform simulations to study the efficiency
of the schemes proposed in this paper. First, we describe the
simulation environment in our experiments, and we then present
the simulation results.

6.1. Experimental environment

We use the GT-ITM topology generator to generate 10 inter-
net-like physical networks, and we then build GeoCast on top of
these physical networks. Each network consists of 8080 routers,
and a number of end system nodes with heterogeneous capabil-
ities. Similar to Zhang et al. (2007), it enables 5% of the nodes to
have 1000 units of capacity, 15% of the nodes to have 100 units of
capacity, 30% of the nodes to have 10 units of capacity, and the
remainder of the nodes to have 1 unit of capacity. The higher the
capacity the node has, the more powerful it is. Each unit of
resource capacity allows a nodes to maintain 10 files in its local
memory, and keep 1 connection with another node in the
network.

In each simulation, the multicast groups are built first. Both
the publisher nodes and the subscriber nodes sequentially parti-
cipate in the groups, following an independent and identical
uniform distribution. For simplicity, we do not consider the case

when the subscribers in the same group have different interests
in the publisher’s content since it would be handled in a similar
manner.

Note that there are no obvious sources of real-world trace data
to drive the load fluctuations; thus, we adopt a random distribu-
tion to simulate it. At intervals, 10 existing nodes in the system
are randomly chosen as the center of hot spots. Each hot spot is a
circular area with a random initial radius between 1 hop and
3 hops, and it has the highest workload that are subscription
requests issued by the nodes in the network. Once a request is
accepted, node that the request was submitted to will continu-
ously receive multicast information from the publisher node. The
workload of the nodes within a circular area is determined by a
formula 1-d/r, where d is the distance of a node to the center of
the hot spot in terms of the hop count and r is the radius of the
hot spot. The nodes on its border have a workload of 0.

In the following section, we compare the performance of our
load balancing scheme to two types of schemes: replication-based
load balancing (RBLB) (Yamamoto et al., 2006; Roussopoulos and
Baker, 2006; Gopalakrishnan et al., 2004) and ID space reassign-
ment load balancing (IDSRLB) (Zhang et al., 2007; Karger and
Ruhl, 2006; Ratnasamy et al., 2001). In GeoCast, RBLB is employed
to balance the load by sharing the workload with replica nodes. If
an overload occurs, then RBLB redirects the new incoming work-
load to the replicas that have with available capacities. IDSRLB
achieves load balancing through ID space reassignment (i.e.,
massive load migration). Although it is a good solution in the
case of the nodes with a heavy load, it decreases resource
utilization and service quality because of the high cost caused
by load migration.

6.2. Results

In the following experiments, we vary the system size from
1000 to 16,000 nodes, and we generate a service subscribing
sequence to examine how well the load balancing schemes deal
with the time-varying load distribution. Such a sequence consists
of service subscribing requests issued by nodes in GeoCast at
runtime, each of which sends 100 requests to the multicast
sessions by following a uniform distribution on [0, 60 T] and
continuously receives multicast information from the sessions.

6.2.1. Impact of the system size and multicast session
Figure 3 presents node utilization (NU) as a function of the
system size, where

1 & ost)y 1ot
i=1 1 i

refers to the average utilization of the nodes in GeoCast. The
smaller NU is, the more lightly the node is loaded. Given that very
similar results have been observed under various settings, we
simply set the group number and group size to 10 and 10 (10,10).
The results in Fig. 3(a) show that without load balancing, the
nodes in GeoCast have heavier loads than the nodes with load
balancing schemes, which indicates the necessity of load balan-
cing. We also note that, compared to RBLB, the schemes of IDSRLB
and RALB achieve better performance in terms of node utilization.
This scenario shows benefits from the technique of load migra-
tion, where parts of the load at heavily loaded nodes are moved to
the nodes with light loads.

Figure 3(b) depicts the standard deviation of node utilization
in GeoCast with different schemes. Similar to Fig. 3(a), RBLB
performs more poorly than other schemes because it only
employs replicas with available capacities as load-receiving
nodes, and it redirects the workload to them. As mentioned

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

a

14 T T T

—0O— GeoCast without
8 12 load balancing scheme
2) --0-- GeoCast with RBLB
N A GeoCast with IDSRLB
= 1.0 4 —v— GeoCast with RALB 1
(0]
o< 0.8 4]
o
c
G 06 A)
% L & 0.
L 041 En O
TR P
0.2

1000 2000 4000 8000 12000 16000
Number of nodes

397
5 T T T
—0— GeoCast without
S load balancing scheme
c e 4 —0-- GeoCast with RBLB |
L0 A-- GeoCast with IDSRLB
S —v— GeoCast with RALB
S N 3+
S =
g 5
[0}
58 7%] ’
Fl O Qe OO
S
n 14 O A
’C‘*~—&—777,,,$ g

1000 2000 4000 8000 12000 16000
Number of nodes

Fig. 3. Node utilization versus network size for group number=10 and group size=10: (a) mean and (b) standard deviation.

a b
2.0 24
c c
o 2 20+ R
= 1.6 4 1%
= . E 16 4 —0O0— GeoCast without |
5 45 —0— GeoCast without 15 - load balancing schemél
o load balancing scheme | g, 0 GeoCast with RBLB
S ~O~ GeoCast with RBLB g 124 - GeoCast with IDSRLB'|
€ 08 -~ GeoCast with IDSRLB | & —— GeoCast with RALB
S —v— GeoCast with RALB o84 0”;;3]
c & Rt S c e e ’
[o— —~ o
o4y o e & b’ ol & A 7
s o =
0.0 T T T T T T 0.0 T T T T T
10 50 100 150 200 250 1 2 4 8 12

Number of nodes per group

Number of groups

Fig. 4. Node utilization versus group number and size for network size=16,000: (a) group number=10 and (b) group size=200.

earlier, this scheme has difficulty in dealing with the workload
when the nodes are heavily loaded. The majority of loads at nodes
could be discarded for relieving hot spots and could prevent
services from single point failures. To avoid that outcome, it is
straightforward to increase the replica number r so that the
performance of RBLB can be improved. However, the disadvan-
tage of this enhancement is the increased creation and main-
tenance cost required by replica nodes, which limits the
scalability of the system. We will discuss these factors in
detail below.

In Fig. 4, we display how the group size and group number
affect the node utilization in a network of 16,000 nodes. From the
results depicted in Fig. 4(a) and (b), we clearly notice that the
nodes in the system can greatly benefit from the operations of
load balancing. All of the load balancing schemes could ensure
that the utilization of the nodes is within a certain level. This is
because all of the schemes will migrate part of a nodes’ workload
to lightly loaded nodes if a nodes becomes heavily loaded. In
contrast, the nodes in GeoCast could have a high load even if there
are only a few subscribers in a group because the number of
nodes in the system that are passively involved into the multicast
sessions is large. In such cases, the majority of node resources are
consumed by the services such as message forwarding. This
scenario reduces the efficiency of the nodes’ resources. Further,
in Fig. 4(a), it is interesting to note that there is a peak on the first
curve when the group size is 150. This peak occurs basically
because some of the member nodes in the multicast sessions that
change their roles (in terms of serving as a publisher or a
subscriber or a member or a combination of the three) as the
group size becomes larger. In such a case, no additional message
is issued as a notification of joining. On receiving the data from
the root node of a multicast session, those nodes only need to

deliver the data to the upper application in addition to handing
down to the children nodes.

6.2.2. Effect of load balancing

In the following experiments, we provide further insights into
how the load balancing schemes perform in a network of 16,000
nodes, and we investigate the influence of the parameter r on the
system performance for different load balancing schemes. We set
the group parameters to 10:10, and we use the technique of
nonlinear regression to help us analyze the performance of the
load balancing schemes RALB, RBLB and IDSRLB, which leads to a
better understanding of the results obtained from the simulation.

Figure 5 depicts the node utilization and request ratio as a
function of time for the load balancing schemes. We measured the
request ratio as the number of subscribing requests received by
the nodes in each time slot divided by the total number of
requests in the service subscribing sequence. As shown in Fig. 5,
in the first 5 min, approximately 6% of the requests have been
issued by nodes for the service subscription. At the beginning, the
nodes’ workload is relatively high because of the uneven work-
load imposed by subscribing. As time elapses, the workload drops.
This drop occurs because the operations of load balancing are
performed, which release the hot spots in the network. Compared
to RBLB and RALB, IDSRLB achieves its best performance in terms
of node utilization. By reassigning the region distribution, it
enables nodes with a high capacity to be likely to have larger
responsible regions.

6.2.3. Impact of load balancing overhead
However, the scheme of IDSRLB is costly, as shown in
Fig. 6(a) and (b). It is observed that, with IDSRLB, the nodes in

398

a Request ratio(%)
644342644734474334654432
24 T
c —%— RBLB
8 —-0— RALB
© 018+ -4~ IDSRLB 4
5 2Q
K
S 012 9& R 1
2 % Q
“ g {2 fof R
S O i
S 0.06 4 %bﬁ TG00 6000
L} Kz EHY
= NETE SO
0.00 P

10 20 30 40 50 60 70 80 90 100110 120
Time(m)

b

Standard deviation of

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

Request ratio(%)
644342644734474334654432
5] —F RBLB]
—o—RALB
S 5| 4 IDSRLB o
= 2
© '91_9,-67
N 20 A 5 1
= o
5 Lo
o 151 n .
8 oo
104 500 .
c
5 7
e SR X i
O i BT AR TR
10 20 30 40 50 60 70 80 90 100 110 120
Time(m)

Fig. 5. Performance of the load balancing schemes over time in terms of node utilization: (a) mean and (b) standard deviation.

Number of messages generated Q
for load balancing

RALB RBLB IDSRLB

(on

Number of region reshaping

3 T

o IDSRLB
Q —*— RALB

operations

10 20 30 40 50 60 70 80 90 100110 120
Time (m)

Fig. 6. Comparison of load balancing efficiency in terms of message volume and load reshaping operations: (a) message volume and (b) load reshaping operations.

GeoCast generate more messages than the nodes of the others
schemes because of a larger volume of load migrations and region
reshaping operations. In IDSRLB, those messages could impose
heavy loads on the network links and some node in the network
could become temporarily overload because of their low band-
width. In such a scenario, a number of unnecessarily load move-
ments and ID space reassignments could be caused, which
reduces the efficiency of network resource usage and eventually
degrades the performance of applications based on that. In
contrast to IDSRLB, RALB handles the workload at nodes in a
different way with consideration of frequent load fluctuations. As
mentioned in Section 4, rather than migrating the loads to the
nodes with a lower load, RALB makes full use of the replicas
created by replication, and shares the workload with them, which
reduces the amount of workload moved among the nodes, and
consequently improves the load balancing efficiency. For this
reason, RALB exhibits a performance that is comparable to IDSRLB
at runtime, as shown in Fig. 5. We can see that the differences
between IDSRLB and RALB become negligible as time goes by,
which indicates the efficiency of RALB. For RBLB, it performs
poorly in terms of node utilization. This observation can be
explained by the fact that only replica nodes are taken into
account to achieve load balancing. The performance of RBLB
depends strongly on the parameter r.

6.2.4. Impact of replication degree

In Fig. 7, we show the impact of parameter r on the system
performance in terms of two metrics: the message volume and the
node utilization. We vary r from 2 to 16. As expected, as r increases,
more the hot spots in the system are released, and the utilization of
the nodes decreases. However, by comparing to RALB, we observe

that the performance of RBLB can be slightly improved by increasing
r. Even with r=16, RBLB achieves almost same performance to RALB
with r=4 after the time reaches 65. In practice, it is unacceptable for
a network to continuously increase r to improve the performance of
the load balancing, since the maintenance cost is dramatically
increased with r, as shown in Fig. 7(b). Given this scenario, we restrict
r to 4, and we use RALB to balance the workload among the nodes.
The benefits are two-fold. First, it avoids the additional cost caused for
replica placement. Second, it makes the system have the ability to
deal with the cases of nodes with a heavy load on a large scale.

Note that the number of messages generated for region reshap-
ing could be far less than the overhead consumed for replica
maintenance in the system with a low churn rate. In such a case,
RALB might not be a good load balancing. However, the facts prove
the contrary. In GeoCast, replica maintenance can be negligible
because the majority of the state information of the replica nodes
are piggybacked in the data or in updated messages communicated
among nodes. With respect to the length of the data or update
messages, the length of the information is quite small.

6.2.5. Effect of the performance tuning scheme

Figure 8 compares the effect of the proposed performance tuning
scheme (TTS), the periodic threshold scheme (PTS) (Surana et al.,
2006), and the deterministic threshold scheme (DTS) (Gopalakrishnan
et al, 2004). The PTS and DTS are representatives of threshold
selection schemes(Surana et al., 2006; Gopalakrishnan et al., 2004;
Marques et al,, 2009; Gao et al., 2011). In PTS, the load balancing
threshold k, is periodically computed based on the average utilization
U of the nodes that report to a directory, setting ky, = (1+U)/2. In
contrast to PTS, DTS deterministically sets the thresholds to fixed
values, where Tj, =0.3 and T;, = 0.75.

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

399

a b
x10?
0.25 Ty T B 16 i
) = INATAAIAAINATAIAATAL
c 0— RBLB with r=2 © O R A e Pt e R E R RN R R AR R
2 -—->-— RBLB with r=4 Q
= 0.20 P S o
S O~ RBLB with r=8 % £ 12 g
= —+— RBLB with r=12 » 8
S 045 fR RBLBwithr=16 | O &
8 Ki S RALB with r=4 Ng 8 4 AR IV A I I IR AR
8 .ol Ey&&% 25 888835555060 00 000
Bl M s
. IR) ®
5 L8 i o 1 E 2 —o— RBLB with r=2
% e %ﬁ%%D BB B HSH S <] 4 4 ——%-— RALB with r=2
o 0.05 1 *"‘*++3§D O e e D—W; o o~ RBLB with r=4
= EacacaRANARA & -g —2— RALB with r=4
0.00 2 0
10 20 30 40 50 60 70 80 90 100110120 10 20 30 40 50 60 70 80 90 100110120
Time(m) Time(m)
Fig. 7. Impact of parameter r: (a) node utilization and (b) message volume.
a b
ko) x10°
Q 5 T 0.40
g %
[} 0.35 - 1
c / ks A
S D 4] w—"0 1 € < 030 1
o .£ 8 A—A o o
o Q ,,,,,i//A 29
o % O; © © 0.25 - 1
23 A 5 8 A~
a3 13 = 020 /A 1
s 2o o
c o 0191 S—]
- 2 X S 0 AT g—H
©5 21 —o—TTS4{ § < 0.10 - / o TTS 1
g “A=PTS | & s] —5—PTS |
2 —%—DTS i —*—DTS
2 1 T T T T T T 0.00 T T T T T T
10 50 100 150 200 250 1 2 3 4 5 6
Group Size Number of groups
Fig. 8. Effect of performance tuning scheme: (a) node utilization and (b) message volume.
a b
0.45 1000
2
G 0.40 1 é 800 - 1
c c L a
L2 0o IS
TR 0% 16 600 1
.g I o
B = 0301 1
S 9 S 400 |]
2o 2
T 8 025 18
. "
c < — . « | 3 2001 e i
& 020] E .
w . [e) /
o 04" 1
0.15 T T T T T T T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30

Searching step Length

Searching step Length

Fig. 9. Impact of searching step length: (a) node utilization and (b) computational complexity.

Assume that there are 4000 nodes and 10 groups in the
system. We vary the group size from 10 to 250 nodes. In
Fig. 8(a), we can see that, compared to TTS and DTS, PTS generates
fewer messages for achieving load balancing in the presence of
frequent load fluctuations and time-varying load distributions.
However, this advantage comes at the expense of load imbalance,
as shown in Fig. 8(b). In PTS, the load movements are triggered
only when the nodes’ utilization is larger than k, However, it
suffers from the difficulty of dealing with load fluctuations. In
contrast, DTS uses two threshold parameters to adapt the nodes’
load to the changes of the load distributions. However, more
messages are required to balance the loads among the nodes than
in TTS, where the nodes dynamically adjust the threshold para-
meters to accommodate for the changes in load distribution. Thus,
it is impractical to set the threshold parameters in a deterministic
manner.

The results in Fig. 8(b) show that all of the schemes enable the
nodes to adapt to changes in the system; however, in PTS, the
load utilization becomes higher when the group size is larger. This
is because when the group size is larger, the nodes in the system
with TTS (DTS) will have a high probability of having replicas help
with the short-time load fluctuations. The new incoming loads are
first selectively redirected to those replicas with available capa-
cities before the overload occurs.

Figure 9(a) illustrates the impact of the searching step length
on the performance of load balancing based on the standard
deviation of node utilization. The smaller the standard deviation,
the smaller the differences among all of the nodes and the better
the load balancing scheme. We set the group parameter to 10:10,
and we vary the searching step length from 5 to 30. The results
show that in a system of 4000 nodes, the standard deviation of
node utilization decreases with the growth of the searching step

400 Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401

length. However, after the value of the searching step length
reaches 10, there is no pronounced decrease in the standard
deviation of the node utilization. Potentially, this indicates that
the performance tuning scheme does not rely strongly on the
length of the searching step. Fig. 9(b) shows the computational
complexity of the performance tuning scheme as a function of the
searching step length. We can see that as the searching step
length increases, the computational complexity dramatically
increases. Given the results in Fig. 9(a), we find that it is practical
to set the searching step length to a small value to eliminate the
load imbalance among the nodes while keeping the cost low.

7. Conclusion

We have presented RALB, a replica-aided load balancing
scheme for enabling the nodes of the overlay network to support
communication applications for a large number of users with
hardware devices in an environment of time-varying load dis-
tributions and unpredictable load fluctuations. To demonstrate
the efficiency of RALB, we apply it to GeoCast and evaluate it
through extensive experiments based on a realistic network
topology model and a dynamic workload model. The results show
that RALB enables an application to scale to a large number of
nodes, a larger number of groups, and a larger group size. In the
presence of dynamic load movements and load fluctuations, it can
efficiently balance the load among nodes while minimizing the
overhead required for large-scale load migration and node com-
munication, when compared to the existing load balancing
schemes.

Table 1
Definition of variables.

Notation Definition

G d-Dimensional coordinate space

{E;} The set of nodes in the G, Vi € [0,n]; n is the number of nodes in the G

Ri The individual range managed by E;, VG = U_, R;

Ci The capacity of E;;a 2-d row vector

c The storage capacity of E;

cf The highest connection degree of E;

bo The bandwidth unit

ui(t) The utilization of E;

lo} The number of files stored on E;

lo¢ The number of connections linked to E;

) Imbalance tolerance parameter

Bi(t) The set of nodes whose load information is collected by E;

T, The threshold of load sharing phase

Ts The threshold of region reshaping phase

RE, The replicas set of E;

r The number of replicas per node

o The importance parameter

avlj] The available capacity vector of un-overloaded node j in R

d[j] The priority of node j

wljf] The importance of node j

w[j] The importance of node j

flag The symbol bit of node

VIflag] The reference of node’s utilization u[flag]

U The reference of node’s utilization

LBC The load balancing cost

LBCg The cost of region reshaping

LBCgme The cost of region merging

LBCgsp The cost of region splitting

LBCgsw The cost of region swapping

lbc;; The communication cost of redirecting a subscription request from
node i to node j

105 The amount of workload redirected from node i to node j

lij The latency required for a message to transmit from node i to node j

ML The number of workload information units per message

p;h The probability of triggering load sharing on node p

pg’ The probability of lop(t; 1) > T}, and no region reshaping occurs at ¢;

As part of our future work, we plan to develop additional
parameter tuning mechanisms and apply them to different types
of applications and environments to evaluate their efficiency.
These applications could include multimedia streaming applica-
tions, pervasive applications, voice-ip applications, and location-
based advertising applications.

Acknowledgments

This paper is supported by the National Basic Research 973
Program of China under Grant No. 2009CB320805, the National
Natural Science Foundation of China under Grant No. 61170188,
the National High Technology Research and Development 863
Program of China under Grant No. 2012AA011803, and Funda-
mental Research Funds for the Central Universities of China. The
third author is partially supported by grants from NSF CISE NetSE
program, Cyber Trust program, an IBM faculty award and an Intel
ISTC on Cloud Computing.

Appendix A

The definition of the variables used in this paper is given in
Table 1.

References

Avancha S, D’Souza P, Perich F, Joshi A, Yesha Y. P2P Mcommerce in pervasive
environments. ACM SIGecom Exchanges 2002;3(4):1-9.

BitTorrent. Available at {http://www.bittorrent.com/); 2011.

Byers], Considine J, Mitzenmacher M. Simple load balancing for distributed hash
tables. Peer-to-Peer Systems II 2003;2735:80-7.

Cannataro M, Talia D. Towards the next-generation grid: a pervasive environment
for knowledge-based computing. In: Proceedings of the international con-
ference on information technology: computers and communications
(ITCC'03); 2003. p. 437-441.

Chen], Liao G, Hsie Jr. S, Liao C. A study of the contribution made by evolutionary
learning on dynamic load-balancing problems in distributed computing
systems. Expert Systems with Applications 2008;34(1):357-65.

ComScore. Number of U.S. computers accessing the internet via mobile broadband
soars 154 percent in 2007. Available at ¢ http://www.comscore.com/dut/Press_E
vents/Press_Releases/2008/03/Mobile_Broadband_Usage_Increases_in_US>; 2010.

Delmastro F, Passarella A, Conti M. P2P multicast for pervasive ad hoc networks.
Pervasive and Mobile Computing 2008;4(1):62-91.

eMule. Available at ¢http://www.emule-projec.tnet/»; 2010.

Ganesan P, Bawa M, Garcia-Molina H. Online balancing of range-partitioned data
with applications to peer-to-peer systems. In: Proceedings of the 30nd interna-
tional conference on very large data bases (VLDB'04); 2004. p. 444-455.

Gao Q, Tang P, Deng T, Wo T. Virtualrank: a prediction based load balancing
technique in virtual computing environment. In: IEEE world congress on
services; 2011. p. 247-256.

Godfrey P, Stoica I. Heterogeneity and load balance in distributed hash tables. In:
Proceedings of the 24th annual joint conference of the IEEE computer and
communications societies (INFOCOM'05); 2005. p. 596-606.

GOGRID. (F5) load balancer. Available at <https://wiki.gogrid.com/wiki/index.
php/(F5)_Load_Balancer) ; 2010.

Google. Googledocs. Available at (https://docs.google.com/); 2010.

Gopalakrishnan V, Silaghi B, Bhattacharjee B, Keleher P. Adaptive replication in
peer-to-peer systems. In: Proceedings of the 24th IEEE international confer-
ence on distributed computing systems (ICDCS’04); 2004. p. 360-369.

Hu], Gu], Sun G, Zhao T. A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment. In: Proceedings of the
3rd international symposium on parallel architectures, algorithms and pro-
gramming (PAAP'10); 2010. p. 89-96.

INTRICE. Available at ¢http://www.intrice.com/); 2009.

JOOST. Available at <http://www.joost.com/); 2008.

Karger D, Ruhl M. Simple efficient load-balancing algorithms for peer-to-peer
systems. Theory of Computing Systems 2006;39(6):787-804.

Knoll M, Wacker A, Schiele G, Weis T. Decentralized Bootstrapping in Pervasive
Applications. In: Proceedings of the 5th IEEE international conference on
pervasive computing and communications workshops (PerCom Work-
shops’07); 2007. p. 589-592.

Kotoulas S, Oren E, Van Harmelen F. Mind the data skew: distributed inferencing
by speeddating in elastic regions. In: Proceedings of the 19th international
conference on World Wide Web (WWW’10); 2010. p. 531-540.

Y. Wang et al. / Journal of Network and Computer Applications 36 (2013) 388-401 401

Kumar M, Shirazi B, Das S, Sung B, Levine D, Singhal M. PICO: a middleware framework
for pervasive computing. IEEE Pervasive Computing 2003;2(3):72-9.

Kwon G, Ryu K. Bypass: topology-aware lookup overlay for DHT-based p2p file
locating services. In: Proceedings of the 10th international conference on
parallel and distributed systems (ICPADS’04); 2004. p. 297-304.

Livestation. Available at http://www.livestation.com/); 2010.

Marques C, llarri S, Barroso G. Darc: a dynamic architecture for reconfiguration of web
servers clusters using multiagent systems. In: Proceedings of the 5th interna-
tional conference on networking and services (ICNS'09); 2009. p. 169-174.

Myles G, Friday A, Davies N. Preserving privacy in environments with location-
based applications. IEEE Pervasive Computing 2003;2(1):56-64.

Pitoura T, Ntarmos N, Triantafillou P. Saturn: Range queries, load balancing and
fault tolerance in DHT data systems. IEEE Transactions on Knowledge and Data
Engineering 2010;PP(99), 1-14.

PPTV. Available at ¢http://www.pptv.com/); 2011.

Qiao Y, Bochmann G. A diffusive load balancing scheme for clustered peer-to-peer
systems. In: Proceeding of 15th international conference on parallel and
distributed systems (ICPADS’09); 2009. p. 842-847.

Ranjan R, Zhao L, Wu X, Liu A, Quiroz A, Parashar M. Peer-to-peer cloud
provisioning: service discovery and load balancing. Cloud Computing: Princi-
ples, Systems and Applications 2010:195-217.

Rao A, Lakshminarayanan K, Surana S, Karp R, Stoica I. Load balancing in
structured P2P systems. Peer-to-Peer Systems Il 2003;2735:68-79.

Ratnasamy S, Francis P, Handley M, Karp R, Schenker S. A scalable content-
addressable network. ACM SIGCOMM Computer Communication Review
2001;31(4):161-72.

Roussopoulos M, Baker M. Practical load balancing for content requests in peer-to-
peer networks. Distributed Computing 2006;18(6):421-34.

Shen H, Xu C. Hash-based proximity clustering for efficient load balancing in
heterogeneous DHT networks. Journal of Parallel and Distributed Computing
2008;68(5):686-702.

Steele T, Vishnumurthy V, Francis P. A parameter-free load balancing mechanism
for P2P networks. In: Proceedings of the 7th international conference on peer-
to-peer systems (IPTPS'08); 2008. p. 21-26.

Surana S, Godfrey B, Lakshminarayanan K, Karp R, Stoica I. Load balancing in dynamic
structured peer-to-peer systems. Performance Evaluation 2006;63(3):217-40.

Techcrunch. Boingo wireless partners with gogo for in-flight internet access.
Available at <http://techcrunchcom/2011/06/27 /boingo-wireless-partners-
with-gogo-for-in-flight-internet-access/»; 2011.

Technologyreview. A new way for drivers to access the internet that, the
automaker says, is safe. Available at <(http://wwwtechnologyreviewcom/
blog/editors/24634/) ; 2010.

Tewari S, Kleinrock L. Proportional replication in peer-to-peer networks. In:
Proceedings of the 25th annual IEEE international conference on computer
communications (INFOCOM’'06); 2006. p. 1-12.

Wang Y, Liu L, Pu C, Zhang G. An Utility-driven routing scheme for scaling
multicast applications. In: Proceedings of the 7th international conference on
collaborative computing (CollaborateCom’10); 2010. p. 65-74.

Wang Y, Zhong Z, Liu L, Wu W. Efficient location-aware replication scheme for
reliable group communication applications. In: Proceedings of the 10th
international conference on networks (ICN'11); 2011. p. 394-400.

Warcraft. Available at ¢http://us.blizzard.com/en-us/>; 2010.

Werstein P, Situ H, Huang Z. Load balancing in a cluster computer. In: Proceedings
of the 7th international conference on parallel and distributed computing,
applications and technologies (PDCAT’06); 2006. p. 569-577.

Xia 'Y, Chen S, Cho C, Korgaonkar V. Algorithms and performance of load-balancing
with multiple hash functions in massive content distribution. Computer
Networks 2009;53(1):110-25.

Yamamoto H, Maruta D, Oie Y. Replication methods for load balancing on
distributed storages in P2P networks. IEICE Transactions on Information and
Systems 2006;89(1):171-80.

Zhang], Zhang G, Liu L. GeoGrid: A scalable location service network. In:
Proceedings of the 27th international conference on distributed computing
systems (ICDCS’07); 2007. p. 60-67.

Zhu Y, Hu Y. Efficient, proximity-aware load balancing for DHT-based P2P
systems. IEEE Transactions on Parallel and Distributed Systems 2005;
16(4):349-61.

