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Abstract

Given a set of images containing similar objects, cosegmentation is a task of jointly segment-
ing the objects from the set of images, which has received increasing interests recently. To
solve this problem, we present a novel method based on a hierarchical graph. The vertices
of the hierarchical graph involve pixels, superpixels and heat sources, and cosegmentation
is performed as iterative object refinement in the three levels. With the inter-image con-
nection in the heat source level and the intra-image connection in the superpixel level, we
progressively update the object likelihoods by transferring message across images via belief
propagation, diffusing heat energy within individual image via random walks, and refining
the foreground objects in the pixel level via guided filtering. Besides, a histogram based
saliency detection scheme is employed for initialization. We demonstrate experimental eval-
uations with state-of-the-art methods over several public datasets. The results verify that our
method achieves better segmentation quality as well as higher efficiency.
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1 Introduction

The term “cosegmentation” is first introduced by Rother et al. [1] in 2006, referring to the
problem of simultaneously segmenting “similar” foreground objects in a set of images. The
definition of “similar” commonly indicates the constraint that the distribution of some appear-
ance cues such as color and texture in each image has to be similar. Cosegmentation has many



potential applications. It can be used for summarizing personal photo album, guiding multi-
ple images’ editing, boosting unsupervised object recognition, improving content based image
retrieval and so on.

Since the introduction of the problem, various methods have been presented. One type of
methods handles the problem of multi-class cosegmentation, while others focus on binary
cosegmentation. In this article, we are interested in binary cosegmentation and observe that
for most applications of binary cosegmentation several criteria should be followed: (1) au-
tomation, i.e., it is executed without user interactions; (2) scalability, i.e., it can be applied to
hundreds of images instead of two images or small sized image sets; (3) focusing on “object”
instead of “stuff”. Here the “object” refers to “foreground things” such as a person or a bird,
while “stuff” refers to “background regions” such as road or sky; (4) high segmentation accu-
racy; (5) low running time. According to these criteria, existing methods have some limitations.
For example, the iCoseg system presented by Batra et al. [2] can obtain highly accurate results,
but requires user input. The methods reviewed by Vicente et al. [3] all focus on cosegment-
ing two images. The recently presented CoSand [4] only extracts similar large regions, thus
it often omits the small foreground objects in the images. Methods based on topic discovery
like [5–7] all take superpixels as computation nodes, and hence they suffer from detail loss
because superpixels tend to merge foreground regions with the backgrounds. Some unsuper-
vised object segmentation methods [8–11] extract objects from multiple images via iteratively
learning class models and segmenting objects in pixel level, while they are time-consuming
because the employed optimization schemes like graphcut [12] and belief propagation [13] are
inefficient with a large number of pixel nodes.

In this article, we try to meet these criteria by extracting the foreground objects with a three-
level hierarchical graph model. As shown in Figure 1, the graph model is composed of the pixel,
superpixel and heat source levels, in which superpixels are grouping units of pixels obtained by
an over-segmentation method [14] and heat sources are the representative superpixels obtained
by a bottom-up agglomerative clustering scheme. The term “heat source” is introduced in
random walks [15], representing heat energy convergence points. Here, we adopt it to describe
message transferring among images and heat energy diffusion within individual image. The
iterative object refinement is operated at the three levels with different optimization schemes.
The heat source level utilizes belief propagation [13] for message transferring. In the superpixel
level, random walks [15] is employed for heat energy diffusion. In the pixel level, we refine the
foreground objects within each image via guided filtering [16]. By doing so, the foreground
objects are gradually extracted. Besides, we employ a histogram based saliency detection
method [17] for initializing the object likelihoods.

Figure 1 An illustration of the hierarchical graph model for cosegmentation. The graph
model is composed of the pixel, superpixel and heat source levels. The cosegmentation method
is performed by message transferring among images in the heat source level, heat energy dif-
fusion in the superpixel level and local refinement in the pixel level.

It is no doubt that our method is automatic and has the following advantages. (1) It is scal-
able. Since the superpixel and pixel levels both treat each image separately, and the heat source
level’s integration only operates on limited heat sources, this method has high parallelization



capacity and can be easily applied to large scale image collection. (2) It focuses on “object” in-
stead of “stuff”. This is because our method is initialized by saliency detection, which can filter
out background stuff. (3) It is computationally more efficient. Compared with methods [8,9,18]
which perform message transferring among images using a large number of superpixels or pix-
els, our method uses a small number of heat sources and thus significantly reduce computation
time. (4) It can preserve object boundaries. This method finally refines object segmentation in
the pixel level, and hence avoids the problem of detail loss existing in other superpixel based
methods.

The remainder of this article is organized as follows. After summarizing the related study in
Section 2, we present the hierarchical graph model in Section 3. The stages of object refine-
ment along the model, including foreground initialization, local object refinement, message
transferring and heat energy diffusion are described in Section 4. Experimental results are
demonstrated in Section 5, and we conclude the article in the last section.

2 Related study

Basically, the solutions to cosegmentation can be roughly classified into two categories: clus-
tering based methods [5–7, 19] and labeling based methods [3, 8–11, 18]. The former tries to
partition nodes (pixels or superpixels) in the images into distinct, semantically coherent clus-
ters, while the latter aims at assigning each node with a unique label.

2.1 Clustering based methods

Under the assumption that similar objects often recur in multiple images, clustering based
methods employ clustering models to discover such frequent regions. The well-known cluster-
ing models include topic discovery models like probabilistic latent semantic analysis (PLSA)
[20], and geometry based models like normalized cuts (NCut) [21]. Motivated by the success
of topic discovery in text analysis, Russell et al. [5] first adopt PLSA to address the cosegmen-
tation problem. Later, Cao et al. [6] and Zhao et al. [7] both present spatially coherent topic
models to encode the spatial relationship of image patches which is ignored by the traditional
topic models. Combining NCut and supervised classification technique, Joulin et al. [19] uti-
lize a discriminative clustering scheme to tackle the cosegmentation problem. For speeding up,
all clustering based methods take superpixels as computation nodes. The major limitation of
these methods is the lower segmentation accuracy caused by the over-segmentation methods.

2.2 Labeling based methods

Considering the Markov property in the images, labeling based methods formulate cosegmen-
tation as a Markov random field (MRF) energy minimization problem. Over the past decade,
methods that use graphcut [12] to minimize MRF energy have become the standard for figure-
ground separation.



One technique is to minimize an energy function that is a combination of a pairwise MRF
energy and a histogram matching term. The histogram matching terms such as L1 norm model
[1], L2 norm model [22] and “reward” model [23] force foreground histograms between a pair
of images to be similar. Vicente et al. [3] review these models and make a comparison. Yet
these methods are limited to two images. Another technique, also called unsupervised object
segmentation such as LOCUS [8], ClassCut [9], Arora et al. [10] and Chen et al. [11], performs
object cosegmentation by iteratively learning the object geometric models and segmenting the
foreground objects. The initialization stages of these methods play an important role for energy
minimization. For example, LOCUS [8] takes the pre-trained mask and edge probability maps
as the initial object models, ClassCut [9] uses a general object detector [24] to locate objects.
However, these methods are limited to segmenting objects with similar geometric shape. In
contrast, the recently proposed cosegmentation method—BiCos [18] is more general and can
be applicable for any non-rigid objects. BiCos [18] operates at the two levels: the bottom level
treats each image separately and uses graphcut [12] to refine foreground objects in pixel level,
whereas the top level takes superpixels as computation units and employs a discriminative
classification to propagate information among images.

Our method falls into the last category. The main idea is to combine multiple schemes along
a three-level hierarchical graph to refine foreground objects successively. In contrast to other
labeling based methods [3,8–11, 18], this method has the following characteristics: (1) utiliza-
tion of heat sources for message propagation among images, which can significantly reduce
computation time; (2) a saliency detection based initialization, which can remove the impact
of background stuff; (3) instead of using graphcut [12] to refine objects in the pixel level, we
introduce guided filtering [16] for local refinement. In experiments, we compare our method
quantitatively and qualitatively with other state-of-the-art methods over several public datasets.
As a outcome, our method achieves better segmentation quality as well as lower computation
time.

3 The hierarchical graph model

3.1 Problem formulation

Given a set of images containing objects of the same class, I = {Ik, k = 1, . . . , K}, the goal of
cosegmentation is to simultaneously extract the foreground objects. We formulate this problem
as a binary labeling: L = {Lk, k = 1, . . . , K}, which assigns each pixel x in the image Ik
with a label Lk(x). Lk(x) = 0 indicates x belongs to the background, whereas Lk(x) = 1
to the foreground. The best labeling follows maximum a posteriori estimation, i.e., L∗ =
arg maxL p(L|I). Based on the Bayesian perspective, p(L|I) ∝ p(L)p(I|L), where p(L)

is the labeling prior and p(I|L) is the observation likelihood. Under the assumption that the
prior follows uniform distribution and the observation likelihood is pair-wise dependent among
images, the posteriori can be rewritten as:

p(L|I) ∝
∏

k

p(Ik|Lk)
∏

(k1,k2)

p(Ik1 , Ik2|Lk1 , Lk2) (1)



The corresponding energy function (i.e., E(x) = − log p(x) ) is:

E(L|I) =
∑

k

Ed(Ik|Lk) +
∑

(k1,k2)

Es(Ik1 , Ik2|Lk1 , Lk2) (2)

The energy function combines the unary terms Ed(·) and the pairwise terms Es(·, ·). In our
study, the unary term is composed of two parts:

Ed(Ik|Lk) = Ed1(Ik|Lk) + Ed2(Ik|Lk, θk), (3)

where Ed1(Ik|Lk) is derived from saliency detection, and Ed2(Ik|Lk, θk) is inferred under the
guide of an inherent object model. θk is the latent parameter set for the object model of Ik.

The pairwise term can be considered as a smooth term, which penalizes the inconsistent label-
ing among images. Ideally, this term should be formulated in the pixel level. For computational
efficiency, we define it in the heat source level using appearance information (see Equation (8)).
Minimizing the above energy with respect to all discrete labels is intractable. Instead, we relax
the labels firstly, i.e., let Lk(x) ∈[ 0, 1] be the object likelihood, and iteratively update them
along a hierarchical graph model, finally obtain the segmentation results by rounding.

3.2 The hierarchical graph and our method

As shown in Figure 1, the graph model is composed of three types of nodes: pixels, superpixels
and heat sources. For each image, superpixels are the clustering units of coherent pixels, and
heat sources are the representative superpixels located in the centers of the clustering regions
formed by coherent superpixels. In our implementation, the superpixels are extracted by an
over-segmentation method—Turbopixels [14]. The generation of heat sources will be described
in detail in Section 4.2.

Based on the graph model, our method successively updates the object likelihoods by the
following iteration: (1) estimating the latent parameters and refining object segmentation,
(2) transferring message among images and diffusing heat energy within individual image.
Specifically, we first obtain the object likelihoods in each image with saliency detection [17],
and then estimate the latent parameters to update the object likelihoods. The likelihoods of
the heat sources are further updated among images via message transferring which is ful-
filled by belief propagation [13], and diffused to other superpixels using random walks [15]
within individual image. Now the likelihoods can be considered as input for further itera-
tion. In the following sections, we denote the updated object likelihoods at different stages by
L∗,t

k , t = 0, . . . , 3, k = 1, . . . , K. To summarize the cosegmentation method presented in this
article, we provide a high level overview of the method pipeline as follows.

• Input: a set of images containing objects of the same class I = {Ik, k = 1, . . . , K}
• Output: the cosegmentation results with the form of binary labeling L∗ = {L∗

k , k =
1, . . . , K}



Step 1. Initialization (Section 4.1)
a) partition each image Ik into a set of superpixels Sk and extract heat sources Zk.
b) obtain the initial object likelihoods L∗,0

k via saliency detection [17].
c) estimate the latent parameter set θk.
d) acquire the updated object likelihoods L∗,1

k via guided filtering [16].

Step 2. Global message transferring (Section 4.2)
Optimize the energy function defined in Equation (6) via belief propagation [13] to
provide the updated object likelihoods L∗,2(Z) for all heat sources.

Step 3. Local heat energy diffusion (Section 4.3)
For each image Ik, the object likelihoods of the heat sources L∗,2

k (Zk) are diffused
to other superpixels Uk = Sk − Zk via random walks [15], obtaining L∗,2

k (Uk).

Step 4. Local object refinement (Section 4.1)
a) let L∗,3

k = (L∗,0
k + L∗,1

k + L∗,2
k )/3.

b) re-estimate the latent parameter set θk.
c) acquire the updated object likelihoods L∗,1

k via guided filtering [16].

Step 5. Repeat Step 2, 3, and 4 until convergence. The final labeling L∗
k is obtained by

binarizing L∗,3
k .

4 Hierarchical graph based object cosegmentation

4.1 Initialization and local refinement

One major visual characteristic of objects is that they often stand out as saliency [24]. Based
on this characteristic, we apply saliency detection to initially detect foreground regions in each
image. Over various of saliency detection methods, we choose a recently proposed histogram
based method [17] for its efficiency and effectiveness. Figure 2b demonstrates the saliency
detection result of Figure 2a. We define the initial object likelihoods L∗,0

k as the saliency likeli-
hoods.

Figure 2 Saliency detection based model initialization. (a) The input image, (b) the saliency
detection result, (c) the segmentation result built on GMM, and (d) the segmentation result
obtained after guided filtering.

The segmentation results obtained by thresholding saliency likelihoods often contain holes and
ambiguous boundaries. Motivated by the interactive segmentation methods, e.g., GrabCut [25],
we utilize the inherent color Gaussian mixture model (GMM) in the image to update the object
likelihoods. Two GMMs, one for the foreground and another for the background, are estimated
in RGB color space. Each GMM is taken to be a full-covariance Gaussian mixture with M
components. The GMM parameters are defined as: θk = {θ J

k |J ∈ {B, F}}, in which θ J
k =

{θ J
m,k|m = 1, . . . , M}, θ J

m,k = (µJ
m,k, 6J

m,k, ωJ
m,k). (µF

m,k, 6F
m,k, ωF

m,k) are the mean, covariance
and weighting values for the foreground components, and (µB

m,k, 6B
m,k, ωB

m,k) for the background



components. The GMM parameters are estimated from the initial likelihoods as follows: (1)
given two thresholds T1 and T2, satisfying 0 < T1 < T2 < 1, we label the pixels with L∗,0

k (x) >

T1 as foreground, whereas L∗,0
k (x) < T2 as background; (2) the colors of the foreground and

background regions are clustered into M components using K-Means [26], respectively; (3) for
each component, we statistically acquire its parameters θJ

m,k. The object likelihoods built on
the GMMs are given by:

p(Ik(x)|θ J
k ) = max

m
(p(Ik(x)|θ J

m,k)) (4)

p(Ik(x)|θJ
m,k) = ωJ

m,k exp(−∥Ik(x) − µJ
m,k∥/6J

m,k)/

√
|6J

m,k| (5)

Segmenting objects by directly thresholding the updated object likelihoods will result in noises,
as shown in Figure 2c. We use guided filtering [16] to remove noises. The main idea of
guided filtering [16] is that, given the filter input p, the filter output q is locally linear to the
guidance map I, qi = axIi + bx, ∀i ∈ wx, where wx is a window with radius r centered at the
pixel x. By minimizing the difference between the filter input p and the filter output q, i.e.,
Err(ax, bx) = 6i∈wx((pi − qi)

2 + ϵa2
x), we can obtain ax, bx and the filter output q.

Based on guided filtering [16], we perform local refinement with three steps: (1) obtaining
the foreground likelihood map Lk,F = {p(Ik(x)|θF

k )} and the background likelihood map Lk,B =
{p(Ik(x)|θB

k )}; (2) taking the grayscale image of Ik as the guidance map, the two likelihood maps
are filtered, respectively (denoting the filter outputs as L̂k,F and L̂k,B); (3) defining the refined
object likelihoods as L∗,1

k = L̂k,F/(L̂k,F + L̂k,B). Figure 2d shows the refinement result of Figure
2c. As can be seen, the guided filtering based scheme can significantly improve segmentation
quality.

4.2 Global message transferring

Due to the diversity of realistic scenes, saliency based object segmentation sometimes fails
to extract objects of the same class (see Figure 3c). The segmentation quality can be further
boosted by sharing appearance similarity among images. Unlike other cosegmentation methods
[8,9,18] which propagate the distributions of visual appearance in the pixel or superpixel level,
we perform message propagation in the heat source level to reduce computation time.

Figure 3 The segmentation results obtained before and after message transferring. (a)
The input images, (b) the saliency detection results, (c) the segmentation results obtained in
the initial stage, and (d) the segmentation results obtained after message transferring.

As stated in Section 3, heat sources are the representative superpixels located in the centers of
the clustering regions formed by coherent superpixels. The regions are formed by a bottom-
up agglomerative clustering scheme. Specifically, given an image I, we first partition it into a
collection of superpixels via Turbopixels [14] (see Figure 4b, in which superpixels are encircled
with red boundaries). Then we build an intra-image graph GS =< S, YS >, where S = {si} is
the superpixel set and YS = {(si, sj)} is the edge set connecting all pairs of adjacent superpixels.
The edge weight is defined by Gaussian similarity between the normalized mean RGB color of



the nodes, i.e., w(si, sj) = exp(−∥I(si) − I(sj)∥2)/σs, where σs is a variance constant. Based
on the graph GS, we use a greedy scheme to merge nodes one by one. Each time, we select
the edge with the maximum weight value and merge its two nodes. This step is repeated until
all nodes are merged into N regions. The central superpixel of each region is chosen as a heat
source. Figure 4c demonstrates the clustering regions overlaid by the heat sources, in which
the regions are encircled with green boundaries and the heat sources are colored in blue.

Figure 4 An example of extracting superpixels and heat sources from an input image.
(a) The input image, (b) the superpixels extracted by Turbopixels [14] are encircled with red
boundaries, and (c) the regions extracted by an agglomerative clustering scheme are encircled
with green boundaries, and the extracted heat sources are colored in blue.

For message transferring among images, we construct an inter-image graph GZ =< Z, YZ >.
GZ is an undirected complete graph, where Z = {zi|zi ∈ Zk, k = 1, . . . , K} includes all heat
sources from the input images, YZ = {(zi, zj)} connects all pairs of heat sources. We update the
object likelihoods of the heat sources by minimizing a standard MRF energy function that is
the sum of unary terms E1(·) and pairwise terms E2(·, ·):

E(L(Z)) =
∑
zi∈Z

E1(zi) + λ
∑

(zi,zj)∈YZ

E2(zi, zj), (6)

where λ is the weighting value balancing the trade off between the unary terms and the pairwise
terms.

The unary term E1(·) imposes individual penalties for assigning any likelihood L(zi) to the heat
source zi. We rely on the object likelihoods L∗,1 acquired in the previous stage to define this
term:

E1(zi) =
∣∣∣∣∣L(zi) −

(∑
x∈zi

L∗,1(x)/|zi|
)∣∣∣∣∣ (7)

The pairwise term E2(·, ·) defines to what extent adjacent heat sources should agree. It often
depends on local observation. In our study, the pairwise potential takes the form:

E2(zi, zj) = w(zi, zj)|L(zi) − L(zj)| (8)

where w(zi, zj) is the edge weight, defined as w(zi, zj) = exp(−∥f (zi) − f (zj)∥2)/σz, σz is
a variance constant. f (z) is a nine-dimensional descriptor for the heat source z, including
three-dimensional mean Lab color feature, four-dimensional mean texture featurea and two-
dimensional mean position feature. This definition suggests that the larger the weight for the
edge, the more similar the labels for its two nodes.

We utilize belief propagation [13] to optimize the energy function in several bounds. The main
idea of belief propagation is to iteratively update a set of message maps between neighboring
nodes. The message maps that are denoted by {mt

zi→zj
(L(zj)), t = 1, . . . , T} represent the trans-

ferred message from one node to another at each iteration. In our study, the message maps are



initially set to zero and updated as follows:

mt
zi→zj

(L(zj)) = min
L(zi)

E1(zi) + λE2(zi, zj) +
∑

zk∈Z/zj

mt−1
zk→zi

(L(zi))

 (9)

Finally, a belief vector is computed for each node, bzi(L(zi)) = E1(zi) +∑
zj∈Z mT

zj→zi
(L(zi)),

and the updated object likelihoods are expressed as: L∗,2(zi) = bzi(0)/(bzi(0) + bzi(1)).

4.3 Local heat energy diffusion

After global message transferring, the object likelihoods for heat sources preserve appearance
similarity among images. We further diffuse them to other superpixels. As illustrated in the
middle level of Figure 1, this is performed by heat energy diffusion within individual image.
The heat energy diffusion can be imagined in the following situation: putting some heat sources
in a metal plate, the heat energy will diffuse to other points as time goes by, finally each point
will have a stable temperature. How to calculate such steady-state temperatures? This is a
well-known Dirichlet energy minimization problem:

u∗ = arg min
u

(E(u)) = arg min
u

1
2

∫
u∈�

|∇u|2d� (10)

Grady [15] states the similar problem in discrete space with the term “random walks”. Based
on a graph GX =< X, YX >, where X = {xi} is the node set and YX = {(xi, xj)} is the set of
node pairs, the Dirichlet energy function takes the form:

E(u(X)) = 1
2

∑
(xi,xj)∈YX

w(xi, xj)(u(xi) − u(xj))
2, (11)

where w(xi, xj) is the edge weight for the adjacent node pair (xi, xj).

In our study, the random walks works on the graph GS
k =< Sk, YS

k > for the image Ik, where
Sk = {si} is the superpixel set and YS

k = {(si, sj)} is the edge set connecting all pairs of adjacent
superpixels. The corresponding energy function is:

E(L(Sk)) = 1
2

∑
(si,sj)∈YS

k

w(si, sj)(L(si) − L(sj))
2 = 1

2
L(Sk)

TQL(Sk) (12)

where Q = D − A is the Laplacian matrix, in which A = {w(si, sj)} is the edge weight matrix,
and D is a diagonal matrix with the entities D(si, si) = ∑

j w(si, sj).



We divide the node set Sk into two parts: the heat sources Zk and the superpixels Uk = Sk − Zk.
The energy function can be rewritten as:

E(L(Sk)) =[ L(Zk)
T , L(Uk)

T ]
[

QZk B
BT QUk

] [
L(Zk)

L(Uk)

]
, (13)

where QZk and QUk correspond to the Laplacian matrix for the node set Zk and Uk, respectively.

Minimizing E(L(Sk)) is equal to differentiating E(L(Sk)) with respect to L(Uk) and yields:
L(Uk) = −BTL(Zk)/QUk . L(Zk) are the object likelihoods acquired in the previous stage,
i.e., L(Zk) = L∗,2(Zk). The diffused object likelihoods for Uk are obtained by: L∗,2(Uk) =
−BTL∗,2(Zk)/QUk . The nonsingularity of QUk guarantees that the solution exists and is unique.

For each pixel x, its object likelihood L∗,2(x) is assigned as the object likelihood of the super-
pixel it belongs to. Taking L∗,3

k (x) = (L∗,0
k (x)+ L∗,1

k (x)+ L∗,2
k (x))/3 as input, we further invoke

local refinement (see Section 4.1) to optimize object segmentation. Figure 3 demonstrates the
segmentation results obtained before and after heat energy diffusion. As can be seen, although
the saliency based initialization stage sometimes fails to extract the foreground objects, the
stages of message transferring and heat energy diffusion can boost segmentation quality via
sharing visual similarity of objects among images.

5 Experimental results

We apply our hierarchical graph based cosegmentation method to five public datasets with vary-
ing scenario and difficulty, including Weizmann horsesb, Caltech-4c, Oxford flowersd, UCSD
birdse, and CMU iCosegf. All images of these datasets have ground truth masks, which allows
us to evaluate segmentation performance quantitatively.

5.1 Datasets and implementation details

5.1.1 Weizmann horses

The Weizmann horses dataset has 324 images, in which each image depicts a different instance
of the horse class. All horses pose in their side view and face to the same direction. Generally
speaking, the horses preserve fixed geometric models and occupy most parts of the images.

5.1.2 Caltech-4

The Caltech-4 dataset includes four categories: airplane, car, face, and motorbike. We omit the
grayscale car and use the other three categories for evaluation. This is a large-scale dataset, in
which both the airplane and motorbike categories contains 800 images, and the face category
contains 435 images. Similar to the Weizmann horses dataset, each image of Caltech-4 only
depicts one object and the object occupy most parts of the image.



5.1.3 Oxford flowers

The Oxford flowers dataset has 17 different flower species with 80 images per category. Each
image contains a finite number of repeating subjects. Some flowers like sunflower occupy most
parts of the images, while others like lily of the valley scatter in the images.

5.1.4 UCSD birds

The UCSD birds dataset consists of 200 bird categories and 6033 images in total. This is a
challenging dataset, where the birds appear in their natural habitat, change considerably in
terms of viewpoint and illumination, and even in some cases only a part of the bird is visible.

5.1.5 CMU iCoseg

The CMU iCoseg dataset was introduced in [2]. It contains 643 images divided into 38 groups
which are collected in various real situations such as soccer players in a field, airshows in the
sky, a brown bear around a river. Omitting the background stuffs, each group contains one or
several foreground objects of the same class.

With these datasets, we are interested in two evaluations: (1) unsupervised object segmentation
over the Weizmann horses and Caltech-4 datasets where each image captures only one object
and the objects typically preserve fixed orientation and well-defined geometric shape; (2) object
cosegmentation on the Oxford flowers, UCSD birds and CMU iCoseg datasets where each
image contains one or several objects that appear in their natural habitat. The first evaluation is
performed to quantitatively compare our method with several traditional unsupervised object
segmentation methods [8–10] which are only applicable in this setting. The second evaluation
tests how well our method works with real world data.

5.1.6 Implementation details

In the initialization stage, we partition each image into 1000 or less superpixels, and extract
about N = 50 heat sources from these superpixels. The other parameters are set as: the
GMM component number M = 5, the thresholds T1 = 0.38, T2 = 0.52, the guided filtering’s
parameters r = 7, ϵ = 0.04, the variances σs = 0.004, σz = 0.08, and the weighting value
λ = 0.5. All experiments are performed on a computer with 2.9 GHz CPU and 2 GB RAM.

5.2 Evaluation on Weizmann horses and Caltech-4

Here we compare our method over the Weizmann horses and Caltech-4 datasets with four
related methods, including LOCUS [8], ClassCut [9], Arora et al. [10] and BiCos [18]. LOCUS
[8], ClassCut [9], and Arora et al. [10] all take advantage of the objects’ inherent geometric
models to jointly extract the foreground objects. In contrast, our method and BiCos [18] make
no assumption about the foreground objects’ geometric shape. Given a ground truth mask,
the segmentation accuracy is measured by the ratio of correctly labeled pixels with respect to



the total number of pixels. According to the performance reported in their articles, Table 1
summarizes the segmentation accuracies over the four classes.

Table 1 The average segmentation accuracies obtained with LOCUS [8], ClassCut [9],
Arora et al. [10], BiCos [18] and our method over the Weizmann horses and Caltech-4
datasets

Method Weizmann Caltech Caltech Caltech
horses airplane face motorbike

LOCUS [8] 0.931 - - -
ClassCut [9] 0.862 0.888 0.890 0.903

Arora et al. [10] - 0.931 0.924 0.831
BiCos [18] 0.900 0.932 0.911 0.822
Our method 0.884 0.943 0.921 0.878

The values in bold indicate the best results.

As can be seen, LOCUS [8], ClassCut [9] and Arora et al. [10] achieve better performance on
the horse, motorbike and face categories, respectively. The reason is that the geometric models
employed in those methods can strongly separate the foreground and background regions. Yet
BiCos [18] and our method can still achieve competitive performance even without geometric
models. Our method outperforms BiCos [18] on the airplane, face and motorbike categories,
while BiCos [18] performs better on the horse category.

5.3 Evaluations on Oxford flowers, UCSD birds and CMU iCoseg

As baselines, three state-of-the-art methods (Joulin et al. [19], CoSand [4], and ClassCut [9])
are evaluated using their implementations with the default parameter settings. Joulin et al. [19]
is a clustering based method, which takes superpixels as basic units and utilizes discriminative
clustering to find common objects. CoSand [4] takes the large coherent, appearance similar
regions among images as the foreground objects. ClassCut [9] is an energy iteration based
method, which first obtains object bounding boxes by [24], and then builds a common class
model with color, shape and position cues, finally extracts foreground objects via iteratively
optimizing an MRF energy function and updating the class model.

The segmentation accuracy is defined as the proportion of pixels correctly classified as fore-
ground or background by comparing the segmentation results with the ground truth. We take
the form: F_Measure = 2 ∗ pre ∗ rec/(pre + rec), where pre is defined as the ratio of true pos-
itive pixels (i.e., the pixels labeled as foreground actually belong to foreground) to all labeled
foreground pixels, and rec is defined as the ratio of true positive pixels to ground truth pixels.
The average segmentation accuracies across all images are shown in Table 2. Several examples
from the Oxford flowers, UCSD birds and CMU iCoseg datasets can be seen in Figure 5.



Table 2 The segmentation performance of CoSand [4], ClassCut [9], Joulin et al. [19] and
our method over the Oxford flowers, UCSD birds and CMU iCoseg datasets

Oxford flowers UCSD birds CMU iCoseg
Method Accuracy Time(s) Accuracy Time(s) Accuracy Time(s)

CoSand [4] 0.68 39.21 0.42 37.50 0.52 23.90
ClassCut [9] 0.72 95.96 0.32 93.71 0.51 78.43

Joulin et al. [19] 0.70 33.07 0.35 19.44 0.43 19.19
Our method (initial) 0.67 - 0.52 - 0.64 -
Our method (final) 0.84 24.14 0.68 13.11 0.74 11.19

The values in bold indicate the best results.

Figure 5 Segmentation comparison with ClassCut [9], Joulin et al. [19] and CoSand [4] on
the Oxford flowers, UCSD birds and CMU iCoseg datasets. The regions in white indicate
the foreground objects, while the regions in black stand for the background. (a) The input
images, (b) ClassCut [9]’s results, (c) Joulin et al. [19]’s results, (d) CoSand [4]’s results, and
(e) our method’s results.

5.3.1 Overall performance

As illustrated in Table 2 and Figure 5, our method outperforms the three methods in terms of
segmentation accuracy as well as computation time. The method of Joulin et al. [19] takes
superpixels as basic units, thus the objects’ boundaries are not clearly delineated as some su-
perpixels merge foreground and background regions together. CoSand [4] only focuses on
extracting the large coherent regions, it performs poorly for the figure-ground separation task.
For example, it only extracts the black regions in the panda image set, failing to detect the white
regions as foreground objects. ClassCut [9] can extract most of foreground regions, while it
tends to omit some fragile regions like the petals in the Oxford flowers dataset. This is because
the over-segmentation method it adopted has merged the boundaries with backgrounds. In con-
trast, our method can extract the whole foreground object accurately, no matter it is composed
of one or several appearance distributions. We attribute this to the initialization scheme and the
appearance sharing among images.

The benefit of segmenting all images together has been qualitatively shown in Figure 3. In
Table 2, we quantitatively compare the segmentation accuracies obtained before and after shar-
ing appearance similarity among images, obtaining that the accuracies are improved from 0.67,
0.52, 0.64 to 0.84, 0.68, 0.74 for the Oxford flowers, UCSD birds and CMU iCoseg datasets,
respectively. Figure 6 compares some segmentation results obtained in the initialization and
last stages. We can observe that most errors induced in the initialization stage are rectified
finally.

Figure 6 Segmentation results obtained before and after sharing appearance similarity.
The white regions denote the foreground objects, while the black regions stand for the back-
ground. (a) The input images, (b) the segmentation results obtained in the initial stage, and (c)
the segmentation results obtained in the final stage.



5.3.2 Initialization performance

One contribution of our method is applying saliency detection with guided filtering to initially
obtain foreground regions. To verify this stage’s effectiveness, we compare it with other ini-
tialization schemes, including GrabCut [25] used in BiCos [18], the large coherence regions
presented in CoSand [4] and the initialization stage of ClassCut [9]. Since the initialization
stages are all performed in still images, we randomly select 100 images from the three datasets
for comparison.

In BiCos [18], GrabCut [25] estimates the foreground regions by optimizing a MRF energy
function with the foreground and background color models. The foreground model is esti-
mated with a bounding box in the center (50 % of the image size) and the background model
is estimated from the rest. In CoSand [4], the foreground region comes from K-way segmen-
tation. As suggested in the article, the number of segments K ranges from two to eight and
the highest accuracies are reported. In ClassCut [9], a class model with shape, location and
color cues is initialized by an object detector [24], and the foreground regions are estimated by
optimizing a MRF energy function with the class model.

Table 3 shows the average segmentation accuracies as well as computation time for different
initialization schemes. As can be seen, our initialization scheme achieves best performance for
the UCSD birds and CMU iCoseg datasets, while GrabCut [25] reports higher accuracy than
ours for the Oxford flowers dataset. We believe that this is due to the characteristics of the
dataset, where the objects tend to be centered in the image and have a good contrast with the
backgrounds. Under such constraint situation, the class models can be accurately estimated
by GrabCut [25]. In contrast, the UCSD birds and CMU iCoseg datasets are more general,
which verifies that our method is more flexible to be applied to real situations. Besides, our
initialization scheme is significantly faster than those competitors.

Table 3 The segmentation performance obtained by the initial stages of BiCos [18],
CoSand [4], ClassCut [9] and our method over the Oxford flowers, UCSD birds and CMU
iCoseg datasets

Oxford flowers UCSD birds CMU iCoseg
Method Accuracy Time(s) Accuracy Time(s) Accuracy Time(s)

BiCos [18] 0.72 14.06 0.48 8.40 0.61 7.27
CoSand [4] 0.63 20.00 0.32 12.00 0.43 10.00
ClassCut [9] 0.57 23.32 0.42 18.00 0.31 11.40
Our method 0.67 2.70 0.52 1.55 0.64 1.32
The values in bold indicate the best results.

5.3.3 Running time

One advantage of our method is its efficiency. Table 2 compares the running time of our
methods with others. To further learn about how the time is cost in the whole process, we
analyze each step’s performance on the Oxford flowers, UCSD birds and CMU iCoseg datasets.
As shown in Table 4, most of the time is spent on extracting superpixels, while the main stages
in the article, including saliency detection, local refinement, global message transferring and
heat energy diffusion cost only 8.01 s in total for the Oxford flowers dataset, 4.92 s for the
UCSD birds dataset and 4.32 s for the CMU iCoseg dataset.



Table 4 The running time cost by each stage of our method over the Oxford flowers, UCSD
birds and CMU iCoseg datasets

Superpixel Heat source Saliency Local Heat energy Total
Dataset extraction extraction detection refinement transfer and time (s)

diffusion
Oxford flowers 16.13 0.28 0.24 2.28 5.21 24.14

UCSD birds 8.19 0.14 0.18 1.47 3.13 13.11
CMU iCoseg 6.87 0.12 0.19 1.30 2.71 11.19

5.4 Failure cases

Our method works under an assumption that the interested objects should stand out as saliency.
Yet such an assumption may not hold in some cases, which can be demonstrated over the
MOMI datasetg. Figure 7 illustrates some failure cases of our method for the images from the
MOMI dataset. As illustrated, although the “kfc”, “lego”, and “pringles” regions recur in the
image sets, they are not too distinct with other regions to be detected as saliency. Our method
fails to separate them from the backgrounds under such cases.

Figure 7 Failure cases. (a) The input images, (b) the segmentation results, and (c) the ground
truth.

6 Conclusion

In this article, we present an iterative energy minimization method along a hierarchical graph
for object cosegmentation. Starting from initialization by saliency detection, the method alter-
nates via updating the latent parameters, refining object segmentation and propagating appear-
ance distribution among images. Experiments demonstrate its superiority over start-of-the-art
methods in aspects of accuracy and computation time. We attribute this to the combination of
saliency detection, guided filtering and heat sources.

Still there are several issues remained to be explored. Currently, our method works under the
assumption that the input images contain the common foreground objects. It is worth exploring
a more general case that the input image set is composed of several groups where each group
contains the common foreground objects. In addition, considering the parallelization capacity
of our method, the system can be redesigned for implementation in parallel graphic hardware.

Endnotes

ahttp://www.robots.ox.ac.uk/~vgg/research/texclass/.
bhttp://www.msri.org/people/members/eranb/.
chttp://www.vision.caltech.edu/archive.html.
dhttp://www.robots.ox.ac.uk/~vgg/data/flowers/.
ehttp://www.vision.caltech.edu/visipedia/CUB-200.html.



fhttp://chenlab.ece.cornell.edu/projects/touch-coseg/.
ghttp://imp.iis.sinica.edu.tw/ivclab/research/coseg/.
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