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Abstract—Existing localization methods commonly employ1

vision to perceive scene and achieve localization in GNSS-denied2

areas, yet they often struggle in environments with complex3

lighting conditions, dynamic objects or privacy-preserving areas.4

Humans possess the ability to describe various scenes using5

natural language to help others infer the location by recognizing6

or recalling the rich semantic information in these descriptions.7

Harnessing language presents a potential solution for robust8

localization. Thus, this study introduces a new task, Language-9

driven Localization, and proposes a novel localization framework,10

LangLoc, which determines the user’s position and orientation11

through textual descriptions. Given the diversity of natural12

language descriptions, we first design a Spatial Description13

Generator (SDG), foundational to LangLoc, which extracts and14

combines the position and attribute information of objects within15

a scene to generate uniformly formatted textual descriptions. SDG16

eliminates the ambiguity of language, detailing the spatial layout17

and object relations of the scene, providing a reliable basis for18

localization. With generated descriptions, LangLoc effortlessly19

achieves language-only localization using text encoder and pose20

regressor. Furthermore, LangLoc can add one image to text21

input, achieving mutual optimization and feature adaptive fusion22

across modalities through two modality-specific encoders, cross-23

modal fusion, and multimodal joint learning strategies. This24

enhances the framework’s capability to handle complex scenes,25

achieving more accurate localization. Extensive experiments on26

the Oxford RobotCar, 4-Seasons, and Virtual Gallery datasets27

demonstrate LangLoc’s effectiveness in both language-only and28

visual-language localization across various outdoor and indoor29

scenarios. Notably, LangLoc achieves noticeable performance30

gains when using both text and image inputs in challenging31

conditions such as overexposure, low lighting, and occlusions,32

showcasing its superior robustness.33

Index Terms—Language-driven Localization, Visual Localiza-34

tion, Spatial Description, Large-Language Model35

I. INTRODUCTION36

LOCALIZATION aims to determine the user’s position and37

orientation in a 3D scene, which is crucial for intelligent38
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Language-Driven Localization
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Fig. 1. Language-driven localization. Humans can naturally describe their
surroundings using language to localize themselves and share their location
with others. This work aims to impart machines with a comparable capability
by proposing a language-driven localization method, involving spatial textual
descriptions generation and deep neural networks based pose regression.

machines such as robots [1], [2], autonomous vehicles [3], 39

[4], and virtual/augmented reality systems [5], [6]. While 40

traditional Global Navigation Satellite Systems (GNSS) provide 41

global location information, their signals can be attenuated or 42

blocked in underground, densely built urban areas or tunnels 43

[7]. Intuitively, humans possess the ability to describe and 44

comprehend various scenes through natural language. As shown 45

in Fig. 1, in GNSS-denied environments such as downtown 46

streets with high buildings or underground facilities, humans 47

could localize themselves and share location information by 48

verbally describing notable scene components, without relying 49

on localization sensors. Similarly, by integrating language, 50

intelligent machines can more precisely capture the high-level 51

semantics of scenes, such as specific functions, behavioral 52

patterns, and event backgrounds of objects in the scene [8]. This 53

enhances their spatial perception of the scene and introduces a 54

novel approach to practical localization applications. 55

Currently, these intelligent machines normally leverage visual 56

information for localization in GNSS-denied regions. Integrat- 57

ing deep learning techniques into this domain has witnessed 58

remarkable progress, particularly in pose regression using deep 59

neural networks directly. Pioneering works, PoseNet [9] shows 60

the ability to train deep neural networks on extensive datasets 61

to map images directly to poses. Building upon this foundation, 62

AtLoc [10] and MapNet [11] further introduce attention 63

mechanisms or geometric constraints for improved accuracy. 64

Similarly, AD-PoseNet [12] refines localization performance 65

by filtering dynamic objects. Following these advancements, 66

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2025.3546853

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 18,2025 at 12:37:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0004-2344-1025
https://orcid.org/0000-0002-8341-6399
https://orcid.org/0000-0002-1716-4381
https://orcid.org/0000-0002-7253-4998
https://orcid.org/0000-0001-7141-708X
https://orcid.org/0000-0002-5825-7517


IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, NOVEMBER 2024 2

c2f-MS-Trans [13] introduces a mixed classification-regression67

architecture, achieving precise cross-scene localization.68

Despite vision-based localization performing well in con-69

trolled environments, it often fails under adverse conditions70

such as changes in illumination and the presence of dynamic71

objects in the scene. In contrast, language can provide more ab-72

stract and robust cues for the scene, offering a potential solution73

for localization. However, research into developing techniques74

for understanding spatial scenes and localization based on75

language is still relatively limited [14]. Against this backdrop,76

the emergence of Large Language Models (LLM) presents77

new possibilities for understanding complex scenes [15]. These78

models have made notable strides in handling the diversity and79

complexity of natural language, demonstrating their potential80

in spatial description and localization tasks [16]. However,81

the inherent ambiguity and randomness of natural language,82

combined with the dynamic complexity of scenes, continue to83

make language-driven localization a challenging endeavor.84

To tackle these challenges, we introduce a new task:85

language-driven localization, which determines a user’s position86

and orientation in a scene through language descriptions. Our87

solution, a novel Language-driven Localization framework,88

LangLoc, mimics human abilities to infer location using89

language, enabling localization under diverse scenes with either90

language-only or vision-language. Given the inherent ambiguity91

and randomness of language, there is a scarcity of language92

data for accurate localization. Thus, we propose a Spatial93

Description Generator (SDG), comprising two modules: Spatial94

Scene Description (SSD) and Formatted Text Generation (FTG).95

Considering the distinct roles of objects in localization tasks,96

SSD specifically extracts and combines the position and key97

attributes of each object to generate a detailed spatial scene98

description. Subsequently, FTG guides the LLM (e.g., GPT-99

3 [17]) in excluding dynamic objects from the descriptions100

generated by SSD, organizing them into a unified format. This101

reduces ambiguity and precisely conveys the spatial layout and102

object relationships, providing a reliable basis for localization.103

Based on these generated descriptions, LangLoc effortlessly104

achieves language-only localization using just two components:105

a text encoder and a pose regressor. Further, when visual data106

is available, LangLoc can also adaptively integrate linguistic107

semantics with visual spatial cues through two modality-specific108

encoders, cross-modal fusion, and multimodal joint learning109

strategies. This enhances independent learning and mutual110

supplementation between modalities, thereby improving the111

accuracy and robustness of localization.112

Experiments on the Oxford RobotCar dataset [18] demon-113

strate that LangLoc achieves a median localization error114

of 29.48m and 6.79° in language-only localization. This115

performance meets the benchmark commonly accepted in large-116

scale localization studies, where an error of less than 50m117

is considered effective in city-scale [19]–[21]. Furthermore,118

even with solely human natural language input, LangLoc119

demonstrates effective localization capabilities. Finally, by120

integrating both image and text inputs, LangLoc achieves121

significant performance gains on the Oxford RobotCar, 4-122

Seasons, and Virtual Gallery datasets, across both indoor123

and outdoor scenarios in vision-language localization mode.124

Notably, LangLoc also exhibits stronger robustness in image 125

degradations and missing modalities, showcasing a promising 126

performance advantage. 127

In summary, our main contributions are as follows: 128

• We introduce a new task: language-driven localization, 129

aiming to determine the user’s position and orientation 130

via natural language. 131

• We propose a Spatial Description Generator to generate 132

formatted textual descriptions of scenes, facilitating effec- 133

tive language-driven localization. 134

• We propose LangLoc, a novel localization framework, 135

supporting both language-only and vision-language local- 136

ization, accommodating various input data types. 137

• Extensive experiments conducted on public datasets 138

demonstrate the effectiveness of LangLoc in both language- 139

only and vision-language localization. 140

II. RELATED WORK 141

Vision-based localization remains an active area of research. 142

Existing works leverage images for global-scale geolocalization 143

through visual-geographic matching, such as Translocator [22], 144

ISNs [23], CPlaNet [24], and others [25]–[28]. Building upon 145

geolocalization, visual localization estimates the camera’s 6- 146

DoF pose within a known environment using images. However, 147

changes in seasons, weather, and environment make accurate 148

visual localization challenging. Recently, advances in deep 149

learning offer new ways to address this issue by learning from 150

large-scale datasets. This paper reviews deep learning-based 151

visual localization methods and language-driven approaches, 152

highlighting the differences between existing methods and our 153

proposed approach for more effective visual localization. 154

A. Deep Learning based visual Localization 155

A pioneering work in this field is PoseNet [9], which inte- 156

grates a GoogLeNet [29] backbone with a multilayer perceptron 157

(MLP) for end-to-end supervised learning. GeoPoseNet [30] 158

and c2f-MS-Trans [13] concurrently optimize position and 159

orientation learning, refining the accuracy of spatial information 160

through balanced parameter adjustments. Atloc [10] introduces 161

a self-attention mechanism for focused key information pro- 162

cessing, facilitating precise camera pose regression through an 163

MLP head. Building on these frameworks, some studies explore 164

techniques for extracting robust visual features to handle scene 165

variations. For instance, Translocator [22] creates stable feature 166

representations under changing appearances through seman- 167

tic segmentation. Similarly, LT-Loc [31] employs semantic 168

segmentation images to tackle the challenges of long-term 169

visual localization. To mitigate the impact of dynamic objects 170

on visual localization, AD-PoseNet [12] enhances accuracy 171

by quantifying uncertainty in pose estimation, enabling CNN 172

to ignore interference from dynamic objects. CoordiNet [32] 173

adopts a joint training approach for pose prediction and 174

uncertainty estimation, effectively removing outliers of the 175

trajectory and achieving robust performance in single-view 176

localization. Lens [33] heightens accuracy through novel view 177

synthesis. ImPosing [34] efficiently connects query images 178

to implicit maps, offering precise real-time localization in 179
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large urban scenarios. EffLoc [35] designs an efficient visual180

transformer via diversified inputs, redundancy reduction, and181

capacity expansion, enhancing efficiency in outdoor urban182

localization. In addition, multi-frame methods improve lo-183

calization by incorporating temporal context. MapNet [11]184

incorporates visual odometry and multi-frame data alongside185

visual relocalization for refined pose estimates. Atloc+ [10]186

also improves localization by extending the network to support187

multi-view inputs. GNNMapNet [36] enriches environmental188

understanding using graph neural networks for feature extrac-189

tion from multi-view images. To handle environmental changes190

effectively, RobustLoc [37] combines graph neural networks191

with a neural graph diffusion model, providing robust multi-192

view representations to boost localization performance.193

Besides vision-based methods, LiDAR-based methods, such194

as HypLiLoc [38] and DiffLoc [39], achieve centimeter-level195

localization accuracy by reconstructing 3D scenes using LiDAR196

sensors. However, the high resource demands of dense point197

cloud processing restrict their scalability in urban environments.198

In contrast, visual methods show broader applicability due to199

their lower computational and storage costs. However, visual200

methods struggle with image degradation caused by dynamic201

elements or environmental changes, especially in complex202

scenes [40]–[42]. In this paper, we propose to leverage the203

stability of language descriptions to assist localization. By204

effectively integrating visual and language data, our method205

shows high spatial localization accuracy and robustness.206

B. Language-Driven Applications207

In recent years, language-driven applications have attracted208

widespread attention in artificial intelligence. Large Language209

Models (LLM) like GPT-3 [17], PaLM [43], and OPT [44],210

ChatGPT [45] and LLaMA [46] show remarkable capabilities in211

complex text tasks. These advances have motivated researchers212

to explore combining visual input with language models,213

leading to the development of multimodal large language214

models (MLLM). For instance, MiniGPT-4 [47] and MiniGPT-215

V2 [48] align cross-modal encoders with language models,216

offering advanced functions like generating website code from217

handwritten text. Ferret [49] enhances MLLMs with referencing218

and grounding, while GLaMM [50] enables user interaction219

across different levels of granularity in both textual and visual220

domains. As a result, LLM and MLLM become powerful tools221

for a range of language-driven tasks [51]–[53]. Some studies222

utilize MLLMs to create general-purpose visual understanding223

systems, capable of handling diverse vision-language tasks224

through unified instructions, such as VistaLLM [54], XGen-225

MM [55], and InternLM [56], among others [57], [58].226

Recent studies explore language-driven spatial intelligence227

tasks. For instance, CMG-AAL [59] trains agents to understand228

the correspondence between vision and language, enabling229

them to navigate to target locations using textual instructions.230

VoxPoser [8] utilizes LLM to facilitate 3D robotic manip-231

ulation responsive to human language. LP-SLAM [60] and232

TextSLAM [61] integrate textual information into the SLAM233

system, allowing machines to locate positions using text labels.234

Text2Pos [62] and Text2Loc [63] are pioneering efforts to235

tackle large-scale urban localization based on language, yet 236

these methods rely on pre-built databases, locating by querying 237

corresponding image information, and have not yet achieved 238

effective localization directly through language. To improve 239

language efficiency in spatial intelligence, some research [64], 240

[65] explores generating appropriate language descriptions to 241

convey spatial semantics. However, they rely on pre-extracted 242

3D scene features and extra training, and their descriptions 243

lack effective validation in spatial intelligence tasks. 244

In contrast, our work leverages LLM to generate spatial 245

descriptions by precisely extracting key spatial attributes from 246

scenes, without the additional training. Utilizing these generated 247

descriptions, our framework can achieve effective language- 248

only localization via an end-to-end strategy, without relying 249

on pre-built localization databases. 250

III. TASK FORMULATION 251

In this work, we introduce a new task: language-driven 252

localization, aiming to determine the user’s pose, including a 253

position vector p ∈ R3 and an orientation vector q ∈ R4, via 254

textual descriptions T . This task encompasses two modes: 255

1) Language-only Localization: in this mode, the objective 256

is to achieve localization solely through language. The am- 257

biguity and randomness of natural language pose challenges 258

in parsing spatial layouts and key features. To address this 259

challenge, the primary goal is to generate efficient textual 260

descriptions T , using clear semantics to accurately indicate 261

the spatial locations of objects. Then, based on these generated 262

descriptions, the user’s pose is precisely regressed: 263

min
φ

E(p,q,T )∼D [∥(p,q)−φ(T )∥1] , (1)

where D is the dataset, φ denotes a neural network trained to 264

process text inputs T and produce the pose (p,q). 265

2) Vision-Language Localization: in this mode, we extend 266

the language-only localization to support multimodal inputs, 267

fusion text T and image I inputs to learn the joint feature, thus 268

enabling more accurate and robust pose regression: 269

min
θ ,ψ

E(p,q,T ,I)∼D [∥(p,q)−θ (ψ(T ,I))∥1] , (2)

where ψ denotes a neural network trained to generate joint 270

feature. θ represents a neural network utilized to predict the 271

pose (p,q) based on joint feature. 272

IV. METHODOLOGY 273

To effectively address the challenge of language-driven 274

localization introduced in the preceding section, this section 275

presents a novel localization framework, LangLoc. It offers 276

support for both language-only localization mode and vision- 277

language localization mode, catering to diverse input data types. 278

As shown in Fig. 2, LangLoc starts with the Spatial Description 279

Generator (SDG). SDG extracts spatial information from either 280

images I or human language L and generates formatted text 281

T to precisely describe the spatial scene (Sec. IV-A). In 282

the language-only localization mode, the LangLoc framework 283

utilizes the spatial textual descriptions produced by the SDG 284

for localization (Sec. IV-B). In the vision-language localization 285

mode, the LangLoc framework leverages both text and image 286

as inputs for localization (Sec. IV-C). 287
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Fig. 2. An overview of our proposed LangLoc framework. LangLoc supports two modes: 1) Language-only localization, which relies solely on text input for
localization. In this mode, the input data is processed through the framework’s Language Flow, involving the SDG, text encoder, and pose regressor, to achieve
precise localization. 2) Visual-language localization, which utilizes both image and text inputs for localization. In this mode, input data is processed through
Language, Vision, and Vision-Language Flows, utilizing cross-modal feature fusion and joint learning strategies to generate joint features that combine
linguistic semantics and visual spatial cues, thereby achieving more precise and robust localization.

A. Spatial Description Generator288

Due to the randomness in natural language expression,289

achieving precise localization directly from either raw language290

descriptions generated by LLM or humans is challenging. To291

tackle this issue, we introduce SDG to capture the key spatial292

information of scenes, which combines spatial information293

extraction with the reasoning capabilities of LLMs to effectively294

capture a scene’s geometric details and spatial layout. It consists295

of two components: Spatial Scene Description (SSD) and296

Formatted Text Generation (FTG). As depicted in Fig. 4, SSD297

provides detailed spatial data, and FTG translates this into298

formatted text T . This process mitigates the ambiguity in299

descriptions, enhancing the effectiveness of expressions for300

spatial features valuable to localization.301

1) Spatial Scene Description: To accurately determine the302

user’s location within a 3D scene, it is crucial to comprehend303

and extract the vital spatial information from scene objects304

relevant to the localization task. We conceive the image I as305

a combination of detected objects O ji
i = {O j1

1 ,O j2
2 , . . . ,O ji

i },306

where O ji
i represents each object in the image, and i signifies307

the number of detected objects, ji denotes the category of the308

object. Our SSD extracts the spatial position POS ji
i and specific309

attributes A ji
i from objects O ji

i . By using the concatenation310

operation ”+”, it synthesizes the spatial information S ji
i . This311

approach effectively captures both the category information Ci312

and spatial information Si of scene:313

{Ci : Si}= SSD
{

O j1
1 ,O j2

2 , . . . ,O ji
i

}
=
{(

C j1
1 : POS j1

1 +A j1
1

)
. . .+

(
C ji

i : POS ji
i +A ji

i

)}
(3)

In practice, we initially employ a Multimodal Large-314

Language Model (MLLM), such as MiniGPT-v2 [48], to obtain315

the category labels C ji
i and position bounding boxes Bi for316

Fig. 3. Transforming Image Regions to Positional Descriptions: Translating
object detection bounding box coordinates into textual descriptions. When
an object’s geometric center falls within a defined region, the corresponding
positional description is generated.

these objects. To determine the position POS ji
i of the objects 317

within an image, we map each object’s bounding box Bi to 318

predefined position descriptions. This mapping is based on the 319

relationship between the geometric center of the object and the 320

image center, following the guidelines outlined in Fig. 3. This 321

procedure replicates human perspective by using the image 322

center as a reference, uniformly indicating objects’ relative 323

positions. For example, an object’s geometric center in the top 324

60% and between 10%-40% to the left of the image center 325

is labeled “front left”; if it extends beyond the front 60% but 326

remains within 10% to the left, it is described as “left”. 327

Subsequently, to acquire the key attributes A ji
i of different 328

objects, we guide the MLLM to focus on extracting specific 329

attributes by using prompts related to the categories of objects. 330

In particular, since various objects fulfill different roles in 331

understanding the scene and meeting localization demands, 332

we categorize the objects into key objects and other objects, 333
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Multimodal Large Language Model (MLLM)
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directly ahead. A brown building made of  
brick, with three floors is a residence, is 
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1. Dynamic Object Exclusion

2. Template Filling   

3. Example Referencing 
  

4. Merging Outputs

[Attribute Description] 
is located 

[Position Description] 

Templete Prompt

Fig. 4. Spatial Description Generator (SDG) consists of two modules: Spatial Scene Description (SSD) and Formatted Text Generation (FTG). SSD uses
a MLLM to identify objects O ji

i and their bounding boxes Bi, converting these into positional descriptions POS ji
i . It also extracts key attributes A ji

i using
category-based prompts C ji

i , detailing the spatial information of scene objects. FTG then transforms SSD’s outputs into uniformly formatted text, ensuring
consistency and uniformity in the descriptions. These precise textual descriptions provide a foundation for subsequent language-driven localization task.

as illustrated in Fig. 4. For key objects such as buildings,334

traffic signs, and streets, we tailor question prompts based335

on the distinctive features of each object. For instance, we336

employ a question prompt that concentrates on the building’s337

material (“What is the primary color of this building?”), color338

(“What is the material of this building?”), the number of339

floors (“How many floors does this building have?”), and its340

function (“What function does this building serve?”). The341

responses to these questions, encapsulated as the specific342

attributes Abuilding
i of the building, in conjunction with its343

position POSbuilding
i , collectively form the spatial information344

Sbuilding
i of the building:345

Cbuilding
i : Sbuilding

i = {“building” : POSbuilding
i +Abuilding

i }
= {“building” : “front left”,“brick”,“brown”,

“three floors”,“school”}
(4)

For other objects, we employ a unified prompt, namely,346

“[grounding] describe this image in detail”. This facilitates the347

MLLM to conduct grounded caption [48], generating a phrase348

that describes the attributes of detected objects, such as, “a349

brown brick wall”.350

As shown in Fig. 5 (in the Example Referencing), SSD351

systematically extract spatial information from objects, forming352

a comprehensive spatial scene description. These descriptions353

are then input into FTG, providing a foundation for accurately354

expressing key localization features.355

2) Formatted Text Generation: To ensure consistent format-356

ting in language descriptions across scenes and facilitate more357

efficient extraction of key semantic features for downstream358

pose estimation, we introduce a Formatted Text Generation359

module (FTG). This module transforms scene descriptions 360

{Ci : Si} generated by SSD into formatted text T : 361

T = FTG({Ci : Si} ,Template) , (5)

where Template denotes a template prompt containing multiple 362

operation instructions, guiding the LLM (e.g., GPT-3.5) to 363

perform dynamic object exclusion, template filling, example 364

referencing, and merging outputs, as illustrated in Fig. 5. 365

Specifically, static objects (such as buildings, roads, traffic 366

signs, etc.) provide more stable and reliable features for 367

localization, while dynamic objects (such as cars, people, etc.) 368

pose challenges due to their impacts on scene appearance and 369

occlusions. Therefore, we first exclude textual descriptions 370

related to dynamic objects to enhance the stability and 371

consistency of the descriptions. In particular, we guide LLM 372

to automatically identify and filter out descriptions related to 373

a predefined set of categories for dynamic objects, such as 374

“Red bus parked under a streetlight” and “Woman wearing skirt 375

walking by the roadside”. 376

Then, we process the remaining object descriptions based 377

on a predefined template. In this process, LLM fills scene 378

descriptions into the template “[X ji
i ] is located at [Y ji

i ]”, where 379

X ji
i represents the attribute description of the object, and 380

Y ji
i refers to the position description. This uniform output 381

format clearly conveys scene features, effectively reducing the 382

ambiguity of language descriptions. Moreover, the designed 383

template guides the LLM to generate object descriptions in a 384

predetermined order, enabling the model to establish an intuitive 385

comparison benchmark between different scene descriptions. 386

From our observations, even minor scene changes, such as the 387

addition, movement, or removal of objects, are reflected in 388
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Template Prompt In
Formatted Language Generation

Operation Guide:
1. Dynamic Object Exclusion: First, identify and exclude all information 
related to persons and cars.
2. Template Filling: Next, process the elements in the scene description 
according to a predetermined order and template：
• Road: If applicable, output: "[Astreet] on the road is located [POSstreet]." 

• Building: If applicable, output: "A [�1
building] building made of [�2

building], 
with [�3

building] is [�4
building], is located [POSbuilding]." 

• Traffic Sign: If applicable, output: "A traffic sign is [Asign] is located 
[POSsign]." 

• Other Objects: For other objects, output: "[Aother] is located [POSother]." 

3. Example Referencing:
Example1
Input:  building: front left, brick, brown, three floors,  school; road: directly 
ahead,  two white lines; A traffic sign: front left, speed limit 20km/h; car: 
directly ahead, a white car on a street; car: front left, a blue car on a street;  
wall: right, a brown brick;  tree: front right, a green tree; bushes: directly 
ahead, blue bushe in front of the wall;  street light: front left, a tall street light.

Output: Two white line on the road is located directly ahead. A brown 
building made of  brick, with three floors is a residence, is located left. 
Traffic sign is speed limit is located front left.  A street light is located front 
left. A green tree is located front right. A red brick wall is located right.
Example2...
4. Merging Outputs:
Please strictly adhere to the above Operation Guide, first identify and exclude 
dynamic objects, then organize the static objects according to the template, and 
finally, referencing the provided examples, output coherent natural language 
without extra descriptions.

Fig. 5. A Template Prompt in the Formatted Text Generation module (FTG),
guides the Large-Language Model (LLM) to exclude dynamic objects from
the SSD-generated scene descriptions, transforming them into Formatted Text.

the order and content of the descriptions, thereby accurately389

describing the changes in scene structure.390

Finally, to enhance the LLM’s comprehension of these391

operations, we include specific examples in the prompts, each392

consisting of complete input-output pairs. After the template393

filling process, by referencing the given examples, LLM394

integrates all processed object descriptions into uniformly395

formatted text descriptions. As depicted in Fig. 5 (in the output396

section of Example Referencing), the FTG module excludes397

descriptions of dynamic objects (e.g., cars), describes static398

scene components (such as streets, buildings, traffic signs,399

and other objects) in a fixed order, and generates a cohesive,400

formatted text description. By leveraging the LLM’s ability to401

interpret varied language patterns via prompts, FTG overcomes402

the limitations of traditional manually defined text-matching403

rules and can handle diverse scene descriptions, including404

unformatted language provided by humans (Sec. V-B.2).405

B. Language-Only Localization406

Based on the formatted text descriptions T generated by407

SDG, we can further train our LangLoc framework end-to-end408

to achieve language-only localization, precisely mapping these409

descriptions to pose.410

Specifically, we first apply a pre-trained text encoder fenct411

(e.g., the text encoder of CLIP [66]) to encode the text T :412

xt = fenct (T ), (6)

where the dimensionality of xt ∈ RC is set to C = 2048. 413

Subsequently, we assign the encoded feature vector xt to a 414

pose y = (p,q) using a two-layer MLP: 415

[p,q] = MLP(xt) (7)

During the training process, we optimize the model param- 416

eters to minimize the difference between the estimated and 417

actual poses using the L1 loss function: 418

L(yt , ŷt) = ∥p− p̂∥1e−β +β +∥ logq− log q̂∥1e−γ + γ, (8)

where ŷ = (p̂, q̂) represents the ground-truth label of position 419

and orientation. Utilizing the logarithmic form of quaternions, 420

logq, enables us to accurately describe continuous changes in 421

orientation. To address the issue of quaternion non-uniqueness 422

in rotation representation, we ensure all quaternions fall within 423

the same hemisphere during training, thereby assigning a unique 424

quaternion to each rotation: 425

logq =

{
v

∥v∥ cos−1(u), if∥v∥ ̸= 0

0, otherwise
, (9)

where u denotes the real part of the quaternion and v 426

represents its imaginary component. Particularly, to enhance 427

pose estimation accuracy, we further optimize the weights 428

for both position and rotation loss (β and γ) during training, 429

ensuring a balance between position and rotation loss. 430

By end-to-end training on datasets, LangLoc framework can 431

effectively infer localization information solely from natural 432

language, even in the absence of direct visual inputs. To the best 433

of our knowledge, this is the first work to achieve localization 434

solely using natural language. 435

C. Vision-Language Localization 436

We further introduce LangLoc in the vision-language local- 437

ization mode, as depicted in Fig. 2 (2). This mode extends 438

the input of the language-only localization mode to integrate 439

language with vision, aiming to achieve more precise and 440

robust localization. In this mode, LangLoc initially employs 441

two modality-specific encoders to process text and image inputs, 442

respectively, capturing distinct modality features. Subsequently, 443

it combines these features using cross-modal fusion for a 444

comprehensive latent representation. Finally, multimodal joint 445

learning is utilized to enhance the learning of pose by leveraging 446

the individual capacities of different modalities. 447

Modality-Specific Encoders: We use a pre-trained text 448

encoder consistent with the language-only localization for 449

extracting text features, and a corresponding image encoder 450

(e.g., the image encoder of CLIP) for image feature extraction: 451

xv = fencv(I), (10)

Cross-Modal Fusion: With text and image features, we 452

introduce a fusion strategy to evaluate feature significance 453

from each modality. Specifically, we first concatenate xv and 454

xt along channels to generate xc, followed by convolution. 455

However, although xc encodes both text and image information, 456

it may introduce redundant noise from each modality for 457

localization. Hence, we apply a scoring function fscore to xc 458
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to measure each modality’s contribution. As shown in Fig. 2,459

fscore concatenates xt or xv with xz, producing weights Wr460

for each modality:461

Wr = σ ( fscore([xc;xr];θ)) , r ∈ {v, t} (11)

where σ denotes the sigmoid function, and θ represents the462

parameters of f score, which consists of sequential linear layers,463

each succeeded by a Leaky ReLU activation function.464

Finally, we apply weights Wr to corresponding modal465

features xr through element-wise multiplication, followed by466

summing these weighted features:467

xz = ∑
r∈{v,t}

Wr ⊙xr (12)

Thus, we obtain an effective joint feature representation xz468

for downstream pose regression.469

Multimodal Joint Learning: Image features excel in470

capturing scene details and structures, whereas text features471

offer abstract scene semantics [67]–[69]. To exploit their472

complementarity, we design a joint learning strategy for vision-473

language localization. This strategy enables features from474

different modalities to learn both independently and jointly.475

Specifically, we allocate three pose regressors MLPv, MLPt ,476

and MLPz to the visual, language, and fused modalities,477

respectively, entrusting them with mapping their respective478

modalities features to poses:479

[p,q] = MLPn(xn), n ∈ {v, t,z} (13)

To facilitate the learning process, we introduce a loss function480

that balances individual and joint learning:481

L = λ ∑
r∈{v,t}

Lintra(yr, ŷr)+Ljoint(yz, ŷz), (14)

where λ is a hyperparameter governing the trade-off between482

individual and joint learning. Particularly, by minimizing the483

discrepancy between predicted and ground-truth poses, Lintra484

encourages modality-specific feature learning, while Ljoint485

promotes intra-modal and cross-modal learning.486

This dual-objective approach ensures that each modality487

refines its predictions independently through Lintra, while the488

joint learning objective Ljoint fosters a synergistic improvement489

across modalities, leveraging the complementary information490

inherent in each. Consequently, LangLoc becomes adept at491

extracting and utilizing modality-specific cues, enhancing its492

ability to integrate these cues effectively across different modal-493

ities, thereby demonstrating superior localization performance.494

V. EXPERIMENTS495

In this section, we extensively test the LangLoc framework496

on public datasets. Specifically, we first evaluate the effective-497

ness of Spatial Description Generator (SDG) (Sec. V-A) and498

explore the feasibility of using human natural language for499

language-only localization (Sec. V-B). Subsequently, we evalu-500

ate the vision-language localization mode through quantitative501

(Sec. V-C) and qualitative experiments (Sec. V-D), offering502

a comprehensive comparison with existing visual localization503

TABLE I
EVALUATING THE IMPACT OF VARIOUS DESCRIPTION GENERATION

METHODS ON LANGUAGE-ONLY LOCALIZATION PERFORMANCE, USING
THE OXFORD ROBOTCAR LOOP DATASET. THE BOLD VALUES INDICATE

THE BEST RESULTS.

Methods Localization Error
Mean Median

MLLM with SP 144.93m, 80.76° 141.43m, 78.74°
MLLM with SP and TP 123.23m, 71.91° 122.81m, 56.83°
MLLM with MC and TP 83.46m, 42.19° 73.37m, 20.16°
SSD (Ours) 68.26m, 27.84° 47.06m, 13.01°
SSD + FTG (SDG, Ours) 47.25m, 19.85° 29.48m, 6.79°

approaches. Finally, we analyze the robustness of LangLoc in 504

several challenging scenarios (Sec. V-E). 505

Datasets: We use Oxford RobotCar Dataset [18], 4-Seasons 506

Dataset [70] and Virtual Gallery Dataset [71] in experiments. 507

The Oxford RobotCar dataset includes diverse urban driving 508

data under varying weather, time, and seasonal conditions. 509

Following the experimental setup of AtLoc [10], we conduct 510

experiments with the LOOP and FULL subsets. The 4-Seasons 511

Dataset, notable for its scale and diversity over 350 kilometers 512

and nine environment types. We specifically examined business 513

and neighborhood scenarios to test the robustness of our 514

localization method in different urban environments. The 515

Virtual Gallery Dataset is a large indoor dataset consisting 516

of 3 to 4 rooms, with 42 publicly available paintings displayed 517

on the walls. It includes looped data across five distinct paths, 518

with camera positions and orientations randomly sampled. We 519

train on loops 2 and 3 and evaluate on the occlusion 1 path. 520

Implementation: LangLoc framework uses the ResNet- 521

50 image encoder and its corresponding text encoder from 522

CLIP [66]. Training uses the Adam optimizer at a learning rate 523

of 5×10−5, resizing images to 224×224 pixels and processing 524

them in 64 batches over 350 epochs on an NVIDIA RTX 3090 525

GPU. Additionally, we utilize MiniGPT-V2 [48] as the MLLM, 526

and GPT-3 [17] (gpt-3.5-turbo) as the LLM component. 527

Evaluation Metrics: To ensure a fair comparison, we employ 528

the evaluation metrics commonly utilized in prior research [9], 529

[10], [13]: the mean and median errors of both position and 530

orientation. The mean error offers a comprehensive assessment 531

of algorithm performance by averaging errors across all samples. 532

Conversely, the median error, less susceptible to outliers owing 533

to its emphasis on the midpoint of errors, provides a more 534

accurate indication of typical performance [32]. 535

A. The Evaluation of Spatial Description Generation 536

In this subsection, we analyze the impact of various language 537

description methods on language-only localization, which is 538

crucial in determining localization accuracy. 539

1) Quantitative Results. We explore various approaches 540

using the Multimodal Large-Language Model (MLLM) to 541

translate images into textual descriptions, as outlined in Tab. I, 542

which includes: 543

• MLLM with SP (Scene Description Prompt): it employs 544

SP “Describe textures, color, position, visual depth and 545

spatial relations of objects in the image” to guide 546
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Input   MLLM with MC (Multiple Choice) and TP (Template Prompt)  SSD (Spatial Scene Description)+FTG (Formatted Text Generation)

The camera captures the middle of the road, and on the road, 
there are double yellow lines and pedestrian crosswalk markings.
The buildings in the image are primarily located at the front, 
characterized by their brick construction and multiple stories. 
The trees in the image are mainly distributed at the front right, 
providing a natural element to the urban setting. 

Two white dashed lines on a paved street  is located directly 
ahead. Red building made of brick with three floors is a house is 
located front left. Brown building made of brick with three 
floors is a residential building is located right. Traffic sign is no 
parking is located directly ahead. Green hedge along sidewalk is 
located directly ahead.

The camera captures the middle of the road, and on the road, 
there are pedestrian crosswalk markings. The buildings in the 
image located at the front left and front right, with characteristics 
of traditional residential architecture. The image includes a 
pedestrian crossing sign traffic sign, located at the front left. The 
trees in the image are mainly distributed at the front right.

A part of a roadway is located directly ahead. Red building made 
of brick with two floors is a house is located left. Brown 
building made of brick with three floors is a residential building 
is located right. Traffic sign is no parking is located front left. 
Green hedge along sidewalk is located directly ahead.

The camera captures the left side of the road, and on the road, 
there are white center line and traffic island marking. The 
buildings in the image are primarily located at the front left, with 
characteristics including a brick facade and windows visible 
from the perspective. The trees in the image are mainly 
distributed at the front right providing lush greenery to the scene.  

Two white lines on a paved city street is located directly ahead. 
A fence on the side of the road is located directly ahead. Red 
building made of brick with three floors is a house is located 
front left. A chimney on a building is located above. A tall street 
light is located left. A brown brick wall is located directly ahead. 
Trees lining the street is located directly ahead.

The camera captures the left side of the road, there are white 
center line on the road. The building in the image is primarily 
located at the front left, with characteristics of a brick structure 
with visible windows and greenery around it. The trees in the 
image are mainly distributed at the front right and left side, 
providing a lush backdrop. 

A paved city street is located directly ahead.  Red building made 
of brick with three floors is a house is located above.  A brown 
brick wall is located directly ahead. Trees lining the street is 
located directly ahead.

(a1)

(a2)

(b1)

(b2)

Fig. 6. Visualize the comparison results of descriptions between MLLM with MC and TP, and SSD + FTG. Figures (a1) vs (a2), (b1) vs (b2) present
descriptions from different viewpoints of the same scene. Text highlighted in color marks the changes in descriptions of the same object across viewpoints (a1
vs a2, b1 vs b2), such as streets (pink), buildings (blue), traffic signs (yellow), and others (green). Horizontal lines emphasize the contrast in descriptions of the
same object by different methods (MLLM with MC and TP vs SSD + FTG).

MiniGPT-4 [47] to generate descriptions that include547

specific information relevant to localization.548

• MLLM with SP (Scene Description Prompt) and TP549

(Template Prompt): building on MLLM with SP, it guides550

MiniGPT-4 to fill the generated description into the551

designated template with prompt “extract information552

from the description to fill in the template. Template is553

“The street is [ ]...”, thus producing formatted descriptions.554

• MLLM with MC (Multiple Choice) and TP (Template555

Prompt): it adds a multiple-choice prompt “Answer ques-556

tions based on image, fill template for summary.”, guiding557

MiniGPT-4 to select answers related to localization, which558

are then filled into a template for formatted descriptions.559

• SSD (Spatial Scene Description Module): our SSD ac-560

curately depicts the positions and specific attributes of561

objects within a scene, emphasizing key features through562

language expression.563

• SSD (Spatial Scene Description Module) + FTG (Format-564

ted Text Generation Module): it utilizes FTG to transform565

SSD outputs into formatted text via a well-designed566

template, while excluding descriptions of dynamic objects.567

As depicted in Tab. I, in language-only localization, MLLM568

with SP shows larger mean and median position and orientation569

errors than other methods, specifically at 144.93m, 80.76°570

and 141.43m, 78.74°, respectively. This could be attributed to571

the non-specific and irregular language descriptions directly572

generated by MLLM [47], which are ambiguous and imprecise573

in expressing scenes, thereby posing challenges to localization.574

Incorporating TP into MLLM with SP improves performance,575

highlighting the importance of formatted output for enhancing 576

description effectiveness in localization. Additionally, MLLM 577

with MC and TP, which generates language descriptions for 578

specific key objects, further enhances performance. 579

Despite these performance improvements, the generated 580

descriptions still constrain localization accuracy, due to impre- 581

cise descriptions of location-relevant features and inconsistent 582

descriptions across similar scenes. In contrast, our method 583

employs the SSD to precisely describe the positions and 584

attributes of various objects, obviously reducing the mean 585

and median errors of the method. Furthermore, our SDG 586

incorporates FTG with SSD to generate uniform textual 587

descriptions, excluding dynamic objects and further reducing 588

the mean and median errors to 47.25m, 19.85° and 29.48m, 589

6.79°, respectively, lower than other methods. This shows that 590

only language descriptions that can reflect key object attributes 591

and maintain consistent format can be used for localization, 592

because they can provide stable scene semantics and present 593

scene layout through regular description changes. It is also 594

noteworthy that the median errors of all methods are typically 595

smaller than the mean errors, indicating the presence of outliers 596

solely relying on textual descriptions. 597

2) Qualitative Results. As shown in Fig. 6, we compare 598

descriptions from the MLLM with MC and TP, and our SSD 599

+ FTG (SDG), across different viewpoints of the same scene 600

(Figures (a1 vs a2) and (b1 vs b2)). The MLLM with MC 601

and TP provides formatted text but shows inconsistencies in 602

linguistic expression across different viewpoints. For instance, 603

descriptions of buildings in Figures (a1) and (a2) change from 604
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TABLE II
IN THE “LANGUAGE-ONLY LOCALIZATION” MODE, WE EVALUATE THE INFLUENCE OF VARIOUS OBJECT DESCRIPTIONS ON THE PERFORMANCE OF
LANGLOC FRAMEWORK USING THE OXFORD ROBOTCAR LOOP DATASET. “POSITION” DENOTES DESCRIPTIONS CONTAINING SOLELY LOCATION

ATTRIBUTES. “GENERAL” ENTAILS UNIFORMLY ASSIGNING ATTRIBUTE INFORMATION TO EACH OBJECT VIA GROUNDED CAPTION. “BUILDINGS”, “SIGNS”,
AND “STREETS” PERTAIN TO DESCRIPTIONS SPECIFICALLY TARGETING THESE OBJECTS, ACQUIRED THROUGH SPECIALIZED QUESTIONING PROMPTS. EACH

DESCRIPTION IS PROCESSED BY THE FTG MODULE AND THEN INPUT INTO THE POSE REGRESSION NETWORK. THE BOLD VALUES INDICATE THE BEST
RESULTS.

Strategies Localization Error
Position General Buildings Signs Streets Mean Median

✓ - - - - 59.53m, 23.11° 39.17m, 11.83°
✓ ✓ - - - 54.42m, 20.56° 36.92m, 10.47°
✓ ✓ ✓ - - 51.71m, 20.39° 35.15m, 9.08°
✓ ✓ ✓ ✓ - 48.92m, 20.77° 31.38m, 7.63°
✓ ✓ ✓ ✓ ✓ 47.25m, 19.85° 29.48m, 6.79°

“characterized by their brick construction and multiple stories”605

to “characteristics of traditional residential architecture”. Al-606

though the text conveys similar observations, this variability607

can lead to differences in feature vector encoding, complicating608

the model’s learning and generalization processes.609

In contrast, our method, i.e., SSD + FTG not only maintains610

the consistency of the textual format but also accurately611

captures changes in scene viewpoints through subtle variations612

in text. For example, in Figures (a1) and (a2), while the613

attributes description of traffic signs remains unchanged, the614

position description shifts from “directly ahead” to “front615

left”, accurately reflecting the change in viewpoints. The616

transition from Figures (b1) to (b2) accurately documents the617

appearance and disappearance of objects (e.g., “street light”618

and “A chimney”), enhancing the accuracy and reliability619

of descriptions. Moreover, SSD + FTG can also eliminate620

information about dynamic objects from descriptions. Such as,621

in Figure (a2), the description “pedestrian crossing” appears622

when using the MLLM with MC and TP, whereas SSD + FTG623

removes this description, displaying only “traffic signs”.624

By employing a fixed text format and systematic changes in625

descriptions, our SSD + FTG enables the model to effectively626

identify and learn spatial relationships between images. This627

highlights the importance of choosing suitable description-628

generation methods for language-driven localization and pro-629

vides valuable insights and implications for related research.630

B. The Evaluation of Language-only Localization631

In this subsection, we validate LangLoc’s effectiveness in632

language-only localization. We analyze how different key633

object attributes affect performance, identifying which are634

more relevant to localization. Additionally, we test human635

language-driven localization, assessing its feasibility using636

natural human language inputs instead of LLM-generated637

language from images. This highlights LangLoc’s potential638

in real-world scenarios that involve human interaction.639

1) Component Analysis. We assess how textual descriptions640

of object attributes affect language-only localization accuracy.641

As in Tab. II, position-only descriptions yield a mean error of642

59.53m and 23.11°, with a median error of 39.17m and 11.83°.643

Adding general attributes via grounded caption [48] reduces644

mean error by 5.11m and 2.55°, and median error by 2.25m 645

and 1.36°. This improvement shows that combining object 646

position with general attributes enhances the model’s spatial 647

understanding, enabling it to effectively localize objects in 648

typical street scenes even without focusing on specific objects. 649

Notably, localization accuracy is further enhanced when 650

descriptions include specific attributes of key objects. De- 651

scribing building attributes, for instance, lowers the mean 652

error to 51.71m and 20.39°, with a median error of 35.15m 653

and 9.08°. Adding descriptions of traffic signs and streets 654

further decreases the mean error by 4.46m and 0.54°, while 655

reducing the median error by 5.67m and 2.29°. These results 656

indicate that enriching descriptions with additional key object 657

attributes provides clearer spatial references, thereby improving 658

localization accuracy within the scene. 659

2) Localization Using Human Natural Language. We 660

further explore the feasibility of localization using natural 661

language descriptions provided by human participants. In this 662

experiment, several participants were invited to describe the 663

scenes they observed, and localization was accomplished solely 664

based on these descriptions, using LangLoc. 665

As illustrated in Fig. 7, LangLoc first transforms colloquial 666

human natural language into formatted textual descriptions 667

using SDG. For example, given the human input “I’m situated 668

in a car, looking directly ahead at a two-lane road,” our 669

method reformats this using a fixed structure to produce “A 670

two-lane road is located directly ahead,” ensuring consistency 671

and accuracy in the description. Additionally, for dynamic 672

objects mentioned in human language (e.g., a bus in row 673

2), our method effectively excludes them, thereby enhancing 674

localization performance. As we can see, based on the language 675

expressions of five participants, LangLoc achieves an average 676

localization error of 18.74m, 1.29°, illustrating that our method 677

can effectively process human natural language inputs. 678

This real-world experiment shows that our method tackles a 679

novel task of using human natural language for localization. 680

With the LangLoc framework, users can determine their loca- 681

tion by describing landmarks or features from memory, without 682

requiring specialized geographic knowledge. Furthermore, this 683

localization approach implies that users need not share personal 684

images or other sensitive information for location sharing, 685

providing a privacy-secure localization solution. 686
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Fig. 7. Localization results using unformatted Human Natural Language inputs, where text highlighted in color, marks the transformation between two types
of descriptions for the same object. “Human Natural Language” pertains to unformatted, narrative scene descriptions provided by humans. “Formatted Textual
Descriptions” denotes the formatted text generated from human natural language inputs through SDG. “Image of scene” denotes the image associated with the
description. “Localization Error” indicates the discrepancy between the predicted pose and the ground truth (GT).

C. The Evaluation of vision-language Localization687

In this subsection, we evaluate the performance of LangLoc688

in the vision-language localization mode by integrating both689

image and text inputs. Initially, we compare the performance of690

LangLoc with vision-based localization methods on the Oxford691

RobotCar [18] and the 4-Seasons datasets [70]. Subsequently,692

we conduct an ablation study to visually compare the perfor-693

mance of LangLoc with and without language input, analyzing694

the factors contributing to performance improvement.695

1) Quantitative Results on the Oxford RobotCar Dataset:696

We compare LangLoc with representative visual localization697

methods on the Oxford RobotCar dataset to demonstrate698

the effectiveness of our approach. As shown in Tab. III,699

LangLoc achieves promising localization accuracy on the Loop700

trajectory. This trajectory was collected on a different date701

than the training data to evaluate localization performance in702

cross-day scenarios. Compared to the baseline method AtLoc703

[10], LangLoc shows improvements of 3.15m and 1.83° in704

mean localization accuracy, and 1.94m and 0.68° in median705

accuracy. When compared with the SOTA single-view visual706

localization method, CoordiNet [32], LangLoc also reduces the707

median error by 1.06m and 0.64°. Moreover, by incorporating708

time constraints, LangLoc+ supports multi-view inputs and709

demonstrates enhanced localization performance on the Loop710

trajectory, with smaller localization errors compared to AtLoc+711

[10] and RobustLoc [37].712

On the Full trajectory, LangLoc also exhibits obvious713

improvements in mean and median errors compared to base- 714

line methods AtLoc and AtLoc+. Given the extensive road 715

coverage in the Full trajectory, which often leads to more 716

outliers, existing SOTA methods like RobustLoc [37] use 717

outlier removal modules, resulting in smaller mean errors. In 718

contrast, LangLoc+ leverage language descriptions to achieve 719

competitive localization results, reducing the median error by 720

0.71m, 0.04° compared to RobustLoc. These results highlight 721

the effectiveness of our method, as it better captures key 722

and stable scene features through the integration of language 723

descriptions. Compared to methods that rely solely on visual 724

information, our method achieves superior performance, even 725

in cross-day scenes or across a wider range of trajectories. 726

2) Quantitative Results on the 4-Seasons Dataset: We 727

further assess the performance of LangLoc on the 4-Seasons 728

dataset. As shown in Tab. IV, compared to the AtLoc, LangLoc 729

reduces the mean error by 0.93m in Neighborhood scene. 730

Besides, in the challenging Business scene, LangLoc achieves 731

notable improvements, with the mean error reduced by 4.01m, 732

2.82°, and the median error reduced by 3.07m and 0.49°. 733

When compared to CoordiNet [32], LangLoc also exhibits 734

substantial reductions in both mean and median localization 735

errors in the Business scenes. These findings underscore the 736

generalization capability of LangLoc across various urban 737

scenarios. Furthermore, compared to multi-view input-based 738

methods, LangLoc+ outperforms AtLoc+ in both scenes. In 739

the Business scene, LangLoc+ reduces the median localization 740
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TABLE III
THE PERFORMANCE COMPARISON OF DIFFERENT LOCALIZATION METHODS ON THE OXFORD ROBOTCAR DATASET. THE BOLD VALUES INDICATE THE

BEST RESULTS.

Oxford RobotCar Dataset Mean error Median error
Methods Input LOOP FULL Average LOOP FULL Average
PoseNet [9] Single-view 7.9m, 3.53° 46.61m, 10.45° 27.26m, 6.99° - - -
AD-PoseNet [12] Single-view 6.40m, 3.09° 33.82m, 6.77° 20.11m, 4.93° - - -
PoseNet+ [11] Single-view 28.81m, 19.62° 125.6m, 27.10° 77.21m, 23.36° 5.80m, 2.05° 28.81m, 19.62° 17.31m, 10.84°
AtLoc [10] Single-view 8.86m, 4.67° 29.6m, 12.4° 19.23m, 8.54° 5.05m, 2.01° 11.1m, 5.28° 8.08m, 3.65°
EffLoc [35] Single-view 7.89m, 4.19° 27.23m, 11.41° 17.56m, 7.80° 4.76m, 2.06° 10.28m, 4.98° 7.52m, 3.52°
CoordiNet* [32] Single-view 6.03m, 1.81° 11.99m, 6.15° 9.01m, 3.98° 4.17m, 1.97° 4.21m, 1.06° 4.19m, 1.52°
LangLoc (ours) Single-view 5.71m, 2.84° 26.82m, 4.01° 16.27m, 3.43° 3.11m, 1.33° 6.68m, 1.55° 4.90m, 1.44°
MapNet [11] Multi-view 9.84m, 3.96° 41.4m, 12.5° 25.62m, 8.23° 4.91m, 1.67° 17.94m, 6.68° 11.43m, 4.18°
AD-MapNet [12] Multi-view 6.45m, 2.98° 19.18m, 4.60° 12.82m, 3.79° - - -
AtLoc+ [10] Multi-view 7.24m, 3.60° 21.0m, 6.15° 14.12m, 4.88° 3.78m, 2.04° 6.40m, 1.50° 5.09m, 1.77°
RobustLoc [37] Multi-view 4.46m, 2.77° 9.37m, 2.47° 6.91m, 2.62° 4.04m, 1.41° 5.93m, 1.06° 4.99m, 1.24°
LangLoc+ (ours) Multi-view 4.19m, 1.74° 15.7m, 2.85° 9.95m, 2.30° 2.85m, 1.07° 5.22m, 1.02° 4.04m, 1.05°

*Implementation according to source code. https://github.com/dawnzyt/coordinet-pytorch

TABLE IV
THE PERFORMANCE COMPARISON OF DIFFERENT LOCALIZATION METHODS ON THE 4-SEASONS DATASET. THE BOLD VALUES INDICATE THE BEST

RESULTS.

4-Seasons dataset Mean error Median error
Methods Input Business Neighborhood Average Business Neighborhood Average
GeoPoseNet [30] Single-view 11.04m, 5.78° 2.87m, 1.30° 6.96m, 3.54° 5.93m, 2.03° 1.92m, 0.88° 3.93m, 1.46°
AtLoc [10] Single-view 11.53m, 4.84° 2.80m, 1.16° 7.17m, 3.00° 5.81m, 1.50° 1.83m, 0.93° 3.82m, 1.22°
IRPNet [72] Single-view 10.95m, 5.38° 3.17m, 2.85° 7.06m, 4.12° 5.91m, 1.82° 1.98m, 0.90° 3.95m, 1.36°
CoordiNet [32] Single-view 11.52m, 3.44° 1.72m, 0.86° 6.62m, 2.15° 6.44m, 1.38° 1.37m, 0.69° 3.91m, 1.04°
LangLoc (ours) Single-view 7.52m, 2.02° 1.87m, 1.17° 4.70m, 1.60° 2.74m, 1.01° 1.17m, 0.51° 1.96m, 0.76°
MapNet [11] Multi-view 10.35m, 3.78° 2.81m, 1.05° 6.58m, 2.42° 5.66m, 1.83° 1.89m, 0.92° 3.78m, 1.38°
GNNMapNet [36] Multi-view 7.69m, 4.34° 3.02m, 2.92° 5.36m, 3.63° 5.52m, 2.16° 2.14m, 1.45° 3.83m, 1.81°
AtLoc+ [10] Multi-view 13.70m, 6.41° 2.33m, 1.39° 8.02m, 3.90° 5.58m, 1.94° 1.61m, 0.88° 3.60m, 1.41°
RobustLoc [37] Multi-view 4.28m, 2.04° 1.36m, 0.83° 2.82m, 1.44° 2.55m, 1.50° 1.00m, 0.65° 1.78m, 1.08°
LangLoc+ (ours) Multi-view 4.83m, 1.32° 1.68m, 1.39° 3.26m, 1.36° 1.98m, 0.81° 0.93m, 0.55° 1.45m, 0.68°

error by 0.57m and 0.69° compared to RobustLoc. Moreover,741

given that the 4-Seasons dataset encompasses a wide range of742

seasonal changes, weather conditions, and lighting variations in743

urban settings, LangLoc consistently maintains high localization744

accuracy under these conditions. These experiments further745

demonstrate the effectiveness and superiority of the proposed746

language-driven localization method.747

3) Quantitative Results on the Virtual Gallery Dataset:748

To validate the generalization ability of LangLoc, we assess749

its performance in a large indoor scene. In these experiments,750

we first employ the MLLM to detect all objects present in the751

images. Then, we employ a uniform prompt, “[grounding]752

describe this image in detail” to guide the MLLM in describing753

attributes of detected objects, while instructing the LLM to754

output spatial descriptions in a consistent format: “[Attribute]755

is located [Position].” The results are shown in Tab. V. Our756

method outperforms other vision-only methods, with LangLoc757

demonstrating large improvements. Specifically, compared to758

the baseline method AtLoc, the mean localization error is759

reduced by 1.12m and 1.26°, and the median error is reduced760

by 1.16m and 0.83°. This improvement is attributed to the rich761

linguistic semantics embedded in the descriptions generated by762

SDG. For instance, the description “a painting of a garden with763

flowers and trees is located left” provides both the position and764

detailed content of the painting. These experimental results765

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT LOCALIZATION METHODS ON

THE VIRTUAL GALLERY DATASET. BOLD VALUES REPRESENT THE BEST
RESULTS.

Methods Localization Error
Mean Median

Atloc [10] 2.47m, 7.31° 2.03m, 6.74°
Coordinet [32] 1.87m, 6.91° 1.69m, 6.55°
LangLoc (ours) 1.35m, 6.05° 0.87m, 5.91°

highlight that our language-driven localization framework ben- 766

efits from the flexibility and scalability of language, enabling 767

it to easily adapt to diverse application scenarios. 768

4) Ablation Study: In the ablation study, we explore the 769

role of language in enhancing the performance of LangLoc. As 770

shown in Fig. 8, LangLoc, when integrating both vision and 771

language inputs, notably outperforms the vision-only approach 772

in scenarios with illumination changes, shadow occlusion, 773

and prominent key objects. For instance, in Figure (a1), 774

exposure and shadow issues obscure building details and some 775

road features. In comparison, textual descriptions covering 776

the building’s function, material, color, and road features 777

are less affected by these visual changes. Therefore, with 778

vision-language, LangLoc’s localization accuracy improves by 779
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(a1)
Exposure, Shadow, 

Key Object
V: 8.03m, 8.26° 

VL:  2.51m, 8.11°

(a2)
Exposure, Shadow, 

Key Objects
V: 11.33m, 0.89° 
VL:  3.25m, 0.54°

(b1)
Key Objects

V: 16.70m, 1.05° 
VL:  4.77m, 0.67°

(b2)
Exposure, 

Key Objects
V: 8.18m, 1.97° 
VL:  2.8m, 1.07°

(a3)
Exposure, Shadow, 

Key Objects
V: 10.7m, 1.65° 

VL:  4.02m,1.29°

(a4)
Exposure, Shadow

V: 11.70m, 3.93° 
VL:  4.61m, 0.14°

(b4)
Key Objects

V: 96.76m, 20.51° 
VL:  26.67m, 15.81°

(b3)
Key Objects

V: 16.70m, 1.87° 
VL:  5.41m, 0.30°

Fig. 8. Visualization of pose regression results for the loop trajectory (left)
and Full trajectory (right) on Oxford RobotCar dataset. The ground truth is
represented by green dots, while blue dots and red dots respectively illustrate
LangLoc’s predictions based solely on vision and on vision-language. In the
images, Exposure, Shadow, and Key Object indicate the presence of exposure,
shadow occlusion, and prominent key objects, respectively.

5.52m, 0.15° compared to only vision input. Further, in more780

complex scenes like Figure (b4), where images are disrupted781

by pedestrians and vehicles, vision-only LangLoc faces higher782

errors. In contrast, vision-language LangLoc, through precise783

descriptions of key objects, effectively enhances localization784

accuracy, achieving an improvement of 70.09m, 4.7°.785

These findings suggest that relying solely on visual infor-786

mation may not accurately capture key features in complex787

environments, particularly when visual cues are unstable due to788

lighting variations or obstructions. By integrating language and789

vision data, LangLoc introduces additional semantic informa-790

tion through textual descriptions, enhancing the framework’s791

recognition of important landmarks and features within the792

scene. Consequently, this integration improves the accuracy793

and robustness of localization in complex environments.794

D. Qualitative Analysis in Challenging Scenarios795

To further reveal the superiority of our method, we compare796

the localization results of different methods under different797

environmental conditions. As shown in Fig. 9, LangLoc shows798

better localization performance when dealing with challenges799

of environmental changes. For example, in row 1, even if low800

lighting causes blurred image details, LangLoc can still utilize801

stable language semantics (e.g., “A yellow line on the road802

is located directly ahead”) to represent spatial clues, thereby803

improving localization accuracy. In particular, with generated804

descriptions, LangLoc enhances the expression of key features805

in the scene, such as the description in row 2, “A white building806

Image Formatted Text Generation Localization Error

A yellow line on the road is located directly ahead. A brown 
building made of brick with one floors is house is located 
front left. Dense Trees with foliage is located front left.

Atloc: 17.24m, 17.24°
Coordinet: 18.19m, 13.51°
Langloc: 7.91m, 4.33°

Two white lines on the road is located directly ahead.  A red 
building made of brick with two floors is residential is 
located left. A white building made of glass with three floors 
is office is located front right. A brick wall is located right.

Atloc: 33.66m, 2.65°
Coordinet: 24.58m, 2.96°
Langloc: 8.02m, 2.07°

White wall is located below. A painting of a man and woman 
in a long dress are walking through the woods is located front 
right.  A painting of a vase with white flowers in it is located 
front left. A red carpet is located front left. 

Atloc: 2.03m, 5.74°
Coordinet: 1.61m, 5.33°
Langloc: 0.80m, 3.31°

A brown wooden ceiling with two white lights is located 
above. A painting of a woman in a yellow dress and white 
collar is reading a book is located front left.  A painting of a 
girl in a blue dress stands in front of a garden is located 
directly ahead.

Atloc: 1.99m, 3.54°
Coordinet: 1.35m, 3.07°
Langloc: 0.71m, 2.37°

Fig. 9. Qualitative Comparison of Various Localization Methods. Here,
Formatted Text Generation represents the output of SDG in Langloc, and
Localization Error indicates method performance.

made of glass”. Finally, LangLoc demonstrates performance 807

advantages even in closed indoor environments with low light 808

levels. As shown in row 3, LangLoc can also achieve more accu- 809

rate localization by using the additional semantic information of 810

a rough description of the content of the painting, “A painting 811

of a man and woman in a long dress”. Overall, LangLoc 812

demonstrates superior localization performance across various 813

challenging environments by leveraging stable semantics of 814

language descriptions. 815

E. Robustness Analysis 816

In this subsection, we analyze LangLoc’s robustness, by 817

showing its localization performance under image degradation 818

and scenarios with partial modality data missing. 819

1) Robustness to Image Degradations: We validate the 820

robustness of LangLoc, using data constructed under image 821

degradation conditions. Specifically, following the Robust- 822

Mat [73], we generate degraded images based on the Loop 823

trajectory of the Oxford RobotCar and use these images as 824

visual inputs for LangLoc and other models. As shown in 825

Fig. 10, these data include extreme weather conditions such as 826

rain, snow, fog, and complex illumination Conditions including 827

exposure and dim. As shown in Tab. VI, LangLoc notably 828

outperforms representative visual localization methods such as 829

PoseNet+ and AtLoc in two types of conditions. This result 830

illustrates the robustness of LangLoc under image degradation 831

conditions, which can be attributed to LangLoc’s integration 832

of vision with natural language. The natural language provide 833

additional semantic information for localization, particularly 834

crucial when visual data quality degrades due to poor weather 835

or lighting variations. 836

We further evaluate the effectiveness of LangLoc using 837

language descriptions generated from different images (i.e., 838

“degraded” and “standard” images), while maintaining the 839

“degraded” image as input. The results show that LangLoc’s 840

performance varies minimally between the two language inputs, 841

with the median localization error differing by no more than 842

1m. This consistency highlights the advantage of language 843
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TABLE VI
PERFORMANCE COMPARISON OF LANGLOC WITH DIFFERENT LANGUAGE DESCRIPTIONS UNDER IMAGE DEGRADATION CONDITIONS. HERE, ID

REPRESENTS A “DEGRADED” IMAGE INPUT, WHILE LID AND LIS DENOTE LANGUAGE DESCRIPTIONS GENERATED FROM “DEGRADED” AND “STANDARD”
IMAGES, RESPECTIVELY.

Method Inputs Extreme Weather Complex Illumination
Mean Median Mean Median

PoseNet+ [11] ID 31.74m, 12.13° 11.67m, 4.18° 41.53m, 20.94° 17.66m, 20.94°
AtLoc [10] ID 26.68m, 10.05° 9.84m, 2.45° 36.87m, 15.56° 11.95m, 3.15°

LangLoc (ours) ID+LID 23.14m, 8.80° 6.73m, 1.69° 29.97m, 12.18° 7.58m, 1.98°
LangLoc (ours) ID+LIS 20.73m, 8.05° 6.15m, 1.31° 25.13m, 11.41° 6.81m, 1.25°

(b) Complex Illumination Conditions

(a) Extreme Weather Conditions

A road is located directly ahead. A brown building made of 
brick with multiple floors is located on the left. A street light is 
located on the front left. Green trees are located on both the 
left and right sides. Bushes line both sides of the street.

Fig. 10. Showcasing examples of data constructed under Image Degradation
Conditions, based on the Loop trajectory of the Oxford RobotCar dataset:
Clean Image (Left) vs. Degraded Image (Right).

descriptions in providing stable semantic information, enabling844

LangLoc to maintain robust localization performance even in845

challenging environments.846

2) Robustness to Missing Modalities: In practical ap-847

plications, the occurrence of missing modalities is common.848

Therefore, we evaluate the performance of LangLoc in handling849

situations where partial modality data is lost. During training,850

LangLoc receives complete visual and textual data; however,851

during testing, we input different modalities to assess the852

method’s performance. As shown in Tab. VII, when only853

visual data is used, the median error is 4.84m and 2.45°,854

lower than training with visual data alone. This improvement855

is due to the additional semantic information provided by856

language descriptions in multimodal training, which enhances857

the model’s understanding of scene structure and object at-858

tributes, allowing it to achieve better localization even with only859

visual input. However, when only language input is used, the860

model’s performance is not as strong as when it is trained and861

tested with only language data. This discrepancy arises because862

multimodal training often leads the model to prioritize visual863

features, which are typically more intuitive for localization tasks864

and offer richer scene details. In contrast, models trained solely865

with language data focus more on linguistic features, leading866

to better performance with language input alone. Nevertheless,867

in both scenarios, effective localization accuracy is achieved.868

The results demonstrate that LangLoc is highly robust869

and adaptable following multimodal joint learning. Even870

TABLE VII
THE LOCALIZATION RESULTS OF LANGLOC IN HANDLING MISSING

MODALITIES. V DENOTES VISION, L DENOTES LANGUAGE.

Input Type Localization Error
Training Testing Mean Median

V V 13.67m, 6.38° 7.49m, 3.63°
L L 47.25m, 19.85° 29.48m, 6.79°

V + L V + L 5.71m, 2.84° 3.11m, 1.33°
V + L L 72.44m, 32.45° 39.11m, 12.19°
V + L V 9.68m, 5.05° 4.84m, 2.45°

when visual information is limited or unavailable (e.g., in 871

privacy-sensitive areas or overexposed environments), the 872

language-driven LangLoc provides a reliable alternative or 873

complementary solution for localization. 874

VI. CONCLUSION AND FUTURE WORK 875

This work introduces a new task - language-driven local- 876

ization, and proposes the LangLoc framework, capable of 877

achieving localization using either language alone or in combi- 878

nation with visual cues. LangLoc first leverages the proposed 879

spatial description generator to accurately characterize a scene 880

by generating formatted text descriptions, enabling language- 881

based localization. Further, through a joint-learning strategy, 882

LangLoc enhances localization accuracy and robustness by 883

fusing visual cues with linguistic semantics. Experiments on 884

Oxford RobotCar, 4-Seasons and Virtual Gallery datasets show 885

LangLoc’s advantages, particularly in localizing complex and 886

dynamic environmental conditions. 887

However, LangLoc currently depends on multiple models 888

working together, which may impact real-time performance, 889

especially on resource-limited devices or in applications 890

demanding high responsiveness. In the future, we will optimize 891

the algorithm’s structure and efficiency to improve end-to- 892

end multimodal reasoning, enhancing real-time performance. 893

Additionally, we plan to expand the capabilities of LangLoc 894

by integrating not only visual and language data but also other 895

sensor inputs, such as depth sensors and LiDAR, to enable 896

more accurate and robust localization. 897
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