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Toward Generalized Few-Shot Open-Set
Object Detection

Binyi Su , Hua Zhang , Jingzhi Li , and Zhong Zhou

Abstract— Open-set object detection (OSOD) aims to detect
the known categories and reject unknown objects in a dynamic
world, which has achieved significant attention. However, pre-
vious approaches only consider this problem in data-abundant
conditions, while neglecting the few-shot scenes. In this paper,
we seek a solution for the generalized few-shot open-set object
detection (G-FOOD), which aims to avoid detecting unknown
classes as known classes with a high confidence score while
maintaining the performance of few-shot detection. The main
challenge for this task is that few training samples induce the
model to overfit on the known classes, resulting in a poor open-
set performance. We propose a new G-FOOD algorithm to tackle
this issue, named Few-shOt Open-set Detector (FOOD), which
contains a novel class weight sparsification classifier (CWSC) and
a novel unknown decoupling learner (UDL). To prevent over-
fitting, CWSC randomly sparses parts of the normalized weights
for the logit prediction of all classes, and then decreases the
co-adaptability between the class and its neighbors. Alongside,
UDL decouples training the unknown class and enables the
model to form a compact unknown decision boundary. Thus, the
unknown objects can be identified with a confidence probability
without any threshold, prototype, or generation. We compare
our method with several state-of-the-art OSOD methods in
few-shot scenes and observe that our method improves the
F-score of unknown classes by 4.80%-9.08% across all shots in
VOC-COCO dataset settings. Source code is available on-line at
https://github.com/binyisu/food.

Index Terms— Generalized few-shot open-set object detection,
class weight sparsification classifier, unknown decoupling learner.

I. INTRODUCTION

OBJECT detection is a fundamental task in the field of
computer vision, which involves not only recognizing

objects but also determining their precise locations by drawing
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bounding boxes around them. With the assistance of deep
learning, object detection has achieved remarkable progress.
However, existing object detection models [1], [2], [3] are
under a strong assumption that there exist enough samples
for all the categories, which is time-consuming and expensive
to annotate instances for supervised training.

To alleviate this issue, few-shot object detection (FSOD)
methods [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] are
developed to reduce the data dependence of the CNN models.
FSOD aims to train a detector based on a few samples. Various
approaches have presented significant improvements in the
FSOD problem. However, these methods hold a closed-set
assumption, where the training and testing sets share the same
classes. In open-set situations, there are countless unknown
classes, not included in the training set. These unknown
objects can easily disrupt the rhythm of the closed-set models,
causing them to identify the unknown classes as known ones
with a high confidence score [15].

To make the model better handle the open-set scenarios,
open-set object detection (OSOD) [15], [17], [18] has been
constantly investigated, where the detector trained on the
closed-set datasets is asked to detect all known classes and
reject unknown classes in open-set conditions. These OSOD
methods leverage good representations of the known classes
with sufficient training samples to construct unknown-aware
detectors. However, open-set detectors suffer from a serious
over-fitting problem [16] with few known training samples,
which greatly degrades the performance of open-set detection.

In this paper, we seek a solution for the unexplored gener-
alized few-shot open-set object detection (G-FOOD) problem,
which commits to training a detector for unknown rejection
using few samples. The concept of G-FOOD is expressed
in Fig. 1. G-FOOD has enormous value in safety-critical
applications such as autonomous driving and medical analysis.
For example, in autonomous driving scenarios, encountering
data-hungry known classes such as rare animals and unknown
objects such as unexpected obstacles can potentially pose
high risks to the safe operation of autonomous vehicles.
Typically, the car needs to detect all known classes (including
data-abundant classes and data-hungry classes) and reject
the countless unknown objects as an “unknown” class in
dynamic scenes. There are three irresistible reasons to solve
the G-FOOD problem. First, an open-set detector that can
identify the few-shot classes is more useful than the one
that does not. Second, data-abundant open-set detection is a
challenge in all settings. However, few-shot open-set detection
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Fig. 1. The visualization of different tasks: closed-set object detec-
tion (CSOD), few-shot object detection (FSOD), open-set object detection
(OSOD), and generalized few-shot open-set object detection (G-FOOD).
In CSOD and FSOD tasks, unknown objects are ignored or incorrectly
classified into the set of known classes. The OSOD task can reject unknown
class, but it usually requires data-abundant known classes for training [16].
Our G-FOOD task can identify the data-abundant and data-hungry known
objects while rejecting unknown objects based on limited training data, which
provides a better open-scene understanding paradigm.

is harder than the data-abundant open-set detection [19].
With limited training data, there is a higher chance that
the available few-shot examples may not fully represent the
intra-class variations and complexities present in the known
classes, causing serious overfitting problems. This can lead
to poor generalization and difficulty in distinguishing known
classes from unknown during inference. Third, like open-set
detection, the main challenge of few-shot detection is to make
accurate decisions for the unknown data during inference.
Once the few-shot detectors have the ability for unknown
rejection, they are likely to be more robust for real-world
applications.

Actually, the dataset in real-world scenes often exhibits
long-tail distributions [20] and there are always some unex-
pected categories that are not included in the dataset. G-FOOD
aims to use this unbalanced dataset to train a detector that can
identify all known classes and reject the countless unknown
classes. G-FOOD could be viewed as an extension of the
few-shot open-set recognition (FSOSR) [16], [19], [21], [22],
which focuses on assigning a single label to an entire image
without providing location information. However, our method
is not to migrate the methods from FSOSR to G-FOOD. For
example, the previous FSOSR studies adopt pseudo-unknown
sample generation methods [19], [21] or prototype-based
methods [16], [22] to identify the unknown classes, however,
our method is independent of the pseudo-unknown sample
generation or the prototypes that denote the average feature of
one class. Furthermore, the scarcity of training data induces the
model to easily overfit on the few-shot known classes, making
it challenging for the model to generalize and accurately reject
instances of the unknown classes in real-world scenarios [16].
Therefore, how to solve the over-fitting problem without
degrading the performance of few-shot known classes during
unknown rejection becomes our main intention.

We know that dropout [23] suppresses over-fitting by reduc-
ing the co-adaptations between neurons. Thus, we draw inspi-
ration from the consensus that reduction of the co-adaptability
between the class and its neighbors can effectively suppress
the over-fitting problem. We propose to reject the unknown
classes by decoupling the co-adaptations between the known
and unknown classes from two aspects: 1) The optimiza-
tion process for the unknown class does not consider the
interactions with the known classes, decoupling training it;
2) The classifier randomly sparses parts of the normalized
weights for the class logit prediction, and then decreases the
co-adaptability between the class and its neighbors.

To this end, we propose a novel generalized few-shot
open-set object detector, named FOOD, which is threshold-
free, prototype-free, and generation-free to reject unknown
objects. This means that our approach does not rely on
fixed thresholds or specific example representations of known
classes, and avoids potential errors or biases arising from
the pseudo-unknown sample generation process. Innovatively,
FOOD employs Faster R-CNN [1] as the base detector,
where we replace the original classifier with a novel class
weight sparsification classifier (CWSC) and additionally plug a
novel unknown decoupling learner (UDL). These two modules
cooperate with each other to solve the over-fitting problem of
G-FOOD. After good optimization, our model can achieve the
best G-FOOD performance than other state-of-the-art (SOTA)
methods. Our method is also compatible with various back-
bones, including transformer-based architectures [24], which
can leverage the advantages of different backbone models,
such as their ability to capture long-range dependencies and
semantic relationships. The main contributions are threefold:

• We define a new problem, called generalized few-shot
open-set object detection (G-FOOD), which aims to
quickly train a detector based on a few labeled samples
while rejecting all detected unknown objects.

• We propose a novel G-FOOD algorithm (FOOD) with
two well-designed modules: CWSC and UDL, which can
improve the model’s generalization ability for unknown
rejection in few-shot scenes.

• We developed the first G-FOOD benchmark. We
modify several state-of-the-art OSOD methods into
G-FOOD methods. Compared with these methods, our
FOOD improves the F-score of unknown classes by
4.80%-9.08% across all shots in VOC-COCO dataset
settings.

This paper is organized as follows: Section II shows an
overview of the related works. Section III introduces the pro-
posed method. Section IV presents the extensive experiments.
Finally, Section V concludes the paper.

II. RELATED WORK

A. Few-Shot Object Detection

Since the conventional detectors based on supervised learn-
ing require abundant annotated samples for training, few-shot
object detection (FSOD) has received significant progress
recently [4], [5], [6], [7], [8], [11], [12], [25], [26], [27],
[28]. FSOD can be roughly divided into three types. 1) Meta
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learning-based methods. This type of works aims to learn the
task-level knowledge that can be adapted to the new task with
few support samples, such as FSRW [25], Meta-RCNN [26],
FSOD [27], and Meta-DETR [28]. 2) Transfer-learning based
approaches. This line of works adopts a simple two-stage
fine-tuning strategy to train the detector, i.e., base-training
and few-shot fine-tuning phases, which expects to transfer the
general knowledge learned from the base-training phase to the
few-shot fine-tuning phase, such as TFA [4], FSCE [5], and
DeFRCN [11]. 3) Pseudo-sample generation approaches. This
form of works views FSOD as a data unbalanced problem,
they employ the data-augmentation technologies to generate
the samples of few-shot classes and train the detector end-to-
end, such as [12].

Although these FSOD methods focus on good detection
performance under the closed-set settings, the unknown rejec-
tion capability is not guaranteed. We extend a simple FSOD
method TFA [4] with various OSOD methods to identify the
unknown objects and find that our method can better reject the
unknown classes in few-shot scenes than other SOTA methods.

B. Open-Set Object Detection

Open-set object detection (OSOD) methods intend to detect
all known classes and reject the unknown classes, simulta-
neously. According to the acquisition way of the unknown
samples, OSOD can be mainly divided into three categories.
1) Virtual unknown sample generation. This type of methods
synthesizes the virtual unknown samples to train the unknown
branch in the feature space [29] or image space [30]. 2) Select
unknown samples from the background. This kind of works
selects the background boxes with high uncertainty scores
as the unknown class to train the open-set detector, such as
ORE [31], UC-OWOD [32], ROWOD [33], and OSODD [34].
3) Select unknown samples from the known classes. This form
of works chooses the known samples with high uncertainty
scores as the unknown class to train the open-set detector,
such as PROSER [35] and OpenDet [15]. Moreover, there exist
several threshold-based methods. This type of works uses the
energy or entropy as the uncertainty score, which is compared
with a threshold to reject the unknown class, such as OS [17],
DS [18], MCSSD [36], and GMM-Det [37]. There are also
several methods aiming at detecting all open-world objects
without classifying them, such as OLN [38] and LEDT [39].

The previous methods of OSOD usually need abundant
samples of the known classes to train the model. However,
this cannot be satisfied in the few-shot conditions, which
causes a serious over-fitting problem of the model to the
few-shot known classes, resulting in a poor open-set perfor-
mance. Inspired by the dropout [23], reduction of the neuron
co-adaptations in optimization can efficiently suppress the
over-fitting issue, we propose a class weight sparsification
classifier and an unknown decoupling learner to dilute depen-
dencies between all known and unknown classes.

C. Few-Shot Open-Set Recognition

Few-shot open-set recognition (FSOSR) has fascinated
scant attention recently. However, to the best of our knowl-
edge, generalized few-shot open-set object detection is still

TABLE I
DISTINCTIONS BETWEEN DIFFERENT TASKS

not exploited. Here, we present several FSOSR works.
PEELER [19] utilizes the pseudo-unseen class samples gen-
erated from seen classes to train the model. SnaTCHer [16]
measures the distance between the query and the transformed
prototype, then a distance threshold is set to identify the
unseen classes. R3CBAM [21] leverages the outlier calibration
network to recognize the objects in FSOSR scenes. SEMAN-G
[22] learns an unseen prototype that automatically estimates
a task-adaptive threshold for unseen rejection. Different from
FSOSR, G-FOOD is indeed a more challenging task, because
it involves not only identifying known and unknown object
classes but also accurately localizing them in the image.
Simultaneously, G-FOOD also has a background class, which
often confuses the detector.

D. Generalized Few-Shot Open-Set Object Detection

As illustrated in Table I, we analyze the distinctions between
our G-FOOD task and other related tasks including few-shot
object detection (FSOD) [4], object discovery (OD) [40],
open-world object detection (OWOD) [31], out-of-distribution
detection (OOD) [29], open-set object detection (OSOD) [15],
open-set object detection and discovery (OSODD) [34]. The
first indicator (few-shot training) refers to the training of deep
learning models using a limited amount of labeled examples.
The second (known detection) refers to the ability of a model
to identify instances that belong to known classes. The third
(unknown detection/rejection) denotes that the model could
identify instances that do not belong to any of the known
classes or reject instances deemed as unknown. The fourth
(unknown discovery) denotes discovering the categories of
unknown objects with multiple classes in an unsupervised
manner [40]. The fifth (incremental learning) aims to purpose-
fully learn unknown objects in an incremental fashion [31].
The sixth (cross-distribution evaluation) involves testing the
model’s performance on distributions that were not part of its
training data [29]. Our G-FOOD is characterized by few-shot
training data, known and unknown detection, without unknown
discovery and incremental learning, and not require cross-
distribution evaluation, which is first explored in our paper.

III. PROPOSED METHOD

A. Problem Setup

We define the problem setup with reference to TFA [4]
and OpenDet [15]. We are given an object detection dataset
D = {(x, y), x ∈ X, y ∈ Y}, where x denotes an input image
and y = {(ci , bi )}

I
i=1 represents the objects with its class c and

its box annotation b. The dataset D is divided into the training

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 13,2024 at 09:38:06 UTC from IEEE Xplore.  Restrictions apply. 



1392 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

Fig. 2. The framework of our FOOD for generalized few-shot open-set object detection. Compared to the standard Faster R-CNN, FOOD plugs a novel class
weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). We sparsity the normalized weights for the class logit prediction
and simultaneously optimize a binary sigmoid classifier and a multiply softmax classifier in the classification head. Our method is characterized by no
pseudo-unknown sample generation, prototype-free, and threshold-free to reject unknowns in few-shot scenes.

set Dtr and the testing set Dte. Dtr = DB ∪ DN contains K
known classes CK = CB ∪CN = {1, . . . , K = B + N }, where
CB = {1, . . . , B} expresses B data-abundant base classes, and
CN = {B + 1, . . . , K } denotes N data-hungry novel classes,
each with M-shot support samples. Here, novel classes express
few-shot known classes rather than unknown classes defined
in open-set communities [15], [18]. DB and DN denote the
training instances of the base and novel classes, respectively.
We test the detector in Dte that includes CK = CB ∪ CN
known classes and CU unknown classes. Duo to the countless
unknown categories, we merge all of them into one class
CU = {K + 1}. Our goal is to employ the unbalanced data
Dtr = DB ∪ DN to train a detector, which can be used
to identify the base classes CB , the novel classes CN , the
unknown class CU , and the background class Cbg . Here,
regions that do not contain any annotated objects of interest
effectively serve as training samples for the background class.
This is pivotal for enabling the model to explicitly identify
regions that do not align with any specific object category
(base, novel, or unknown).

B. Baseline Setup

As shown in Fig. 2, Faster R-CNN [1] is adopted as the base
detector that is composed of a backbone, a region proposal
network (RPN), a region of interest alignment (RoIAlign)
layer, plus two heads (a regression head [1] and a classification
head). Compared with the standard Faster R-CNN, three
tricks are utilized to improve the detector. (1) Classification
and regression decoupling: The original two heads contain
two shared fully connected (fc) layers and two separate fc
layers for classification and regression. In order to prevent
the classification task from disturbing the regression task,
the shared fc layers are replaced by two parallel fc layers.
Simultaneously, the class-specific box regression is changed
to class-agnostic. For example, the standard output of the box
predictor (box regression head) is 4 × (K + 2), now we set it
as 4, where K +2 denotes K known classes, 1 unknown class,
and 1 background class. It means that for each region proposal,
we predict one box for all classes, instead of one box per class.
The above operations are utilized to decouple the classification
and the regression, and then provide convenience to tackle the
generalized few-shot open-set object detection task.

(2) Two-stage fine-tuning strategy: Following TFA [4], the
training process consists of a base training stage and a few-
shot fine-tuning stage. In the base training stage, we employ

abundant samples of the base classes CB to train the entire
base detector from scratch, such as Faster R-CNN. Then,
in the few-shot fine-tuning stage, we create a small balanced
training set with M shots per class, containing both base
and novel classes. The balanced dataset is first used to train
the last linear layers of the base detector while freezing the
other parameters of the model (linear probing [41]), and then
fine-tune all the parameters of the model (fine-tuning) in a
soft-freezing way [11], which employs a scaled gradient to
slowly update the parameters of the backbone network to get
the generalized few-shot open-set object detector. Note that
there are two layers for linear probing including the last box
classification layer and the last box regression layer, namely
the last linear layers of the base detector.

(3) Classifier placeholder: Classifier placeholders [35]
refer to variables or symbols that represent the preserved
classes in the classification head. In the base training stage,
we reserve the dummy classifier placeholders for the novel
classes CN and an unknown class CU to augment the class
number of the open-set classifier. These placeholders reserved
for the novel classes will be optimized in the few-shot
fine-tuning stage. Overall, there are two advantages for the
predefined classifier placeholder: one is that the classifier
placeholder omits the additional model surgery step [4], [11],
which is used to augment the number of model categories from
the base training stage (base classes CB) to the few-shot fine-
tuning stage (base classes CB + novel classes CN ) for the
closed-set classifier. This means that our method simplifies
the training process of the FSOD methods based on transfer
learning. Another is that the dummy sub-classifier for the
unknown class is necessary to optimize our proposed unknown
decoupling learner (UDL), which can reject the unknown
objects without relying on the pseudo-unknown samples for
training.

C. Class Weight Sparsification Classifier (CWSC)
Few training samples induce the model to overfit on the

known classes, thus the model cannot extract the generaliza-
tion features that can be used for the unknown rejection. The
neuron dropout theory [23] has been employed to suppress
the over-fitting issue. The dropout randomly drops some
weights during training. During the prediction process, if we
still randomly drop some weights, the model will typically
produce unstable results and hurt the detection performance.
However, suppose all weights are reserved for prediction at
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test time. In that case, it will result in a large expected
(or mean) difference in the output between training (with
dropout) and testing (without dropout), leading to performance
degradation. So we need to make the output expected value
of training and testing as consistent as possible. Our CWSC
can be understood as class weight sparsification for unknown
rejection in few-shot scenes. As shown in Fig. 2, our CWSC
sparses the normalized weights w/||w|| rather than w and
measures the cosine similarity with the normalized feature
X/||X || for the class logit prediction, where || · || denotes
the L2 norm. This makes the expected difference with and
without sparsification become bounded, and then the model is
more stable and prominent for open-set detection in few-shot
scenes.

Specifically, w ∈ RD×(K+2) represents the weights of the
last linear mapping to (K + 2) classes, where D denotes
the weight dimension for each class. We use the sparsity
probability p̂ = 1 −

n
D·(K+2)

, where n denotes the number
of randomly selected weights for the class logit prediction.
Then, the retention probability of the weight can be denoted
as p = 1− p̂. The weights can be denoted as R∗w/||w||, where
R ∈ {0, 1}

D×(K+2) is initialized with Ri, j ∼ Bernoulli(p) and
∗ represents the element-wise product. The total number of
1 in R is n, where 1 denotes retaining the weight and 0 denotes
dropping the weight. The class logit output could be expressed
as:

lc = α
X

||X ||

[
R ∗

w

||w||

]
, (1)

where α denotes a positive temperature factor. In our CWSC,
if we set the retention probability p, the expected value
(or mean) of the logit output lc with sparsification falls in
[−pα, pα], without sparsification, it falls in [−α, α], thus the
expected difference with and without sparsification is µcos

di f f ∈

[−(1 + p)α, (1 + p)α]. For the conventional output l̂c = Xw,
the expected difference of the logit output with and without
sparsification is µdi f f ∈ (−∞,+∞). Compared with µdi f f ,
µcos

di f f is bounded, which means the output distribution of our
CWSC with and without sparsification is more consistent,
producing better results for G-FOOD.

Next, we theoretically analyze why the CWSC can suppress
the over-fitting issue. Assuming a linear regression task, y ∈

RN is the ground truth label, the model tries to find a w ∈ RD

to minimize

||y − α
X

||X ||

w

||w||
||

2. (2)

We set
−
x = X/||X || and

−
w = w/||w||. When the weight

sparsification is adopted, the objective function becomes

minimize
w

ER∼Bernoulli(p)[||y − α
−
x(R ∗

−
w)||

2
]. (3)

This can reduce to

minimize
w

||y − αp
−
x

−
w||

2
+ α2 p(1 − p)||τ

−
w||

2
, (4)

where τ = (diag(
−
x

T−
x))1/2. We set w̃ = αp

−
w, then

minimize
w

||y −
−
xw̃||

2
+

(1−p)
p ||τw̃||

2. (5)

Eq. 5 can be viewed as a ridge regression with a particular
form for τ . If a particular data dimension changes a lot,
the regularizer tries to sparse its weight more [23], and then
the over-fitting problem is alleviated through regularization.
We can control the strength of the regularization by adjusting
the sparsity probability p̂ = 1 − p. For example, if we set
p̂ = 0, then p = 1, the regularization term is 0, which means
that the regularizer does not work. As the sparsity probability
p̂ increases, the regularization constant grows larger and the
regularization effect becomes more pronounced. Our method
benefits from the over-fitting suppression, and we verify that
the class weight sparsification greatly improves the model’s
generalization ability for the open-set detection in few-shot
scenes. A derivation of Eq. 2-5 is presented in Appendix.

D. Unknown Decoupling Learner (UDL)

Unknown decoupling learner (UDL) plays a decisive role
in rejecting the unknown class, which provides a dummy
unknown class for decoupling optimization, and then boosts
the model to form a compact unknown decision boundary.
The UDL does not depend on the pseudo-unknown samples
generation method [19] to train the dummy unknown class,
because the data distribution of the unknown class is more
complex and changeable, the generated fake unknown samples
often fail to simulate the real distribution of the unknown
data. Inspired by the fact that the known class data and the
unknown class data are often orthogonal [41], we propose
to decouple optimizing the unknown class without relying
on the predictions of the known classes. Thus, we select a
sigmoid function that normalizes the predicted unknown logit
to estimate the unknown probability:

pu(lCU ) =
1

1 + e−δ·lCU
, (6)

where lCU represents the predicted logit for the dummy
unknown class CU in the classification branch and δ is used to
adjust the slope of the sigmoid function. Why do we choose
the sigmoid function to compute the unknown probability pu
instead of softmax? If we select the softmax, the objective
function for the unknown branch becomes:

Lu ↓= − log pu↑ = − log
elCU ↑∑

ci ∈C,ci ̸=c∗

elci + elc∗↑
(7)

where C = CB ∪ CN ∪ CU ∪ Cbg , ↑ denotes that the
optimized target should be as large as possible in optimization
and ↓ represents the opposite. There are no real unknown
samples or groundtruths in the training process. The posi-
tive pseudo-unknown samples used in this method are high
conditional energy (see Eq. 9) samples selected from known
classes or backgrounds. In addition to the groundtruth of an
unknown class, each pseudo-unknown sample also has its own
real known class or background label. During the unknown
optimization, the model may predict high logits (lCU and lc∗

)
for the unknown class CU and its real ground-truth class c∗,
simultaneously, which causes optimization conflicts, making
it difficult for the unknown class to converge. While the
unknown probability product by the sigmoid function does
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not care about the logit outputs for other classes (see Eq. 6),
we call it unknown decouple training, which can alleviate the
above problem.

Therefore, the loss function of the dummy unknown class
(unknown decoupling loss) is defined as follows:

Lu =
1

Npos

Npos∑
i=1

log(1 + e−δ1·lCU (S i
pos ))

+
1

Nneg

Nneg∑
j=1

log(1 + e−δ2·lCU (S j
neg)), (8)

where Npos and Nneg represent the number of positive
pseudo-unknown samples Spos and Sneg selected from fore-
ground samples of known classes and background samples,
respectively. Note that negative pseudo-unknown samples are
not required to optimize the sigmoid-based classifier because
it assigns a binary label (0 or 1) to each proposal, indicating
the presence or absence of an object in each proposal [3].
How do we select the positive pseudo-unknown samples (Spos
and Sneg) from all foreground proposals S f g and background
proposals Sbg to train the UDL branch? Ideally, a model
should learn a more compact decision boundary that produces
low uncertainty for the known data, with high uncertainty for
unknown data elsewhere. Fortunately, the energy score [29],
[42] has been used to measure the uncertainty of the object,
where the larger the energy, the higher the uncertainty of the
sample [29]. The motivation for selecting high-energy regions
as pseudo-unknown samples is rooted in the assumption that
objects from unknown classes are not seen during training.
Since the model does not have specific knowledge about those
unknown classes, unknown classes may have low-logit predic-
tions compared with known and background classes frequently
seen during training. The lower the logit, the higher the energy
(see Eq. 9). Here, we propose to select the foreground and
background samples with high conditional energy as positive
pseudo-unknown samples to train the UDL branch. For a
region proposal S j ∈ S f g ∪ Sbg , the conditional energy score
is defined as:

E(S j )ci ̸=CU = − log
∑

ci ̸=CU ,ci ∈C

elci (S j ), (9)

where lci (·) is the predicted logit for class ci . Since there are no
real unknown class training samples, the term exp(lCU (S j ))

will become an interference term in the energy-based sam-
pling process. Thus, we discard it and select the top-k
samples ranked by the conditional energy score E(S j )ci ̸=CU

to optimize the unknown decoupling loss Lu . The positive
pseudo-unknown samples (Spos and Sneg) used to train the
UDL branch can be denoted as:

Spos = topk
S j ′∈S f g

− log
∑

ci ̸=CU ,ci ∈C

elci (S j ′ )


k=Npos

, (10)

Sneg = topk
S j ′′∈Sbg

− log
∑

ci ̸=CU ,ci ∈C

elci (S j ′′ )


k=Nneg

. (11)

By selecting high conditional energy proposals as
pseudo-unknown samples for training, the model can focus
on learning to treat high conditional energy samples as
unknown classes and low conditional energy samples as
known classes or the background, thus assisting in form-
ing the unknown decision boundary of the model. Overall,
the sub-classifier of the dummy unknown class in UDL is
equivalent to merging the binary sigmoid classifier into the
multiply softmax classifier of real known classes. Then, the
model can synchronously identify the specific class of known
and unknown objects in inference. Instead of asynchronously
distinguishing the unknown class from the known classes
like the threshold-based methods [18], [36], if it is not an
unknown class, the model would distinguish its specific known
class.

E. Overall Optimization
With the unknown decoupling loss Lu , the final loss func-

tion is defined as follows:

L = LR P N + Lreg + Lce(DB ∪ DN ) + λLu(Spos ∪ Sneg),

(12)

where LR P N is the RPN loss that consists of a binary
cross-entropy loss and a regression loss. Lreg denotes the
smooth L1 loss. Lce expresses the cross-entropy loss. λ is used
to balance the proportion of the unknown decoupling loss Lu .
The above four sub-losses can be used to jointly optimize the
G-FOOD model fθ as:

argmin(
θ

E(x,y)∈DB∪DNLR P N ,reg,ce(x, y; fθ )

+ E(x,y)∈Spos∪SnegLu(x, y; fθ )), (13)

where θ denotes the learned weights for the G-FOOD
model.

F. Inference
During inference, we normalize the logits of all classes

(base classes, novel classes, the unknown class, and the
background class) by the softmax function to get the final
classification score:

pcm = max
c j ∈C

(
elc j∑

ci ∈C=CB∪CN ∪CU ∪Cbg

elci
). (14)

The specific class of the predicted box is cm . We not
continue to choose sigmoid to compute the probability of
the unknown class pu in inference. The reason is that
if we choose sigmoid to compute pu at test time, our
method would become a threshold-based method to divide
the unknown class, which means we need to set a thresh-
old to identify the unknown class. However, softmax is
a threshold-free method during testing, the class with the
maximum softmax probability (MSP) is the final predicted
class of the box. Thus, we select it and our method becomes
threshold-free for unknown rejection based on a few training
samples.
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IV. EXPERIMENT

A. Experimental Setup
1) Datasets: We construct the G-FOOD benchmarks using

PASCAL VOC 2007+2012 [43], MS COCO 2017 [44],
and LVIS [45]. There are two types of benchmark set-
tings. One is the single-dataset benchmark: VOC10-5-5 and
LVIS315-454-461, which means only one dataset (PASCAL
VOC or LVIS) is used to construct the G-FOOD benchmark.
Another is the cross-dataset benchmark: VOC-COCO, which
means two datasets (PASCAL VOC and MS COCO) are used
to construct the G-FOOD benchmark. The VOC-COCO setting
can ensure that the model barely sees the unknown classes
during training.

a) VOC10-5-5: The 20 classes of PASCAL VOC are
divided into 10 base known classes CB , 5 novel known classes
CN , and 5 unknown classes CU to evaluate the G-FOOD
performance of our method. The novel known classes CN have
M = 1, 2, 3, 5, 10, and 30 objects per class sampled from
the training data of PASCAL VOC. Here we select the test set
of PASCAL VOC 2007 for the generalized few-shot open-set
evaluation. In this paper, we define the above dataset divisions
as the VOC10-5-5 settings, where CB={aeroplane, bicycle,
bird, boat, bottle, bus, car, cat, chair, cow}, CN ={diningtable,
dog, horse, motorbike, person}, CU ={pottedplant, sheep, sofa,
train, tvmonitor}={unknown}.

b) VOC-COCO: The MS COCO dataset contains
80 classes, 20 of which overlap with the PASCAL VOC
dataset. We use 20 classes of PASCAL VOC and 20 non-VOC
classes of MS COCO as the closed-set training data, where
PASCAL VOC servers as the base known classes CB and the
20 non-VOC classes of MS COCO are the few-shot splits of
novel known classes CN . The novel known classes CN have
M = 1, 2, 3, 5, 10, and 30 objects per class sampled from the
training data of MS COCO. The remaining 40 classes of MS
COCO are used as the unknown classes CU , which are chal-
lenging. Meanwhile, we use the validation set of MS COCO
for the generalized few-shot open-set evaluation. In this paper,
we define the above dataset divisions as the VOC-COCO
settings, where CB={aeroplane, bicycle, bird, boat, bottle, bus,
car, cat, chair, cow, diningtable, dog, horse, motorbike, person,
pottedplant, sheep, sofa, train, tvmonitor}, CN ={truck, traffic
light, fire hydrant, stop sign, parking meter, bench, elephant,
bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase,
microwave, oven, toaster, sink, refrigerator}, CU ={frisbee,
skis, snowboard, sports ball, kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket, banana, apple, sandwich,
orange, broccoli, carrot, hot dog, pizza, donut, cake, bed, toilet,
laptop, mouse, remote, keyboard, cell phone, book, clock,
vase, scissors, teddy bear, hair drier, toothbrush, wine glass,
cup, fork, knife, spoon, bowl}={unknown}.

c) LVIS315-454-461: LVIS dataset has a natural long-tail
distribution, the classes of which are divided into 315 frequent
classes (appearing in more than 100 images), 461 common
classes (10)−100 images), and 454 rare classes (less than
10 images). Here, we use frequent classes, rare classes, and
common classes as base known classes, novel known classes,
and unknown classes, respectively. It does not need the manual
M-shot split, where the rare classes can directly serve as the

few-shot training data. Meanwhile, we use the validation set
of LVIS for the generalized few-shot open-set evaluation.

2) Evaluation Metrics: The mean average precision (mAP)
of known classes (m APK ) is chosen to evaluate the known
object detection performance. m APB and m APN are used to
measure the performance for base and novel classes, respec-
tively. To evaluate the unknown detection performance, the
average precision (APU ), precision (PU ), and recall (RU ) are
reported. The unknown recall (RU ) is a popular metric that is
currently concerned by unknown detection [46].

Precision and recall only focus on one aspect of perfor-
mance, while F-score can be considered comprehensively for
unknown evaluation,

FU = (1 + β2)
PU × RU

β2 × PU + RU
, (15)

where the hyperparameter β (the default value is 10 in this
paper) indicates the importance of recall relative to precision
in the unknown performance evaluation. The calculations of
precision and recall rely heavily on labeled data. However,
the testing dataset contains many unknown classes C∗

U ̸∈ CU
that may be detected but not labeled, thus causing evaluation
bias. We supply Wilderness Impact (WI) [15] and Absolute
Open-Set Error (AOSE) [15] to mitigate the evaluation bias of
these metrics. We use WI to measure the degree of unknown
objects misclassified to known classes. We also use AOSE to
count the number of misclassified unknown objects. Note that
the smaller the WI and AOSE values, the better the open-set
performance.

3) Implementation Details: Our base detector is Faster
R-CNN and ResNet-50 with feature pyramid network (FPN)
[47] is selected as the backbone. All models are trained using
an SGD optimizer with a mini-batch size of 16, a momentum
of 0.9, and a weight decay of 1 × 10−4. The learning rate of
0.02 is used in the base training stage and 0.01 in the few-
shot fine-tuning stage. For the CWSC, we set the temperature
factor α = 20 [4], the sparsity probability p̂ = 0.6, and the
class weight dimension D = 2048 [4]. For the UDL, we use
a slope factor δ1 = δ2 = 0.09 and Npos : Nneg = 3 : 12.
In the total loss, we set the trade-off factor λ = 1.0. Note that
both the base training stage and the few-shot fine-tuning stage
need to optimize the UDL branch. Then we argue that the
generalization knowledge learned by the base training stage
between the known and unknown classes can be reserved for
the few-shot fine-tuning stage. CWSC is only used in the fine-
tuning stage.

4) Baselines: We compare our proposed FOOD with the
following methods: OpenDet [15], DS [18], ORE [31], and
PROSER [35] combined with TFA [4] for G-FOOD. For
dropout sampling (DS) [18], the detector is trained with a
dropout layer inserted after the second fc layers and we enable
it to perform 30 samplings during testing. For PROSER [35],
we remove the proposal’s probability of the ground truth label
as the masked probability and match the masked probability
with the unknown class CU = {K + 1}, forcing the dummy
unknown classifier to output the probability for unknown
rejection. For ORE [31] and OpenDet [15], we use the
official codes combined with a two-stage fine-tuning strategy
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TABLE II
THE GENERALIZED FEW-SHOT OPEN-SET OBJECT DETECTION RESULTS ON VOC10-5-5 DATASET SETTINGS. ↑ INDICATES THAT THE LARGER THE

EVALUATION METRICS, THE BETTER THE PERFORMANCE. BOLD NUMBERS DENOTE SUPERIOR RESULTS. FOR A FAIR COMPARISON, WE REPORT
THE AVERAGE RESULTS OF 10 RANDOM RUNS FOR ALL COMPARISON METHODS

(TFA [4]) for generalized few-shot open-set detection. We also
present the FSOD results of TFA as a baseline to determine
whether optimizing the dummy unknown class will reduce
the performance of the known classes. Moreover, all methods
employ the same ResNet-50 with FPN as the backbone for a
fair comparison and we report the average results of 10 random
runs for all comparison methods.

B. Results
1) VOC10-5-5: In Table II, we compare our FOOD with

several OSOD methods combined with TFA on VOC10-5-5
dataset settings. Our FOOD outperforms other methods across
all shots on the unknown metrics APU , RU , and FU .
We achieve 0.65∼1.27 point improvement in APU over the
best comparison method, around 5.89∼13.99 point improve-
ment in RU , and around 3.38∼10.63 point improvement in FU .
Simultaneously, our method outperforms other methods on the
m APN of novel classes, which demonstrates its effectiveness
for G-FOOD. The unknown F-score of our FOOD achieves a
significant improvement over the second best, which verifies
that our method alleviates the over-fitting issue and evidently
improves the model’s generalization ability for unknown rejec-
tion in few-shot scenes. However, in VOC10-5-5 settings, the
detector may have seen unknown objects and treated them as
background during training, which causes the evaluation bias
for G-FOOD. To balance the above bias, we conduct exper-
iments on VOC-COCO dataset settings, where the unknown
classes are barely seen in the training data.

2) VOC-COCO: In Table III, we carry out experiments on
VOC-COCO dataset settings. Only looking at the rejection
performance of the unknown class (APU , PU , RU , and FU ),
our method presents several significant advantages, especially

in unknown recall RU and F-score FU . For example, the
highest F-score 22.62% of the unknown class is obtained by
our FOOD, which illustrates that our method has a better
unknown object rejection ability than other methods. Simul-
taneously, in extremely low shots (1, 2, 3, 5-shot) where the
over-fitting problem is easier to occur than in high shots (10,
30-shot), our method achieves 7.96%, 9.08%, 9.02%, and
8.13% unknown F-score FU improvements than the second
best method respectively, which demonstrates the effectiveness
of our method in suppressing the over-fitting issue caused by
few training samples of known classes.

Compared with the baseline TFA on novel classes, the
m APN of our method is similar to TFA. Meanwhile, the
m APK and m APB of our method are higher than TFA,
which verifies that our method not only improves the open-set
detection performance of the unknown class, but also slightly
improves the performance of known classes CK = CB ∪ CN
for the closed-set few-shot evaluation. Look at other meth-
ods, although DS+TFA, PROSER+TFA, and OpenDet+TFA
achieve comparable closed-set metrics (m APK , m APB , and
m APN ), the open-set performance is poor. Overall, the pro-
posed FOOD surpasses other methods and thus is of merit.
The class weight sparsification and the unknown decoupling
training effectively expand model’s generalization capability
for open-set detection in few-shot conditions, which brings
performance improvement.

Our FOOD method often achieves greater unknown recall
at a minor cost of unknown precision. With the precision
and recall for unknown evaluation, it appears that these are
calculated from the classes that are labeled in the respective
datasets but treated as unknown classes. However, there may
still be unknown objects that are not labeled in these datasets.
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TABLE III
THE GENERALIZED FEW-SHOT OPEN-SET OBJECT DETECTION RESULTS ON VOC-COCO DATASET SETTINGS. ↑ INDICATES THAT THE LARGER THE

EVALUATION METRICS, THE BETTER THE PERFORMANCE. BOLD NUMBERS DENOTE SUPERIOR RESULTS. FOR A FAIR COMPARISON, WE REPORT
THE AVERAGE RESULTS OF 10 RANDOM RUNS FOR ALL COMPARISON METHODS

TABLE IV
THE OPEN-SET PERFORMANCE (WI AND AOSE) OF DIFFERENT METHODS ON VOC10-5-5 AND VOC-COCO DATASET SETTINGS. ↓ INDICATES THAT

THE SMALLER THE EVALUATION METRICS, THE BETTER THE PERFORMANCE. BOLD NUMBERS DENOTE SUPERIOR RESULTS. FOR A FAIR
COMPARISON, WE REPORT THE AVERAGE RESULTS OF 10 RANDOM RUNS FOR ALL COMPARISON METHODS

If the method detects these, it may lead to lower precision
as it will be considered a false-positive (FP) unknown. This
is an inherent weakness in using these metrics with unknown
classes. We report several new evaluation metrics including
W I and AO SE to evaluate the open-set performance of our
method, which can mitigate the evaluation bias caused by
AP, precision, and recall. As illustrated in Table IV, we can
see that our method achieves the best mean performance
of WI (7.19 and 7.44) and AOSE (837.94 and 924.92) in
VOC10-5-5 and VOC-COCO dataset settings, respectively,
which demonstrates that our method has a strong ability for
unknown rejection. Thus, the effectiveness of our method is
further verified.

3) LVIS315-454-461: LVIS dataset has the characteristics
of numerous classes (1230 classes) and long-tail distribution,
which is very challenging. We treat the frequent classes as
base known classes, the rare classes as novel known classes,
and the common classes as unknown classes. As shown
in Table V, weight sparsification helps the model suppress
overfitting well, so the few-shot closed-set detection can main-
tain good experimental results (m APB and m APN ). At the
same time, compared with the second-best method, our model
achieves good open-set performance improvements (0.96%,
3.88%, 4.03, and 343 in APU , FU , W I , and AO SE , respec-
tively). This proves that the decoupling optimization improves
the model’s generalization ability for unknown rejection in
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TABLE V
THE GENERALIZED FEW-SHOT OPEN-SET PERFORMANCE ON

LVIS315-454-461 DATASET SETTINGS

TABLE VI
THE ABLATION STUDY OF DIFFERENT MODULES (AVERAGE OF

10 RANDOM RUNS). BOLD NUMBERS DENOTE
SUPERIOR RESULTS

few-shot scenes, which is meaningful for real-world long-tail
distribution applications.

C. Ablation Studies
We conduct comprehensive ablation studies on the 10-shot

VOC-COCO dataset setting.
1) Effectiveness of Different Modules: We perform the

ablation studies on different modules (CWSC and UDL) in
Table VI, where the classical FSOD framework TFA [4] is
used as the baseline. It can be seen that CWSC boosts the
detection performance of the base classes (APB) and the novel
classes (APN ) simultaneously, which demonstrates the effec-
tiveness of CWSC in alleviating the over-fitting problem.
When exploring the influence of UDL, we find that the branch
of UDL improves the detection ability for the closed-set
known classes in the 10-shot setting. Simultaneously, UDL
is a necessary condition for the unknown rejection of our
FOOD. The best unknown detection result APU = 3.27%
is obtained by the cooperation of two modules, although the
detection performance of known classes is slightly degraded
compared to the UDL alone (↓ 0.10%), this is acceptable in
terms of the overall results. Compared with the third line (the
linear classifier with a dropout layer+UDL) and the fourth line
(CWSC+UDL), the unknown metrics including F-score, W I ,
and AO SE improve by 4.56%, 0.63, and 140.80, respectively,
which demonstrates that the unknown rejection performance
benefits from our CWSC. The class weight sparsification
significantly enhances the model’s generalization ability for
unknown rejection in few-shot scenes.

2) Effectiveness of Different Fine-Tuning Methods: In
Table VII, we carefully evaluate several fine-tuning methods to
pick the most appropriate way. Linear-probing (LP) and fine-
tuning (FT) [41] have been widely used in transfer learning
to alleviate the over-fitting problem. Gradient decoupled layer
(GDL) [11] is an auxiliary fine-tuning strategy, which conducts
a stop gradient for RPN and a scaled gradient (scale=0.001 in
this paper) for RCNN. As a hard-freezing method, LP can
preserve the general knowledge of the base training stage,
thus it achieves a competitive detection result in Table VII.

TABLE VII
THE ABLATION STUDY OF DIFFERENT FINE-TUNING METHODS

(AVERAGE OF 10 RANDOM RUNS). BOLD NUMBERS
DENOTE SUPERIOR RESULTS

TABLE VIII
THE ABLATION STUDY ON DIFFERENT SAMPLING METHODS (AVERAGE

OF 10 RANDOM RUNS). BOLD NUMBERS DENOTE SUPERIOR RESULTS

However, FT fine-tunes the entire model to fit the few-shot
closed-set training data. The model gradually forgets the base
classes and destroys the general knowledge during the few-
shot fine-tuning stage. Thus, we can see that compared FT
with LP, the results of the base classes degrade by 9.96%, and
the unknown class descends by 2.36%. The advantage of FT is
the better performance of the novel classes m APN than other
approaches. LP-FT exploits the advantages of LP and FT, thus
it achieves a compromised G-FOOD result.

Compared with FT, FT+GDL achieves better results in
m APK and APU . This indicates that GDL reserves the general
knowledge by the gradient decoupling training, which uses a
scaled gradient to slowly update the parameters of the back-
bone network. We view the GDL as a soft-freezing method,
which enables the backbone to slowly fit the closed-set data
while retaining the ability to extract the generalization fea-
tures. GDL improves the performance of the closed-set object
detection and achieves a competitive unknown rejection per-
formance. Based on the above analysis, we adopt a hard-soft
combination approach (LP-FT+GDL), which first trains the
last linear layers of the model while freezing other parameters.
And then we fine-tune the model in a soft-freezing way.
As illustrated in Table VII, LP-FT+GDL outperforms other
approaches in terms of m APB , APU , FU , W I , and AO SE
which verifies its effectiveness.

3) Effectiveness of Different Sampling Methods: The sam-
pling rules for the positive pseudo-unknown samples to train
the UDL branch are as follows:

• Min max-probabili t y [15]: the samples are sorted in
ascending order by the maximum predicted value across
all classes, and top-k samples are chosen.

• Min(lCU ): the samples are sorted in ascending order by
the unknown logit, and top-k samples are chosen.

• Max(entropy): the samples are sorted in descending
order by the entropy score, and top-k samples are chosen.

• Max(E(x, b)ci ̸=CU ): the samples are sorted in descend-
ing order by the conditional energy score. We select top-k
samples for optimization.

As presented in Table VIII, the conditional energy-based
sampling method Max(E(x, b)ci ̸=CU ) outperforms other
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Fig. 3. Effect of different sparsity probabilities p̂, scope factors δ1 = δ2 and
sampling ratios Npos : Nneg on the 10-shot VOC-COCO dataset setting.

TABLE IX
THE ABLATION STUDY OF DIFFERENT (A) BACKBONES AND (B) FSOD

METHODS (AVERAGE OF 10 RANDOM RUNS). BOLD NUMBERS
DENOTE SUPERIOR RESULTS

methods, which demonstrates its effectiveness for the
pseudo-unknown sample selection. Furthermore, the absence
of real unknown training samples causes the unknown
class CU to become a distractor, thus the results of our
Max(E(x, b)ci ̸=CU ) are better than Max(E(x, b)). Simulta-
neously, we can see that these energy-based sampling methods
(Max(E(x, b)) and Max(E(x, b)ci ̸=CU )) perform better than
other sampling methods for open-set detection (W I and
AO SE), which proves that the energy score is an excellent
uncertainty metric for the pseudo-unknown sample selection
in the optimization of our UDL branch.

4) Sparsity Probability, Scope Factor, and Sampling Ratio:
Fig. 3 presents the visualization of different sparsity prob-
abilities, scope factors, and sampling ratios on the 10-shot
VOC-COCO dataset setting. We fix the ratio of positive and
negative samples 1 : 4 to explore the performance of different
sparsity probabilities. As presented in Fig. 3(a), when the spar-
sity probability is set to 0.6, the unknown F-score FU arrives
at 21.34%, which is higher than other settings. Subsequently,
we fix p̂ = 0.6 to iterate over different scope factors and
sampling ratios, respectively. As shown in Fig. 3 (b), when
the scope factor is set to 0.09, the unknown F-score is best.
Therefore, we set δ1 = δ2 = 0.09. As we can see from
Fig. 3(c), starting from a sampling ratio of 1 : 4, the value
of unknown F-score begins to be stabilized. The sampling
ratio of 1 : 6 seems to perform the best but our usual default
value of 1 : 4 is close to the optimal. Moreover, if the
pseudo-unknown samples selected from the background do not
participate in the optimization of the UDL branch (1 : 0), the
unknown rejection performance drops significantly.

5) Effectiveness of Different Backbones: We use
ResNet-101 [48] and swin transformer (Swin-T) [24] as
the backbones in Table IX (a), and then compare them
with ResNet-50. ResNet-101 tends to perform better than
ResNet-50, which presents that our method benefits from
the deeper backbone. While employing a more powerful
transformer-based backbone (Swin-T), our proposed method
achieves additional improvements.

Fig. 4. The relationship between iteration and performance metrics (m APB ,
m APN , and APU ) for our G-FOOD method. We are hard to select a proper
stop fine-tuning iteration to balance the performance of base classes, novel
classes, and the unknown class.

6) Does the Unknown-Class Placeholder Hurt the Accuracy
of the Few-Shot Object Detection?: No. As illustrated in
the first and third lines of Table VI, when the UDL branch
introduces the unknown-class placeholder into the baseline
TFA, the performance of novel classes has achieved 0.56%
improvement, which proves that the dummy placeholder of
the unknown class does not hurt the detection performance
for few-shot novel classes. Furthermore, UDL and CWSC
can feasibly be applied to most few-shot object detectors
such as TFA [4], DeFRCN [11], and FSRDD [14]. As illus-
trated in Table IX (b), when incorporating UDL and CWSC
into the recent FSRDD, few-shot performance and open-set
performance achieve evidently improvements compared to
the TFA-based few-shot open-set detection method, which
demonstrates that our method is agnostic to the underlying
few-shot object detection (FSOD) methods. It benefits from
the high performance obtained by FSOD methods.

7) Weight Averaging: As shown in Fig. 4, the performance
trends of the base classes APB and the unknown classes APU
conflict with the novel classes APN in the fine-tuning stage of
our FOOD method. Therefore, it is difficult for us to choose
a suitable stop fine-tuning iteration that can make the base,
novel, and unknown classes all perform best. Motivated by
weight averaging (WA) [49] that is a simple ensemble method,
but it achieves the state-of-the-art performance in domain
generalization [50], [51], [52]. We present WA to approximate
the optimal model. The WA is defined as:

θW A(L(Dtr ∪ Spos ∪ Sneg))

=
1

H + 1
(
∑H

h=1θh(L(Dtr ∪ Spos ∪ Sneg)) + θ f inal model),

(16)

where {θh}
H
h=1 represents the weights of equidistant dense

sampling in a single run and θ f inal model denotes the final
output weights in the above single run. WA uses the idea of
ensemble learning to balance the representation bias between
the base, novel, and unknown classes. As illustrated in
Table X, when incorporating with WA (the model sampling
step is 100 iterations), the evaluation metrics (m APK , m APB ,
APU , FU , W I , and AO SE) of our FOOD achieve evidently
improvements, which demonstrates its effectiveness. However,
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Fig. 5. The visualization results (10-shot VOC-COCO setting). We visualize the bounding boxes with a score larger than 0.1. Our FOOD can detect more
unknown objects than other methods. Red box is the failure case, several giraffes (novel class) are misidentified as the unknown class.

TABLE X
THE PERFORMANCE OF WEIGHT AVERAGING (WA) (AVERAGE OF 10

RANDOM RUNS). BOLD NUMBERS DENOTE SUPERIOR RESULTS

the drawback is that WA slightly decreases the performance
of the novel classes m APN . The main reason is that WA
hurts the novel-class performance through the poor weight
integration in low fine-tuning iterations. However, if you’d
like to significantly improve the detection performance of the
base classes and the unknown class at the expense of a little
performance for novel classes, WA is a good choice.

D. Visualization
We provide qualitative visualizations of the detected

unknown objects on the 10-shot VOC-COCO dataset setting
in Fig. 5. We can observe that other methods easily recognize
unknown objects as known classes and cannot detect unknown

objects frequently. Compared with other methods, our FOOD
can achieve better unknown rejection performance, which
demonstrates that our method benefits from the class weight
sparsification and the unknown decoupling training. However,
our method easily identifies the few-shot known objects as
the unknown class. As shown in the red box of Fig. 5,
several giraffes (novel class) are misidentified as the unknown
class. Simultaneously, this phenomenon can also be seen
from the quantitative analysis that our method shows slightly
low unknown precision PU , as illustrated in Table III. This
situation is a limitation of the dummy class-based method.
We argue that introducing Intersection over Union (IoU)
constraints for unknown optimization may be a good solution,
which will be further researched in the future.

V. CONCLUSION

In this paper, we propose a new task named generalized few-
shot open-set object detection (G-FOOD) and build the first
benchmark. To tackle the challenging G-FOOD task, we pro-
pose a simple method incorporating several tricks in Faster
R-CNN with two novel modules: class weight sparsification
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classifier (CWSC) and unknown decoupling learner (UDL).
The CWSC is developed to decrease the co-adaptability
between the class and its neighboring classes during the
training process, thereby improving the model’s generalization
ability for open-set detection in few-shot scenes. Alongside,
the UDL branch is employed to detect unknown objects in
few-shot scenes without depending on the class prototype,
threshold, and pseudo-unknown sample generation. Compared
with other OSOD methods in few-shot scenes, our method
achieves state-of-the-art results on different shot settings of
VOC10-5-5, VOC-COCO, and LVIS315-454-461 datasets.
In the future, we’d like to study the prompt learning [53] to
solve the challenging G-FOOD task.

APPENDIX

We present a derivation of Eq. (2)–(5). In a linear regression
task, assume y ∈ RN is the ground truth label, the model tries
to find a w ∈ RD to minimize

||y − α
X

||X ||

w

||w||
||

2. (17)

We set
−
x = X/||X || and

−
w = w/||w||. When the weight

sparsification is adopted, the objective function becomes

minimize
w

ER∼Bernoulli(p)[||y − α
−
x(R ∗

−
w)||

2
]

= minimize
w

||y − αp
−
x

−
w||

2
+ α2(1 − p)2

||τ
−
w||

2

= minimize
w

||y − αp
−
x

−
w||

2
+ α2(p2

− 2p)||τ
−
w||

2

+ α2
||τ

−
w||

2
, (18)

where τ = (diag(
−
x

T−
x))1/2. We view the above formula as a

function of p. Then, this can reduce to

minimize
w

||y − αp
−
x

−
w||

2
+ α2(p2

− 2p)||τ
−
w||

2
. (19)

This can reduce to

minimize
w

||y − αp
−
x

−
w||

2
− α2 p(2 − p)||τ

−
w||

2
. (20)

This can reduce to

minimize
w

||y − αp
−
x

−
w||

2
− 4α2 p

2
(1 −

p
2

)||τ
−
w||

2
. (21)

This can reduce to

minimize
w

||y − αp
−
x

−
w||

2
+ α2 p(1 − p)||τ

−
w||

2
. (22)

We set w̃ = αp
−
w, then

minimize
w

||y −
−
xw̃||

2
+

(1 − p)

p
||τ ω̃||

2︸ ︷︷ ︸
Regulari zation term

. (23)
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