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Context and Spatial Feature Calibration for
Real-Time Semantic Segmentation

Kaige Li*, Qichuan Geng, Maoxian Wan, Xiaochun Cao™, Senior Member, IEEE, and Zhong Zhou

Abstract— Context modeling or multi-level feature fusion
methods have been proved to be effective in improving semantic
segmentation performance. However, they are not specialized to
deal with the problems of pixel-context mismatch and spatial
feature misalignment, and the high computational complexity
hinders their widespread application in real-time scenarios.
In this work, we propose a lightweight Context and Spatial Fea-
ture Calibration Network (CSFCN) to address the above issues
with pooling-based and sampling-based attention mechanisms.
CSFCN contains two core modules: Context Feature Calibration
(CFC) module and Spatial Feature Calibration (SFC) module.
CFC adopts a cascaded pyramid pooling module to efficiently
capture nested contexts, and then aggregates private contexts for
each pixel based on pixel-context similarity to realize context
feature calibration. SFC splits features into multiple groups of
sub-features along the channel dimension and propagates sub-
features therein by the learnable sampling to achieve spatial
feature calibration. Extensive experiments on the Cityscapes and
CamVid datasets illustrate that our method achieves a state-
of-the-art trade-off between speed and accuracy. Concretely,
our method achieves 78.7% mloU with 70.0 FPS and 77.8%
mloU with 179.2 FPS on the Cityscapes and CamVid test sets,
respectively. The code is available at http://nave.vr3i.com/ and
https://github.com/kaigelee/CSFCN.

Index Terms— Real-time semantic segmentation,
feature calibration, spatial feature calibration.

context

I. INTRODUCTION

EMANTIC segmentation is a fundamental computer

vision task that aims to assign a predefined category
label to each pixel in the image. It is extensively applied
in various practical applications, such as video surveillance,
remote sensing, and automatic driving [1], [2].
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Fig. 1.  Speed-accuracy performance comparisons on the Cityscapes test
dataset. The speed of all methods is measured on a single GTX 1080Ti.

Recently, deep learning has brought a huge leap-
forward to semantic segmentation with Fully Convolutional
Networks (FCNs) [3]. Numerous accuracy-oriented methods
have been proposed, which adopt deep networks to explore
scene contexts [4], [5], [6] and spatial details [7], [8], [9] to
ensure accuracy. However, they inevitably suffer from high
computation, resulting in slow inference speeds. To this end,
many efforts try to design highly lightweight networks [10],
[11] or efficient decoders [12], [13] to realize real-time
inference. Despite reducing computation, the information loss
in lightweight networks leads to the misalignment of input
and output. Besides, context modeling methods [14], [15] in
existing decoders lack adaptability to different inputs, which
leads to the pixel-context mismatch issue. These two issues
hinder the performance of real-time methods, making it still
challenging to achieve a satisfactory speed-accuracy trade-off.

We observe that the context mismatch mainly comes from
the indiscriminate treatment in context modeling. Specifically,
common methods [4], [5], [6] for aggregating contexts intro-
duce non-adaptive contexts for each pixel, overlooking their
inherent differences in context demands. As in Fig. 2(a), for
pixels A and B, previous methods model spatial-dependent
contexts for them within a predefined region. However, the
activated context regions may be too large or too small, and
these mismatched contexts will bring unexpected irrelevant
information or cannot provide enough semantic clues. On the
other hand, feature misalignment mainly arises from repeated
downsampling, which causes spatial misalignment between
the output (e.g., features or predictions) and the input image.
This issue will be aggravated in parameter-free upsampling
and introduce more prediction errors (especially at the bound-
aries), as in Fig. 2(b). Given the spatial attention (especially
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Illustration of two challenges in semantic segmentation. (a) The spatial scope of different context modeling methods. Most existing methods

(e.g., PPM [4] and ASPP [5]) model spatial-dependent contexts for all pixels in a fixed rectangle region. By contrast, our method aggregates semantic-dependent
contexts and further refines them. (b) Visualization of feature misalignment and grouping. The blue and red grids indicate the region correctly and incorrectly
predicted, respectively. For calibration, we replace the features at the red dot with the features at the green dot to get the output. Besides, we group the

features for calibration since the features exhibit grouping properties.

self-attention) [16], [17] can capture beneficial features and
suppress irrelevant information for each pixel, while their
expensive computation overhead is unaffordable for real-time
methods. To tackle the above issues, we propose a lightweight
Context and Spatial Feature Calibration Network (CSFCN)
with two simplified spatial attention ways to match the pixels
and contexts and align features with the input. As shown
in Fig. 1, our CSFCN achieves higher accuracy than other
methods while satisfying real-time requirements.

Specifically, to mitigate the context mismatch issue, we pro-
pose a Context Feature Calibration (CFC) module. Unlike
previous methods that aggregate contexts for each pixel in
a fixed way, CFC models different contexts for each pixel,
i.e., contextual features are functions of the input and also
vary from pixel to pixel. Here we first design a cascade
pyramid pooling module to efficiently capture the multi-scale
contexts by reusing pooling results. Then, similar to self-
attention [16], [18], but instead of computing pixel-to-pixel
similarity, we compute pixel-to-context similarity to aggregate
semantic-dependent contexts for each pixel, thus enabling
context feature calibration. However, since the pooling con-
texts are easily biased towards features with large patterns,
distributing them evenly to each location will overwhelm the
representation of small patterns and cause over-smoothing
results. Therefore, we further propose a Context Recalibration
Block (CRB) to learn local contexts conditionally by sharpen-
ing the large objects and preserving spatial details, as shown
in Fig. 2(a).

Furthermore, we introduce a Spatial Feature Calibration
(SFC) module to tackle the feature misalignment issue. Stem-
ming from self-attention [16], [18], but instead of aggregating
information from all locations, SFC only collects information
from a learned sampling location, which depend on the input.
Intuitively, we simply sample the most favorable features for
the prediction of the current location and place them at the
current location, which greatly reduces the computation burden
while enabling feature calibration. Moreover, we observe that
feature maps carve various semantic information (e.g., an

object or stuff, as in Fig. 2(b)), and there is often no single
optimal calibration way for different feature maps. In other
words, uniformly calibrating all feature maps will weaken the
discrimination of the overall features. Consequently, for finer
feature calibration, we first group the channel dimension into
multiple sub-features and then perform calibration separately,
which further improves the performance.

With these two modules, our CSFCN can efficiently mine
the context and spatial information with little computation,
resulting in leading performance, as shown in Fig. 1. To sum-
marize, our contributions are three-fold:

1) We introduce two simplified self-attention ways to
address the issues of context mismatch and feature
misalignment while realizing real-time segmentation.

2) We design a pooling-based Context Feature Calibration
module, which tailors the contexts for each pixel by
matching pixels with pooling-based contexts.

3) We design a sampling-based Spatial Feature Calibration
module, which samples the most representative and
informative features for each location.

Comprehensive experiments on the Cityscapes [19] and
CamVid [20] datasets show that our CSFCN achieves the state-
of-the-art speed-accuracy trade-off. Specifically, our CSFCN
achieves 78.7% mloU with 70.0 FPS and 77.8% mloU with
179.2 FPS on the Cityscapes and CamVid test set, respectively.

II. RELATED WORK
A. Generic Semantic Segmentation

Most existing methods for semantic segmentation are based
on FCNs [3], while they have an inherent weakness, i.e., the
local receptive fields. Recent progresses mainly employ two
strategies to improve performance, i.e., context modeling [16],
[21] and feature fusion [17], [22].

1) Context Modeling: PSPNet [4] uses a pyramid pool-
ing module (PPM), DeepLabV3+ [5], DenseASPP [6] and
DUC [23] use an atrous spatial pyramid pooling (ASPP)
module to integrate multi-scale contexts to improve accuracy.
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However, they model homogeneous contextual information for
all pixels, inevitably leading to pixel-context mismatch. Thus,
some works [16], [24] exploit self-attention to encode the
global contexts for each pixel adaptively, but their expensive
computation is problematic in real-time scenarios. ANNN [21]
propose to leverage a pyramid sampling module to decrease
computation of self-attention while keeping the ability to
harvest global contexts. However, ANNN still lacks the mul-
tiscale context extraction capability. In this regard, we embed
a cascaded pyramid pooling block into self-attention and
introduce a context refinement strategy to customize the multi-
scale contexts for each pixel while reducing computation.

2) Feature Fusion: Previous feature fusion methods [7],
[8] can effectively improve performance but often ignore
feature misalignment problem. Therefore, SFNet [17] and
AlignSeg [22] propose to align multi-level features by learning
2D transformation offsets for better feature fusion. However,
they overlook the representation differences between different
level features and sub-features of the same level, which weak-
ens the effectiveness of information propagation. In contrast,
we treat different feature maps and different level features in
different ways, leading to more accurate alignment and fusion.

3) Efficient Transformer: The multi-head self-attention
(MHSA) layer in Transformer enables it to model the global
context naturally, which is essential for semantic segmentation.
To accommodate various dense prediction tasks, PVT [25]
proposes to use a linear projection to decrease the length of
the input sequence, thus reducing the computation of MHSA.
P2T [26] proposes to adapt pyramid pooling to the MHSA
to simultaneously reduce the sequence length and learn rich
contextual representations. However, both PVT and P2T only
focus on building an efficient transformer backbone, while
ignoring the design of the decoder. Meanwhile, their proposed
module is also unable to model multi-scale information.

B. Real-Time Semantic Segmentation

Real-time semantic segmentation aims to produce high-
quality predictions while maintaining high efficiency. In this
case, three main strategies are available: (1) Input restricting.
Such methods directly reduce computation by restricting the
input size. For instance, ENet [27] and ERFNet [28] downsam-
ple the input for faster inference. Though this way is simple
and effective, much information loss leads to dramatic degra-
dation of accuracy. (2) Network compression. Such methods
focus on network compression, especially channel pruning
and convolution factorization. For example, ENet [27] and
FRNet [10] adopt factorized convolution, ESPNetV2 [29],
NDNet [30], and FBSNet [31] adopt depth-wise separable
convolution to reduce computation. This is also an efficient
method, but it sacrifices the spatial capacity and represen-
tational ability of the low-level features. (3) Multi-branch
structure. As the above two strategies are difficult to achieve
satisfactory performance, most recent methods adopt multi-
branch structures to capture multi-scale information to improve
accuracy. For example, BiSeNet series [32], [33] utilize a two-
branch structure to encode spatial and semantic information
separately. DFANet [34] uses a multi-branch framework to
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effectively combine multi-level features. DMA-Net [35] recur-
sively fuses the features from the high- and the low-level
branch to produce more robust features. SwiftNet [9] leverages
lateral connections to fuse the features of different resolution
branches to handle multi-scale problems. STDC-Seg [36] pro-
poses a backbone network specifically designed for semantic
segmentation, and replaces the spatial path in BiSeNet [32]
with a detail aggregation module, thereby improving efficiency
without compromising performance.

Despite achieving impressive performance, the above meth-
ods generally overlook the issues of context mismatch and
feature misalignment. In this paper, we design a lightweight
CSFCN with two simplified attention mechanisms to effi-
ciently address these issues while performing real-time
segmentation with improved accuracy.

III. METHODOLOGY

In this section, we first give an overview of CSFCN, and
then expatiate the details of its two components.

A. Network Architecture

The overall architecture of the proposed CSFCN is illus-
trated in Fig. 3, which adopts an asymmetric encoder-decoder
architecture. Specifically, CSFCN employs a lightweight back-
bone network to extract multi-level features. After that,
we devise the Context Feature Calibration module to build
private contexts for each pixel to enhance its discrimination.
Further, we use the Spatial Feature Calibration module for
spatial feature calibration to produce strong semantic features
with precise boundaries. Without loss of generality, we adopt
pre-trained ResNet-18 [37] from the ImageNet [38] as the
backbone network, and other CNNs can also be used as the
backbone in our method.

B. Context Feature Calibration Module

Context information can provide rich scene category priors
to correct unexpected misclassification. However, previous
methods [4], [5], [6] aggregate contexts within predefined
regions and overlook that not all contexts contribute equally to
classify a given pixel, which inevitably leads to the problem of
context mismatch. Besides, the captured contexts are heavily
biased towards large objects as they contain more pixels, and
lead to over-smoothing results for small objects. Based on
the above insights, we propose a Context Feature Calibration
module to tailor and refine semantic contexts for each pixel.

Typically, large objects or stuff dominate the image, and
the global contexts are often similar to them while different
from spatial details. Inspired by this intuition, we match the
contexts with each pixel to catch the most instructive context
for its classification. That is, we aggregate the contexts from
the semantic-closer region instead of the spatial-closer one.
Concretely, given feature X € RE*H*W e first process X
to capture highly-abstracted multi-scale contexts Z € R€*M,
Then, we compute the pixel-context similarity ® e RV*M,
ak.a., spatial attention map, where N = H x W and M
denote the total number of pixels and contexts, respectively.
We employ ® as guidance to aggregate contexts for each
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Fig. 3. Overview of CSFCN. Given an input image, we first use the backbone network to extract features of different stages. Then we adopt a 3 x 3 convolution
layer (green arrow) with a reduction ratio r (r = 2 by default) to squeeze the features to reduce the computation cost. Afterward, we use CFC and SFC to
calibrate features to produce more robust and discriminative features. Finally, we employ an output layer (red arrow) containing a convolutional layer and an
upsampling layer to generate the final output. For 2D offsets, we visualize them by color coding. Best viewed in color and zoom in.
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Fig. 4. (a) Demonstration of our cascade pyramid pooling layer. We first
employ several cascade adaptive pooling layers to generate pooling results,
then flatten and concatenate them to obtain the pyramid multi-scale contexts.
(b) The implementation procedure of the Context Feature Calibration module.

pixel to realize context feature calibration. Finally, we further
adjust the response values of each semantic context to generate
fine-grained contexts, thereby enabling context recalibration.
Mathematically, our CFC can be defined as:

M
Yi=ai'2f(xi,zj)'zj+xi (1)

j=1

where {x,-,y,-,a,-,zj} e RE*! represent the input, output,
recalibration factor and context, respectively. i ranges in
[1,---, H x W], f(-) denotes a pairwise function to calculate
the affinity between features.

1) Module Details: We illustrate our CFC module in Fig. 4.
In pursuit of efficiency, we design Cascaded Pyramid Pooling
(CPP) block to reuse the pooling results of previous layers,
which reduces unnecessary redundant computations. As in
Fig. 4, given a feature X € RE*#*W e first employs a
1 x 1 convolutional layer to generate a reduced-dimensional
feature Q € RE*HXW  where C’ is much less than C

(By default, C’ = 32, C = 256). Then, we use the CPP block
to harvest the multi-scale contexts Z € R€*M_ In particular,
when the pooling layer’s output height n € [1, 2, 3] (generally,
the output width equals the height), M = Zn€[1,2,3,6] n? = 50.
By default, we set n = [1, 2, 3, 6]. Since the pooling layer
performs pooling over a homogeneous spatial grid (e.g., 3 x3),
this may lead to information redundancy of the pooled features
when the aspect ratio of the input is not 1. To this end, we keep
the aspect ratio of the pooling output size to be equal to the
input. For example, our smallest output size is 1 x 1 when
training on square crops, while its size will be 1 x 2 for a
1024 x 2048 input. Finally, we feed Z into two convolution
layers (with BN and ReLU) to produce two forms of context
representation, i.e., K € RE*M and V e RCXM

Afterward, we reshape and transpose Q to RY *C" and take
a matrix multiplication between Q and K, and add a softmax
layer to produce pixel-context affinity ® e RV*M:

exp (Ql- . Kj)

0=
zyzﬂxp (Qi -Kj)

©))

where ©; ; represents the affinity between i'" pixel Q; and
7 context K ;- Finally, we perform a matrix multiplication
between V and ©7 to attain the calibrated semantic context
E € RE*VN and reshape E to REX#*W After obtaining the
calibrated context E, we send it to the Context Recalibration
Block (CRB) to generate the refined context E’. CRB adopts

residual-like design [37], which can be formulated as:

o

E = tanh (W, (W; (X +E))) -E+E A3)

where @ € RE*H*W denotes recalibration factor, W €
RTXCx1x1 and W, € RC X x3x3 denote convolution layers.
Here, we choose the tanh function to remove redundant infor-
mation and highlight beneficial information (e.g., boundaries
and small objects) in the contexts. Finally, we conduct an
element-wise summation among X and E’ to generate the final
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Fig. 5. The details of the Spatial Feature Calibration module.

output Y € REHXW a5 follows:
Y=—X+FE “)

Here we adopt summation instead of concatenation operation
to reduce the computational costs.

C. Spatial Feature Calibration Module

To remedy the loss of spatial details caused by the stepwise
downsampling, previous methods [5], [8], [9] adopt cross-
level feature fusion to enhance the high-level semantic feature
with low-level details. Given low-resolution feature F, €
RCexHexWe and high-resolution feature Fy € RCn*HnxWn
they first upsample F, via the standard bilinear interpolation,
and then add or concatenate F5 and the upsampled F; to obtain
the output. However, due to the spatial misalignment and huge
representation gap, directly fusing them still cannot achieve
satisfactory performance. Besides, as feature map encode
various semantic information [39], performing unified feature
alignment along the channel dimension [17], [22] would also
harm performance. To mitigate these issues, we group the
dimension of channels into multiple sub-features to perform
calibration operations separately, and seamlessly integrate the
gating mechanism to fuse cross-level features adaptively.

Regarding feature calibration, we propose to adopt feature
resampling to reconstruct features. Concretely, suppose the
spatial coordinates of each location on the feature map are
{1,1),(,2),...,(H, W)} and the learned 2D offset map
is A € R¥*H*W_ QOur calibration function 7 (-) can be
formulated as:

H W
Unw =2 > Firur -max(0.1 - ‘h + B =D
noow
-max(0,1 — ‘w + A%L,w —w')) )

which sample feature at p = (h—i—A}l,w, w+Aﬁ’w) to derive the
output Uy, 4,. Since p denotes an arbitrary (fractional) location,
Eq. 5 enumerates all integral locations and uses bilinear
interpolation kernel to obtain the features of the sampling
location. Intuitively, as shown in the Sampling process in
SFC in Fig. 3, we simply sample the most favorable feature
for the current location (blue point) to replace the current
location (green point) feature for calibration. Besides, for finer
calibration, we split feature F into G groups along the channel
dimension, and then align the features within each group
separately, as depicted in Fig. 5.

As F). generally contain rich spatial details, while F, contain
more semantics, merely calibrating and then fusing them
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cannot yield satisfactory performance. This is because feature
calibration alone cannot handle the huge representational dif-
ferences between features. Thus, we further propose to fuse
calibrated semantic features F, and fine-grained features F),
adaptively through a gating strategy, bridging the representa-
tion gap between them:

O0=p®F,+ B, F; (6)

where B, and f5 denote the gate masks.

1) Module Details: For efficiency, we integrate the cal-
ibration and fusion procedure in a single Spatial Feature
Calibration module. As depicted in Fig. 5, given feature
F; € RCHXWe and Fy;, € RE<HnxWn - we first unify their
channels to the same number C (= 128 by default) by two
convolution layers. Secondly, we adopt bilinear interpolation
to upsample F,. Then, the upsampled F, and F3 are concate-
nated. After that, we feed them into a convolution block to
predict two groups of offset maps A, € RZXO*HxW apq
Ay € RCXOXHXW for aligning two levels of features and
two gate masks B¢, By, € R>*H*W for controlling the flow of
feature information at two levels. Finally, the calibrated cross-
level features perform element-wise summation to obtain the
output. In summary, our SFC module can be formally written
as:

O0=8T UWFp),Ap) +Br®T (WrFp, Ap)  (7)

where U (-) denotes bilinear upsample function, W, €
RCexC'>3%3 anq W5 e RExCx3x3 (denote convolutional
layer with BN and ReLU.

Note that we adopt the residual idea to alleviate the negative
effects of large offset and mask prediction errors in the initial
phase, which allows us to insert SFC into the network without
compromising its original performance (if the convolution
block is constructed as zero mapping). That is, we initialize the
weight of the last convolutional layer of the convolution block
to zero to gradually learn more accurate offsets and masks.
Besides, we opt to adopt a 1 + tanh activation for the gate
masks. Thus, initially, 7 (F, 0) becomes an identity mapping
and 8 = 1 4 tanh(0) = 1. Now, SFC can be formulated as:

O =U (WiFy) + WrFp ®)

At this time, our SFC module is equivalent to the simple
feature fusion strategy in [3], [8], and [9].

IV. EXPERIMENTS

To verify the superiority of our method, we conduct
thorough experiments on Cityscapes [19] and CamVid [20]
datasets, whose details are shown in Table I. In the following,
we first introduce the implementation details of our method.
Then, we conduct ablation studies on the Cityscapes to discuss
the effect of our proposed modules. Finally, we make detailed
comparisons with the state-of-the-art (SOTA) works on two
benchmarks to illustrate the effectiveness of our method.
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TABLE I
SEMANTIC SEGMENTATION DATASET STATISTICS

Dataset I Purpose [Classes| Resolution [Samples (training) [Samples (validation) [Samples (test) [Samples (total)
Cityscapes [19] Urban 30 (19)] 1024 x 2048 2975 500 1525 5000
CamVid [20] Urban (Driving) |32 (11)| 960 x 720 367 100 233 701

A. Implementation Details TABLE II

1) Baseline: To validate the proposed modules, we first
build a Baseline model, which is an FCN32-like [3] ResNet-
18 network with an auxiliary supervision branch [4]. More
details about the Baseline are in Supplementary Material.

2) Training: We train our network using stochastic gradient
descent (SGD) with momentum 0.9, weight decay Se-4. The
batch size is set to 12 and 16 for the Cityscapes and CamVid,
respectively. Following the previous work [36], [40], the initial
learning rate is set to le —2 with a “ploy” learning rate policy

in which the learning rate is attenuated by (1 — m;;%) '
For data augmentation, we adopt random color jittering,
random horizontal flipping, random cropping, and random
scaling. The scale ranges in [0.125, 2.0], and the crop size is
1024 x 1024 for training the Cityscapes. For CamVid, the scale
ranges in [0.5,2.0] and the crop size is 720 x 960. Finally,
we train our networks for 120K and 40K iterations for the
Cityscapes and CamVid datasets, respectively.

3) Testing: We use mean Intersection-over-Union (mloU)
and Frames Per Second (FPS) to measure the accuracy
and latency, respectively, and use the float-point operations
(FLOPs) and model parameters (Params) to evaluate the model
complexity. Note, similar to [9] and [15], we exclude the
BN layers during testing since they can be merged with the
convolution layer, which can further improve inference speed.

B. Results on the Cityscapes Dataset

We perform ablation studies to understand each module.
In the follow-up experiments, we train the network on the
Cityscapes training set and evaluate it on the validation set.

1) Context Feature Calibration: In our method, the granu-
larity of the contexts significantly affects performance, largely
depending on the value of M, which is determined by the
pooling layer output size. To this end, we perform a set of
comparative experiments by changing the output size. As in
Table II, keeping the aspect ratio (KAR) of the pooling layer
input and output consistent can improve performance (76.96%
vs. 77.59%) visibly without adding excessive computation,
which comes from the more fine-grained contexts. Besides,
we find that the performance increases as the number of
contexts (M) increases, and the performance plateaus when
the output size exceeds (1,2, 3, 6). Note that overly detailed
divisions (e.g., (1, 3, 6, 8)) will cause performance degradation
(77.27% vs. 77.59%), possibly because the output contains too
little contextual information to provide high-quality semantic
cues. Ultimately, considering the compromise between effi-
ciency and accuracy, we adopt (1, 2, 3, 6) as the default setting.

Table III shows the results from various context modeling
methods. For fair comparisons, we reproduce all compared
modules under the same settings and uniformly append them

ABLATION STUDY FOR CFC WITHOUT CRB. “n” COLUMN INDICATES
THE OUTPUT HEIGHT/WIDTH OF THE ADAPTIVE POOLING LAYER.
WE CoMPUTE FLOPS OF DIFFERENT METHODS EXCLUDING THE

BACKBONE, DRL, AND ALL OUTPUT LAYERS, WHERE
THE INPUT SIZE IS 3 x 1024 x 2048

FLOPs | Speed
n KAR | M G) (FPS) mloU(%)
(1,2,3,6) w/o 50 0.08 77.27 76.96
(1,2,3,6) w/ 100 0.14 76.57 77.59
(1,) 2 0.02 77.36 75.38
(6,) 72 0.11 77.07 76.95
(1,2,3) 28 0.05 77.31 76.51
(1,2,6) w/ 82 0.12 76.99 77.19
(1,3,6) 92 0.14 76.85 77.43
(1,2,3,6) 100 0.14 76.57 77.59
(1,3,6,8) 220 0.29 76.26 77.27
TABLE III

COMPARISONS OF DIFFERENT CONTEXT MODELING METHODS.
WE CoMPUTE FLOPS OF DIFFERENT METHODS EXCLUDING THE
BACKBONE, DRL, AND ALL OUTPUT LAYERS. FPS IS MEASURED

ON GTX 1080 T1. THE INPUT SIZE IS 3 x 1024 x 2048

Params | FLOPs | Speed

Method ™) G) | (FPS) mlIoU(%)
Baseline - - 77.93 72.69
PPM [4] 0.07 0.02 |75.99 | 76.45(3.76 1)
ASPP [5] 2.23 444 |66.82 | 76.57(3.88 1)
AlignCM [22] 0.76 0.83 | 73.09 | 77.26(4.57 1)
DAPPM [41] 0.87 1.56 | 74.94 | 77.36(4.67 1)
APNB [21] 0.27 0.71 |73.28 | 77.37(4.68 1)
CAM [16] 0.00 0.27 | 74.59 | 76.99(4.30 1)
PAM [16] 0.08 2.58 | 71.82 | 77.56(4.87 1)
CFC (w/o CRB)|| 0.08 0.14 | 76.57 | 77.59(4.90 1)
CFC (w/ CRB) 0.25 0.48 | 76.55 |78.09(5.40 1)

to the dimensionality reduction layer (DRL, the green arrow
in Fig. 3). As in Table III, our CFC is superior to other
counterparts under similar or lower computing costs. For
example, CFC attains 78.09% mloU, which is 0.83 points
higher than that of AlignCM [22] (77.26%) when FLOPs are
lower. In particular, CFC achieves the best performance with
faster speed, surpassing PAM [16] (77.56% vs. 78.09%), while
our FLOPs are 81.4% fewer.

2) Visual Analysis: We first select some representative
images from the Cityscapes to further discuss the effect of
the CFC module. As in Fig. 6, since the contexts obtained
by pooling are often dominated by salient objects or stuff,
the prediction of inconspicuous or incomplete objects by
PPM [4] is somewhat weakened or even disregarded (e.g., the
“motorcycle” in the first row, the “traffic sign” in the second
row). By contrast, our CFC calibrates context features to tailor
the contexts for each pixel, which avoids the adverse effects
of salient objects and achieves better segmentation results.
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Baseline

CFC (w/o CRB) CFC (w/ CRB) Ground Truth

Fig. 6. Qualitative comparison against different context modeling modules. Best viewed in color.

"

Ground Truth CFC*

Fig. 7.  Visualization results of various methods. We denote CFC and
CFC* as not performing and performing context recalibration, respectively.
We randomly sample a point and compute its similarity against the whole
feature map. We visualize the semantic segmentation output for several
challenging regions in the second row. Hot colors represent larger values and
vice versa. Best viewed in color and zoom in.

Image Baseline

In parallel, we visualize the cosine similarity between the
selected point and the whole feature (generated from CFC)
to further analyze the mechanism of our CFC module. As in
Fig. 7, CFC can produce purer features than other competi-
tors, which indicates the features of a certain class in CFC
are hardly confused with others. For example, the similarity
for class “truck” and “car” in CFC is more complete and
clearer, which shows that CFC can reduce the misclassification
or inconsistent predictions inside large objects. In contrast,
PPM [4] that ignores pixel-context relationships tends to
mislabel these regions (e.g., the “bus” in the third image).
In addition, context recalibration can further improve the
performance (e.g., the “car” in the second image) and make
our method more friendly to small objects (e.g., the “pole” in
the third image).

3) Spatial Feature Calibration: We append the SFC module
to the Stage4 of the backbone without the DRL to inves-
tigate its capability. Note that if we place SFC after DRL
(like CFC), its computation and performance will decrease.
Experimental results of different settings are presented in
Table IV. We can see that performing grouping calibration
can obviously improve performance. For example, when using
1 + tanh activation, setting G = 2 outperforms G = 1
(i.e., w/o grouping) by 0.97% (77.15% vs. 78.12%) with only
a minor extra computation burden (6.73G vs. 6.80G). Mean-
while, 1+ tanh also achieves better performance than sigmoid
(77.37% vs. 78.12%), probably because of its superior initial
performance. Besides, different grouping numbers also bring
different performance improvements. Finally, considering the

TABLE IV

ABLATION STUDY OF DIFFERENT SETTINGS FOR SFC. WE COMPUTE
FLOPS OF DIFFERENT METHODS EXCLUDING THE BACKBONE AND
ALL OUTPUT LAYERS, WHERE THE INPUT SIZE IS 3 x 1024 x 2048

- Params | FLOPs | Speed
Groups || Activation M) G) (FPS) mloU(%)
G=1 1+ tanh 0.754 6.73 70.58 77.15
sigmoid 0.756 6.80 70.34 77.37
G=2 I+tanh
(w/ DRL) 0.461 6.20 70.81 77.66
1+tanh 0.756 6.80 70.02 78.12
G=4 1+ tanh 0.761 6.96 69.96 77.95
G=38 1+ tanh 0.770 7.26 69.43 78.19
TABLE V

PERFORMANCE COMPARISONS OF DIFFERENT METHODS. WE COMPUTE
FLOPS OF DIFFERENT METHODS EXCLUDING THE BACKBONE AND
ALL OUTPUT LAYERS, WHERE THE INPUT SIZE IS 3 x 1024 x 2048

Params | FLOPs | Speed

Method M) G) | (FPS) mloU(%)
Baseline - - 77.93 72.69
AFNB [21] 0.856 | 4.16 |66.22 | 73.62(0.93 1)
iGUM [42] 0.661 | 1.35 |39.45| 74.07(1.38 1)
AlignFA [22]]|| 0.825 | 22.74 | 59.71 | 75.25(2.56 1)
FAM [17] 0.599 | 1.39 |72.87| 76.21(3.52 1)
iAFF [43] 1.382 | 13.46 | 61.55| 77.22(4.53 1)
Fusion 0.751 | 6.49 |70.57 | 75.09(2.40 1)
Calibration 0.753 | 6.69 |70.23 | 77.45(4.76 1)
SFC 0.756 | 6.80 |70.02|78.12(5.43 1)

trade-off between performance and efficiency, we choose
G =2 and 1 + tanh activation as the default settings.

In addition, we also compare SFC with its similar methods.
Table V presents the results, where “Calibration” and “Fusion”
denotes that SFC only performs feature calibration or gated
fusion. For a fair comparison, we also reproduce all compared
modules under the same settings. It is observed that iGUM [42]
which directly corrects the predicted output is difficult to
obtain high accuracy. Besides, FAM [17] and AlignFA [22],
which align different level features and directly blend the
multi-level features, ignoring the differences between different
level features and sub-features, resulting in poor performance
(76.21% and 75.25% mloU). Meanwhile, iAFF [43], which
adopts attentional feature fusion, achieves relatively superior
performance (77.22%). In comparison, our SFC not only
calibrates the sub-features in each group of multi-level features
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Fig. 8. Visual results of the SFC module. For offset visualization, we visualize it using the color coding in the third column. For a clear comparison, we crop
representative patches (yellow dashed boxes) from the original image and visualize their prediction errors, where the correctly predicted pixels are displayed
with the white background, and the incorrectly predicted pixels are colored with their ground truth color. Best viewed in color and zoom in.

Baseline

Image

SFC (G=1) SFC (G=2)

Fig. 9. Visualization results of output feature maps from different methods.

but also adopts a weighted fusion strategy to bridge the
representation gap among them, thus deriving more leading
performance (78.12% mloU and 70.02 FPS).

4) Visual Analysis: We first observe the mechanism of
SEC through visualization. As in Fig. 8, the offsets typi-
cally point from the boundaries to some locations inside the
objects, which are usually located near the center of the
object and thus have a large receptive field to grab strong
semantics. That is, by using the offsets to calibrate features,
the prediction of object boundary pixels can be corrected
by interior pixels. Therefore, SFC can generate more precise
boundaries (e.g., the “truck” in the first row). However, since
the differences between sub-features are ignored, the unified
calibration (G = 1) even brings unexpected errors. For exam-
ple, the “rider” in the first row is incorrectly classified as the
“person”. Meanwhile, SFC (G = 1) also has misclassification
in the region with similar textures, such as the upper part of
the “truck” in the third row. In contrast, grouping calibration
(G = 2) can produce more accurate results. The visualization
results manifest the effectiveness of feature grouping calibra-
tion, which is consistent with the results in Table IV.

We further compare the feature maps produced by different
methods to verify the effectiveness of our SFC, as shown in
Fig. 9. We can see that although SFC (G = 1) calibrates
the features to some extent, it does perform poorly on some
details, e.g., the rear wheel of the “bus” in the first row and
the top left corner of the “truck” in the third row, probably
because performing uniform calibration on all feature maps
weakens the information of the inconspicuous objects and
stuff. In comparison, performing group calibration (G = 2)

obtains more structural and complete feature maps, which
shows the importance of feature grouping calibration.

5) In-Depth Comparison: To further analyze the effects
of the two modules, we present the class-wise quantitative
comparison. As in Table VI, importing CFC (w/o CRB) to the
Baseline brings the mloU improvement of 21.5% and 22.0%
on “truck” and ‘“train”, respectively. Meanwhile, compared
to the PPM [4] which builds homogeneous contexts for
each pixel, CFC (w/o CRB) also improves performance on
inconspicuous and incomplete objects, e.g., by 2.2% and 3.3%
on “rider” and “motorcycle”, respectively. The performance
improvement illustrates that calibrating the context features
of each pixel is indeed effective. Besides, recalibrating the
contexts can further improve performance, especially for small
objects. For example, CFC (w/ CRB) outperforms CFC (w/o
CRB) on “pole”, “traffic light” and “traffic sign” by 0.7%,
0.8% and 1.2% mloU, respectively.

Meanwhile, SFC also raises the accuracy of small objects.
Quantitatively, by appending SFC (G = 1) to the Baseline,
we obtain mloU improvement of 4.7%, 4.6%, and 4.7%
on “pole”, “traffic light” and “traffic sign”, respectively.
Meanwhile, by integrating the gating mechanism into SFC
seamlessly, we solve the semantic confusion caused by simple
fusion strategies to some extent. For example, compared to
FAM [17] and AlignFA [22], SFC (G = 1) improves the
accuracy of the large object “truck” by 6.9% and 1.6%, and the
accuracy of the small object “pole” by 0.8% and 7.8%, respec-
tively. Additionally, after group calibration, SFC (G = 2) still
obtains a significant performance improvement (77.15% vs.
78.12%), which proves its necessity and effectiveness.

Finally, CSFCN, built with these two modules, attains
79.00% mloU, where 12 out of the 19 classes yield the best
accuracy, which verifies the robust adaptability of our method
to various objects and stuff.

6) Visual Analysis: To reveal the superiority of our
CSFCN intuitively, we compare the segmentation results
of CSFCN and several fashionable real-time methods,i.e.,
ENet [27], CGNet [44], BiSeNetV2 [33] and STDC2-Seg75
[36], on the Cityscapes validation set. As shown in Fig. 10, our
CSFCN generates higher-quality segmentation results. Con-
cretely, CSFCN produces more consistent predictions inside
large objects (e.g., the “fence” and “bus”) with a large
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TABLE VI

CLASS-WISE RESULTS ON THE CITYSCAPES VALIDATION SET. LIST OF CLASSES (FROM LEFT TO RIGHT): ROAD, SIDE-WALK, BUILDING, WALL,
FENCE, POLE, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY, PERSON, RIDER, CAR, TRUCK, BUS, TRAIN,
MOTORCYCLE, AND BICYCLE. RED/BLUE INDICATE SOTA/THE SECOND BEST

Method [[Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Per Rid Car Tru Bus Tra Mot Bic [mloU
Baseline 97.8 82.9 91.6 459 57.0 61.6 659 742 91.8 61.1 939 78.7 56.7 93.9 61.5 77.7 579 57.3 73.7|72.69
PPM [4] 98.0 84.4 923 57.3 58.1 63.1 67.2 757 92.1 63.9 943 79.5 59.5 94.7 81.0 86.2 72.3 59.1 73.8|76.45
ASPP [5] 98.3 85.6 92.2 51.5 59.2 64.7 679 773 922 62.6 94.4 80.1 59.5 949 79.3 85.5 74.9 59.8 74.9|76.57
AlignCM [22] 98.1 84.7 92.4 547 60.9 64.3 67.2 76.6 92.1 62.4 94.4 80.0 59.4 94.8 81.6 88.4 79.5 61.4 75.0|77.26
DAPPM [41] 98.0 84.1 92.3 542 59.3 64.2 66.8 76.3 92.0 63.9 94.4 80.6 60.9 94.8 80.9 88.0 80.5 63.3 75.1|77.36
APNB [21] 98.2 84.9 923 533 60.0 64.1 67.8 77.1 922 62.4 94.4 80.1 59.9 949 84.5 87.3 79.2 62.4 75.1|77.37
PAM [16] 98.3 85.5 924 57.5 59.0 64.3 68.0 76.5 92.3 63.1 94.5 80.0 60.5 94.8 80.1 88.3 81.9 61.2 75.4|77.56
CFC (w/o CRB) || 98.2 85.0 92.3 55.6 59.0 64.3 67.9 759 922 63.9 94.5 80.5 61.7 94.9 83.0 87.7 79.9 62.4 752|77.59
CFC (w/ CRB) |/98.2 853 924 59.1 61.0 65.0 68.7 77.1 92.2 64.4 944 809 60.3 94.9 83.5 87.9 80.5 62.6 75.2|78.09
AFNB [21] 97.9 83.7 91.7 385 572 63.3 67.6 75.8 91.9 61.8 942 79.7 57.3 94.0 61.1 81.1 68.1 589 74.8|73.62
iGUM [42] 97.8 82.8 91.7 503 57.3 614 66.2 74.1 91.8 60.7 942 78.2 55.7 93.6 66.0 83.9 72.6 55.7 73.3|74.07
AlignFA [22] 97.5 81.7 919 50.2 59.2 58.5 66.9 76.0 91.8 59.8 94.5 79.6 60.3 94.3 76.1 85.0 73.0 58.9 74.6|75.25
FAM [17] 98.1 84.1 92.2 458 59.5 65.5 69.6 782 92.3 60.2 95.1 81.6 61.1 94.8 70.8 86.2 78.0 58.6 76.4|76.21
iAFF [43] 98.3 85.6 92.2 43.8 58.6 66.2 71.2 80.0 92.5 60.9 95.1 822 62.6 95.1 81.7 86.1 76.6 62.4 76.2|77.22
SFC (G =1) 98.1 84.3 923 48.6 59.2 66.3 70.5 789 92.5 64.2 95.1 822 63.1 95.1 77.7 854 742 61.3 76.9|77.15
SFC (G =2) 98.1 84.4 92.8 558 59.7 66.3 71.5 80.0 92.6 62.5 952 82.4 64.0 95.3 79.4 85.8 79.5 61.7 77.0|78.12
CSFCN [[98.3 86.0 92.6 52.9 60.4 67.5 71.3 80.1 92.8 62.7 952 82.7 63.2 95.6 85.8 88.9 85.0 62.7 77.3[79.00

(a) Input

(b) ENet (c) CGNet

(d) BiSeNetV2

(e) STDC2-Seg75 f) CSFCN (g) Ground Truth

Fig. 10. Visual comparison of various methods on the Cityscapes validation set. Best viewed in color and zoom in.

internal variation. By contrast, BiSeNetV2 [33] and STDC2-
Seg75 [36] generally cannot handle this situation due to their
limited receptive fields. Besides, CSFCN also performs better
on small objects (e.g., the “person” and “pole”), while other
methods (e.g., ENet [27] and CGNet [44]) have difficulty han-
dling them because they lose considerable spatial information.
Finally, our method also works well with occluded objects,
such as the “car” in the fifth image. In summary, our CSFCN
performs favorably against the other four methods.

7) Comparisons With State-of-the-Arts: We first present the
detailed per-class results of various methods on the Cityscapes
test dataset to study the superiority of CSFCN. As in
Table VII, our CSFCN has reached the best mloU on most
classes (e.g., “road”, “truck” and “bicycle”), which signifi-
cantly outperforms existing real-time methods (e.g., ENet [27],
CGNet [44] and PCNet [11]). Nonetheless, CSFCN is still dif-
ficult to handle spatial-detail related classes (e.g., “traffic light”
and “ traffic sign”) compared with accuracy-oriented methods

(e.g., DUC [23]), which generally adopt a large dilated
backbone (e.g., ResNet-101 [37]) to extract high-resolution
features. However, our method can also achieve comparable
performance and outperforms it in overall accuracy (78.7%
vs. 77.6%). Moreover, CSFCN that adopts MobileNetV3-L as
the Backbone also achieves better accuracy (75.1%) with less
computation (21.7G FLOPs).

We further compare the CSFCN with SOTA real-time
networks on the Cityscapes test set. In particular, we append
50, 75 and 100 after the network name to represent the
input sizes of 512 x 1024, 768 x 1536 and 1024 x 2048,
respectively. As in Table VIII, our CSFCN achieves the
best speed-accuracy trade-off and outperforms other com-
petitors by a relatively large margin. Concretely, with faster
speed, CSFCN-100 achieves the best accuracy of 78.7%
mloU, outperforming SFANet [12], MGSeg [1], Hyper-
Seg [48], and BiSeNetV2-Lt [33] by 0.6%, 0.9%, 2.9% and
3.4%, respectively. Meanwhile, our CSFCN-50 outperforms
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TABLE
CLASS-WISE EVALUATION RESULTS ON THE CITYSCAPES TEST SET. LIST OF
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VII
CLASSES (FROM LEFT TO RIGHT): ROAD, SIDE-WALK, BUILDING, WALL,

FENCE, POLE, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY, PERSON, RIDER, CAR, TRUCK, BUS, TRAIN, MOTORCYCLE, AND
BICYCLE. METHODS WITH THE & SYMBOL ARE REPRESENTED AS THE ACCURACY-ORIENTED METHODS

Method [[Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Per Rid Car Tru Bus Tra Mot Bic [mloU
ENet [27] 96.3 742 85.0 32.2 33.2 43.5 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 369 50.5 48.1 38.8 55.4| 58.3
CGNet [44] 95.5 78.7 88.1 40.0 43.0 54.1 59.8 63.9 89.6 67.6 929 749 549 90.2 44.1 59.5 252 473 60.2| 64.8
ERFNet [28] 97.9 82.1 90.7 452 50.4 59.0 62.6 68.4 919 69.4 942 785 59.8 93.4 523 60.8 53.7 49.9 64.2| 69.7
ESPNetV2 [29] ||97.3 78.6 88.8 43.5 42.1 49.3 52.6 60.0 90.5 66.8 93.3 72.9 53.1 91.8 53.0 659 53.2 442 59.9| 66.2
FBSNet [31] 98.0 832 91.5 509 53.5 62.5 67.6 71.5 92.7 70.5 94.4 825 63.8 93.9 50.5 56.0 37.6 56.2 70.1| 70.9
PCNet [11] 98.3 84.4 91.4 484 52.6 57.1 63.8 69.7 92.3 70.0 94.6 80.6 61.5 945 61.2 739 63.2 57.3 69.3| 72.9
Reference [14] ||98.2 84.0 91.6 50.7 49.5 60.9 69.0 73.6 92.6 70.3 94.4 83.0 65.7 949 62.0 70.9 533 62.5 71.8| 73.6
DMA-Net [35] [|98.5 85.5 92.2 53.3 55.3 62.5 70.9 749 93.0 71.2 95.0 84.0 66.6 95.6 68.2 82.8 76.6 64.5 73.2| 77.0
RefineNet} [8] [|98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70.0| 73.6
DUCH [23] 98.5 85.5 92.8 58.6 55.5 65.0 73.5 77.9 93.3 72.0 95.2 84.8 68.5 954 70.9 78.8 68.7 65.9 73.8| 77.6
CSFCN (M) 98.4 84.7 92.2 50.3 54.8 61.2 67.8 73.5 92.8 70.3 95.3 82.5 64.4 95.1 56.3 76.8 77.7 60.9 71.5| 75.1
CSFCN-50 98.2 83.3 90.9 48.8 50.1 56.9 61.8 67.3 91.8 68.8 94.5 79.0 62.3 94.1 67.2 83.6 78.5 57.8 66.5| 73.8
CSFCN-75 98.6 86.0 92.8 519 59.4 66.3 72.8 769 93.5 71.3 952 85.2 69.2 95.8 71.6 84.3 82.3 65.5 74.2| 77.2
CSFCN-100 98.6 86.2 92.8 53.6 59.0 66.4 73.1 77.1 93.5 71.9 954 85.3 69.0 95.8 70.0 83.9 84.5 64.8 74.6| 78.7
TABLE VIII

ACCURACY AND SPEED COMPARISONS WITH SOTA WORKS ON THE CITYSCAPES TEST DATASET. METHOD DENOTED WITH f USES TENSORRT

ACCELERATION STRATEGY TO MEASURE THE INFERENCE SPEED, WHICH WILL SUBSTANTIALLY IMPROVE THE EFFICIENCY

Method i Backbone | Input Size [ FLOPs (G) | GPU [ FPS [ mloU(%)
NDNet [30] Custom 1024 x 2048 8.4 TitanX 52.6 65.7
ESPNetV2 [29] ESPNetV2 512 x 1024 2.7 GTX 1080Ti | 61.9 66.2
ERFNet [28] Custom 512 x 1024 27.7 TitanX M 41.7 69.7
FRNet [10] Custom 512 x 1024 - TitanXp 127.0 70.4
FBSNet [31] Custom 512 x 1024 9.7 RTX 2080Ti | 90.0 70.9
DFANet A [34] Xception A 1024 x 1024 34 TitanX 100.0 71.3
DFANet B [34] Xception B 1024 x 1024 2.1 TitanX 120.0 67.1
BiSeNetl [32] Xception-39 768 x 1536 14.8 GTX 1080Ti | 105.8 68.4
BiSeNet2 [32] ResNet-18 768 x 1536 55.3 GTX 1080Ti | 65.5 74.7
BiSeNetV2t [33] Custom 512 x 1024 21.1 GTX 1080Ti | 156.0 72.6
BiSeNetV2-Lj [33] Custom 512 x 1024 118.5 GTX 1080Ti | 47.3 75.3
PCNet [11] Custom 1024 x 2048 11.5 GTX 2080Ti | 79.1 72.9
Reference [14] MobileNetV2 448 x 896 49.5 TitanX 51.0 73.6
DMA-Net [35] ResNet-18 1024 x 2048 94.2 GTX 1080Ti | 46.7 77.0
SwiftNetRN-18 [9] ResNet-18 1024 x 2048 104.0 GTX 1080Ti | 41.0 75.5
RGPNetf} [45] ResNet-18 1024 x 2048 - RTX 2080Ti | 153.4 74.1
SegFormer [46] MiT-BO 1024 x 2048 125.5 Tesla V100 15.2 76.2
HoloSeg [47] Custom 512 x 1024 17.3 RTX 2080Ti | 118.0 76.2
STDC1-Seg507 [36] STDC1 512 x 1024 - GTX 1080Ti | 250.4 71.9
STDC2-Seg75% [36] STDC2 768 x 1536 - GTX 1080Ti | 97.0 76.8
HyperSeg [48] EfficientNet-B1 512 x 1024 7.5 GTX 1080Ti | 36.9 75.8
MSFNet [49] ResNet-18 1024 x 2048 96.8 RTX 2080Ti | 41.0 77.1
DDRNet-23-Slim [41] || DDRNet-23-Slim | 1024 x 2048 36.3 RTX 2080Ti | 108.8 77.4
PP-LiteSeg-B2t [13] STDC2 768 x 1536 - GTX 1080Ti | 102.6 77.5
SFNet [17] DF2 1024 x 2048 - GTX 1080Ti | 53.0 77.8
MGSeg [1] ResNet-18 768 x 1536 54.3 GTX 1080Ti | 84.0 76.4
MGSeg [1] ResNet-18 1024 x 2048 96.5 GTX 1080Ti | 50.0 77.8
SFANet [12] ResNet-18 1024 x 2048 99.6 GTX 1080Ti | 37.0 78.1
CSFCN-100 MobileNetV3-L 1024 x 2048 21.7 GTX 1080Ti | 63.4 75.1
CSFCN-50 ResNet-18 512 x 1024 24.9 GTX 1080Ti | 229.1 73.8
CSFCN-75 ResNet-18 768 x 1536 56.2 GTX 1080Ti | 122.2 77.2
CSFCN-100 ResNet-18 1024 x 2048 99.8 GTX 1080Ti | 70.0 78.7

STDC1-Seg50F [36] by 1.9% mloU with a similar infer-
ence speed. In particular, our CSFCN-75 also outperforms
BiSeNet2 [32] by a large margin (2.5%) with the same
backbone (ResNet-18) and similar FLOPs (55.3G vs. 56.2G).
Particularly, although depth-wise convolutions can signifi-
cantly reduce computation (means fewer FLOPs), its actual
inference speed is often lower than standard convolution due

to memory access cost or other reasons [50]. Hence, unlike
methods such as FBSNet [31] or SFANet [12], we only use
standard convolution for faster speed (70.0 FPS).

8) Efficiency Evaluation: Efficiency is crucial for real-time
semantic segmentation. Previous studies reported efficiency on
various hardware setups. To ensure fairness, we re-test previ-
ous methods with their open-source codes on our environment.
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TABLE IX
CLASS-WISE EVALUATION RESULTS ON THE CAMVID TEST SET. LIST OF CLASSES (FROM LEFT TO RIGHT): BUILDING,
TREE, SKY, CAR, SIGN, ROAD, PEDESTRIAN, FENCE, POLE, SIDEWALK AND BICYCLIST
Method [[ Pretrain Bui Tre Sky Car Sig Roa Ped Fen Pol Sid Bic [ mloU
ENet [27] Scratch 747 778 951 824 51.0 951 672 517 354 867 34.1 51.3
BiSeNetl [32] ImageNet 822 744 919 80.8 428 933 538 497 254 773 500 65.6
BiSeNet2 [32] ImageNet 83.0 75.8 92.0 837 465 946 588 53.6 319 814 540 68.7
PCNet [11] Scratch 823 745 914 805 448 951 568 402 340 817 553 67.0
Reference [14] ImageNet 832 70.5 925 817 51.6 93.0 556 532 363 821 479 68.0
BiSeNetV2/BiSeNetV2-L [33] ImageNet - - - - - - - - - - - 72.4/73.2
CSFCN ImageNet 90.6 81.1 929 945 50.6 969 740 68.6 453 90.7 70.6 77.8
BiSeNetV2/BiSeNetV2-L [33] ImageNet - - - - - - - - - - - 76.7/78.5
PIDNet-S [15] Cityscapes - - - - - - - - - - - 80.1
CSFCN Cityscapes 91.7 821 93.0 954 556 975 764 754 520 922 79.2 81.0
Resolution: 384x768 Resolution: 512x1024
TABLE X Y N Y *
EFFICIENCY AND ACCURACY COMPARISONS ON THE CITYSCAPES o 2642 o] 20 T
VAL SET. THE FLOPS AND MAC ARE ESTIMATED BY 260 N ’ 682 : S
USING THE INPUT OF 3 x 1024 x 2048 4] = o0 193.4 ne
240 663 & ) 2
2279 E g0 702 E
Method FLOPs (G) MAC (GB) FPS mloU (%) 0 o S T
BiSeNet [32] 118.8 4.07 51.1 75.37 160 8
SwiftNet [9] 103.7 3.67 56.3 75.40 2007"CSFCN SwifiNet  BiSeNet 2 CSFCN  SwifiNet _ BiSeNet
MGSegt [1] 96.6 2.82 59.7 77.80 130 Resolution: 768x1536 Resolution: 1024x2048
SFANett [12] 994 4.85 454 78.40 122.2 78 20l 700 80
120 7&3 79.0
CSFCN (M) 21.7 4.98 634 7531 nof | 7o < "<
CSFCN 99.8 2.72 70.0 79.00 @ 100 7655 ¢ 60 563 7895
D) 94.3 s = 2
90 74.7 75 € s 51.1 778
%0 = 81.7 5 - 76
If no open-source code is available, we have reproduced them ®
. . 70 CSFCN SwiftNet BiSeNet 40 CSFCN SwiftNet  BiSeNet 7
to report results, denoted by T in Table X. Regarding accuracy . )
Fig. 11.  Comparisons of the speed (FPS) and accuracy (mloU) obtained

(mIoU), we directly copy the value from the original paper.
In particular, inspired by [1] and [51], we additionally use
Memory Access Cost (MAC) to evaluate the efficiency of
different methods. MAC indicates the number of memory
access operations for features and model weights:

MAC = (hin - Win - Cin + hour - Wour * Cour) + Cin - Cour -k - k
©

where the two terms denote the memory access for
input/output features and kernel weights, respectively. For
light-weight networks, MAC also has a significant impact on
the final inference speed [1], [51].

As in Table X, our CSFCN outperforms previous real-time
state-of-the-art methods. Compared with MGSeg [1], CSFCN
achieves higher accuracy while speeding up by around 17%.
Meanwhile, with similar FLOPs, CSFCN is 24% faster than
SFANet [12]. This is because the more complex structure of
SFANet leads to its higher MAC, which slows down network
inference. Besides, compared to SFANet, our CSFCN (M) with
MobileNetV3-L as the backbone has a 39.6% increase in speed
(63.4 FPS vs. 45.4 FPS), while FLOPs (21.7 G vs. 99.4 G)
have significantly decreased. We speculate that the difference
in metrics is due to the greater impact of MAC on speed.

We further evaluate the effect of input sizes on performance
by testing four resolutions (ranging from 384 x 768 to full res-
olution of 1024 x 2048) on the Cityscapes validation set. Two
open-source methods (i.e., SwiftNet [9] and BiSeNet [32]) that
share the same backbone as ours while achieving promising
performance are adopted for comparison. As shown in Fig. 11,

by different methods at different resolution inputs. We use bars and points to
denote the speed and accuracy of different methods, respectively.

our method achieves the best accuracy and speed at different
resolutions. In particular, our CSFCN achieves higher accuracy
(77.3%) than the best accuracy of its counterparts (75.4%)
with a smaller resolution of 768 x 1536, which denotes a
downscale of more than one times the full resolution. Besides,
with a minimum resolution of 384 x 768, our CSFCN achieves
better results (68.8%) than the minimum acceptable mloU
(defined as 65.0% [52]) at a faster speed. We attribute the
speed advantage of our method to its less FLOPs and MAC,
and higher parallelism (i.e., fewer branches). In summary,
the above experimental results further prove that our method
achieves a SOTA speed-accuracy trade-off.

C. Results on CamVid Dataset

We also conduct experiments on the CamVid dataset to
demonstrate the generalization of CSFCN. First, we present
the per-class results of various methods to discuss the
effectiveness of our method thoroughly. As presented in
Table IX, our CSFCN can obtain the best accuracy on
most classes. For example, compared with ENet [27] and
BiSeNet2 [32], our CSFCN (ImageNet) improves the accu-
racy of the large object “car” by 12.1% and 10.8% and
the accuracy of the small object “pole” by 9.9% and
13.4%, respectively. In particular, our CSFCN pre-trained
on Cityscapes achieves leading accuracy while maintaining
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TABLE XI

ACCURACY AND SPEED COMPARISONS WITH SOTA WORKS ON THE
CAMVID TEST DATASET. METHOD DENOTED WITH 1 USES TENSORRT
ACCELERATION STRATEGY TO MEASURE THE SPEED

Method [[ Input Size [ FPS | mloU(%)
DFANet [34] 720 x 960 160.0 59.3
CGNet [44] 720 x 960 - 65.6
RGPNett [45] 352 x 480 190.0 66.9
PCNet [11] 720 x 960 62.1 67.0
BiSeNet [32] 720 x 960 116.3 68.7
Reference [14] 720 x 960 39.3 68.0
BiSeNetV2t [33] 720 x 960 124.5 72.4
BiSeNetV2-Lt [33] 720 x 960 32.7 73.2
MGSeg [1] 736 x 960 127.0 72.7
DMA-Net [35] 720 x 960 119.8 73.6
SwiftNetRN-18 [9] 720 x 960 - 72.6
STDC1-Segt [36] 720 x 960 197.6 73.0
STDC2-Segt [36] 720 x 960 152.2 73.9
HoloSeg [47] 720 x 960 105.3 74.1
DDRNet-23-Slim [41] 720 x 960 230.0 74.4
SFANet [12] 720 x 960 96.0 74.7
PP-LiteSeg-Bf [13] 720 x 960 154.8 75.0
MSEFNet [49] 768 x 1024 91.0 75.4
CSFCN H 720 x 960 [ 179.2 [ 77.8

real-time performance. Concretely, Cityscapes pre-trained
CSFCN obtains 81.0% mloU at 179.2 FPS, stronger and
faster than MGSeg [1] and HoloSeg [47]. Second, we com-
pare CSFCN with SOTA works on the CamVid test dataset.
As reported in Table XI, our CSFCN yields 77.8% mloU
with 179.2 FPS for a 720 x 960 input, which realizes the
encouraging speed/accuracy compromise.

V. CONCLUSION

In this paper, we focus on the issues of context mismatch
and feature misalignment, and propose a novel segmentation
network, CSFCN, to resolve such issues while maintaining
high efficiency. Specifically, CSFCN has two core compo-
nents: the Context Feature Calibration (CFC) module and
the Spatial Feature Calibration (SFC) module. CFC uses
an efficient pooling module to capture multi-scale contexts,
then matches pixels and contexts to tackle the issue of
pixel-context mismatch. SFC groups channel dimensions into
multiple sub-features and then calibrates them separately to
ease the problem of spatial feature misalignment. With these
two modules, our CSFCN achieves remarkable performance
improvements without entailing excessive computation over-
head. Comprehensive experiments have illustrated that our
CSFCN achieves SOTA speed/accuracy trade-off on two chal-
lenging datasets, Cityscapes and CamVid.
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