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Abstract
Scene structure recovery is a crucial process for assisting scene reconstruction and understanding by extracting vital scene

structure information and has been widely used in smart city, VR/AR and intelligent robot navigation. Omnidirectional

image with a 180� or 360� field of view (FoV) provides greater visual information, making them a significant research topic

in computer vision and computational photography. However, indoor omnidirectional scene structure recovery faces

challenges like severe occlusion of critical local regions caused by cluttered objects and large nonlinear distortion. To

address these limitations, we propose a geometric-driven indoor structure recovery method based on planar depth map

learning, aiming to mitigate the interference caused by occlusions in critical local regions. Our approach involves designing

an OmniPDMNet, a planar depth map learning network for omnidirectional image, which uses upsampling and a feature-

based objective loss function to accurately estimate high-precision planar depth map. Furthermore, we leverage prior

knowledge from the omnidirectional depth map and introduce it into the structure recovery network (OmniSRNet) to

extract global structural features and enhance the overall quality of structure recovery. We also introduce a distortion-

aware module for feature extraction from omnidirectional image, allowing adaptability to omnidirectional geometric

distortion and enhancing the performance of both OmniPDMNet and OmniSRNet. Finally, we conduct extensive exper-

iments on omnidirectional dataset focusing on planar depth and structure recovery demonstrate that our proposed method

achieves state-of-the-art performance.
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1 Introduction

Recovering scene structure from a single image is a fun-

damental research area in computer vision. It involves

inferring the geometry of wall–wall, wall–floor and wall–

ceiling boundaries, which serve as essential geometric

priors for various applications, including indoor navigation

[1, 2], VR/AR/MR [3, 4] and design [5, 6]. Moreover,

structure recovery plays a crucial role in scene under-

standing, aiding object detection and layout recovery [7, 8].

Traditional perspective images captured using the standard

pinhole projection model [9–11] have made some progress

in scene structure recovery. However, their limited FoV

makes it challenging to capture the overall scene structure

and context information effectively. In contrast, omnidi-

rectional images with ultra-wide FoV offer richer global

contextual information for scene structure recovery.

In this work, our focus lies in indoor structure recovery

from omnidirectional image, and existing progress can be

classified into three categories. One is the geometry-based

method [12, 13], which leverages geometric features to

generate structural hypotheses, sort and optimize them,

extracting the most reasonable structural recovery. The
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second category is hybrid-driven approaches [14–16],

combining geometric features with semantic cues, which

have shown improved performance given the remarkable

progress of deep neural networks in image semantics. The

third category is end-to-end omnidirectional image struc-

ture recovery learning frameworks [17, 18], which enhance

structure recovery by designing different networks. In the

feature extraction module, standard convolution kernels are

employed for omnidirectional image feature learning. The

trained network predicts relevant elements(structural

boundaries or corners) in key indoor structural regions.

However, the fixed sampling strategy of standard convo-

lution limits the network’s ability to model geometric

transformations, making it challenging to address severe

geometric distortions in omnidirectional images. Recent

studies [18, 19] have explored the distortion of omnidi-

rectional image and proposed introducing deformable

convolutions to enhance the learning and modeling capa-

bilities of geometric transformations. Nevertheless, differ-

ent projection models exhibit distinct positional and

distortion characteristics. To tackle this issue, we adopt a

distortion-aware module based on the projection model,

enabling effective feature extraction from the omnidirec-

tional image.

Moreover, the key geometric structure regions of com-

plex scenes are often partially or completely occluded,

posing challenges in achieving high-precision scene

structure recovery. Structural features are closely related to

depth information. To address this issue, we introduce

plane depth into the omnidirectional image structure

recovery network, providing strong geometric clues to

effectively reduce the interference of occlusions and fur-

ther enhancing the performance of the structure recovery

network to obtain high-quality structure recovery. Con-

ventional depth estimation method from omnidirectional

image adopts the perspective split method [20], but it does

not fully exploit the global context information and is often

time-consuming and inefficient. The subsequent methods

based on projection fusion [21, 22] can mitigate distortion

to some extent by jointly training omnidirectional and

stereo projection maps, but they are difficult to train and

have a high time cost. Recently, popular methods focus on

optimizing depth estimation from the learning level of

omnidirectional features [23, 24] and extracting effective

features from omnidirectional image using various types of

distortion-aware convolutional filters. However, the depth

of the network structure directly impacts the learning

capability of the deep learning network, and fuzzy depth

estimation at the object edges can become an issue.

In this paper, we propose a geometric-driven network

based on planar depth map learning for achieving high-

quality structure recovery from omnidirectional indoor

image, as shown in Fig. 1. To this end, we construct a new

network for planar depth map estimation from omnidirec-

tional image (OmniPDMNet). To enhance depth estimation

accuracy, we incorporate the upsampling to deepen the

network structure, and we introduce a feature-based loss

function to address the issue of object edge ambiguity.

Additionally, we devise a structure recovery network from

omnidirectional image (OmniSRNet), which utilizes the

omnidirectional planar depth map as prior knowledge to

extract global and precise structural features. This enables

the network to effectively handle challenges posed by

severe occlusions, ultimately enhancing the quality of

structure recovery. Moreover, to tackle the problem of

large space-varying distortion, we introduce a distortion-

aware module for both OmniPDMNet and OmniSRNet,

thereby improving the performance of learning omnidi-

rectional geometric feature. Finally, we extensively eval-

uate our proposed method on both virtual and real-world

omnidirectional datasets. The experimental results

demonstrate the superior performance of OmniSRNet

compared to state-of-the-art methods. This affirms the

effectiveness and potential of our approach for high-quality

indoor structure recovery from omnidirectional image.

To summarize, we discover the correlations between

structure recovery and planar depth map learning. Our key

contributions are:

• We propose a new omnidirectional structure recovery

network driven by geometric prior knowledge, known

as a planar depth map from an omnidirectional image. It

can significantly alleviate the critical local regions’

interference from cluttered objects to generate high-

quality omnidirectional structure recovery. Moreover,

we demonstrate its flexibility through several applica-

tions, including MR video surveillance and VR house

viewing.

• We devise a new planar depth map learning network

with the upsampling and adopt a feature-based loss

function to generate an accurate depth map of the

omnidirectional image. Furthermore, we introduce a

distortion-aware module into omnidirectional feature

extraction, significantly enhancing the network’s ability

to handle large nonlinear distortion and further improv-

ing the performance of depth estimation and structure

recovery.

• We conduct extensive omnidirectional structure recov-

ery experiments on both virtual and real-world omni-

directional datasets, encompassing panorama and

fisheye images. Our proposed method surpasses state-

of-the-art methods in terms of quantitative metrics and

visual results, affirming its effectiveness and superior-

ity. The datasets and code will be published at https://

github.com/mmlph/OmniSRNet/.
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2 Related work

We review previous representative approaches on structure

recovery and depth estimation from omnidirectional image

that are most relevant to our work.

2.1 Structure recovery from the omnidirectional
image

The traditional structure recovery methods of perspective

images [9–11, 25–28] mainly determine the intersecting

boundary between indoor floor and walls under the con-

dition of ‘Manhattan world hypothesis’. Subsequently, they

generate three-dimensional structure by these wall bound-

aries. However, since standard camera can only capture a

limited 15% FoV of the human visual system, the corre-

sponding perspective image only records part of the scene

structure information, which seriously affects the effect of

overall scene structure recovery. While omnidirectional

images benefit from their ultra-wide omnidirectional FoV

(180� or 360�), which can maximize the coverage of the

overall scene information and provide rich global context

information for scene structure recovery and understand-

ing. According to different technologies, existing structure

recovery approaches are divided into three categories:

geometric-based, data-driven and depth-guided methods.

2.1.1 Geometric-based methods

The key idea in geometric-based structure recovery is to

follow the strategy of ’feature extraction to hypothesis

generation to scoring ranking’. The pioneering work of

Zhang et al. [12] proposed an indoor scene recovery

method from panorama image by making full use of the

contextual feature information. However, it needs the

process of projection transform splitting, which is time-

consuming and inefficient. Yang et al. [13] inferred the

panorama depth information by extracting superpixels and

line segments and then recovered the indoor structure by

combining depth, geometric features and semantic features.

Xu et al. [29] combined surface normal vector and object

information to recover the scene structure and inferred the

position and orientation of objects achieving the overall

recovery. Yang et al. [30] designed a structure recovery

network for panorama image with a dual encoder–decoder

branch (DulaNet) to alleviate occlusion problems. How-

ever, the hypothetical optimization strategies of the above

methods all bring high computational complexity, and the

Fig. 1 Given a single omnidirectional image (panorama or fisheye)

(a) and the corresponding mask image (a), our proposed OmniPDM-

Net first estimates the planar depth map (a). Then our OmniSRNet

driven by geometric prior (planar depth map) recovers accurate

indoor structure (marked by green), whereas the ground truth is

marked by blue (a). The corresponding 3D structures by our method,

cuboid and non-cuboid, are generated by post-processing (a)
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recovery effect also largely depends on the quality of the

extracted semantic information.

2.1.2 Data-driven methods

Inspired by the remarkable performance of Convolutional

Neural Networks(CNNs) in feature extraction, data-driven

structure recovery becomes attractive. One is to alleviate

the occlusion problem in the scene by extracting high-

quality depth or semantics and using a hybrid geometry

data-driven to infer the global optimal spatial structure

[14–16]. Subsequently, more and more end-to-end methods

have made great strides in omnidirectional structure

recovery. The pioneering work of Zou et al. [31, 32] pro-

posed and improved an end-to-end deep convolutional

neural network (LayoutNetv1 and LayoutNetv2) for struc-

ture recovery from panorama image. It adopts an encoder–

decoder strategy to quickly infer the 3D scene structure.

Following this strategy, Sun et al. [33] devised a panorama

structure recovery network based on the one-dimensional

representation of the structure, which can improve the

performance of the network by reducing the model

parameters, and can minimize the cost. Jiang et al. [17]

proposed a structure recovery network containing Trans-

former architecture to model geometry relations. Given the

serious nonlinear distortion in omnidirectional images,

Fernandez et al. [19] proposed a panorama structure

recovery network (CFLstd and CFLequi) based on deform-

able convolution. And then Rao et al. [18] introduced

spherical convolution to replace deformable convolution

(OmniLayout).

2.1.3 Depth-guided methods

Depth information is closely related to structure recovery,

depth-guided scene structure recovery alleviates the object

occlusion problem and optimizes the recovery effect by

using the depth map as an intermediate representation.

Perez-Yus et al. [34] constructed a hybrid camera system

combining traditional depth cameras and fisheye cameras.

It can combine large viewing angles with depth data and

generates corresponding structural hypotheses through the

detected structural corners to achieve the overall structure

recovery. Zhang et al. [35] inferred the depth maps of the

dominant planes in the scene and used the intersection of

the depth maps to generate the scene structure from a tra-

ditional perspective image. Zeng et al. [36] also adopted

the complementary features of geometric structure and

depth information and leveraged the depth to reduce the

occlusion of the structure by the cluttered objects in the

complex scene improving the structure recovery quality

(JLDNet). The above methods can alleviate the

interference of occlusion on structure recovery to a certain

extent, but the representation and quality of depth estima-

tion play a crucial role in the performance of structure

recovery.

2.2 Depth estimation from the omnidirectional
image

Depth information estimated from a single image is crucial

for indoor navigation [37], 3D map reconstruction [38] and

3D scene understanding [39]. Traditional depth estimation

methods generate regularized depth maps through non-

automated feature selection and probabilistic image models

[40, 41], which often suffer from over-constrained scene

geometry. Subsequently, researchers focus on multi-scale

networks [42–44] and robust loss functions [45] for con-

ditional random fields to continuously improve the depth

estimation accuracy from the perspective image.

With the popularity of omnidirectional cameras, depth

estimation techniques for omnidirectional images have also

been widely used. Researchers mainly adopt omnidirec-

tional feature learning or multiple projection fusion

strategies to alleviate the distortion interference of omni-

directional depth estimation. Tateno et al. [46] introduced a

panorama image depth estimation method based on a

deformable convolution filter correcting the receptive field

to achieve more accurate depth estimation. Zioulis et al.

[47] proposed a learning-based dense depth estimation

network (RectNet) for panorama images. Subsequently,

Eder et al. [48] devised a dense depth estimation method

for panoramic images based on plane perception. Cheng

et al. [23] designed a dilated convolutional depth estima-

tion network. Chen et al. [24] also proposed a distortion-

aware dense depth estimation network for panorama image.

Wang et al. [21] and Jiang et al. [22] both fully integrated

the global field of view of omnidirectional projection with

the distortion-free interference feature of stereo projection

and designed a dual-branch network with different pro-

jection maps as input to further improve the effect of

omnidirectional depth estimation. Additionally, Jin et al.

[49] proposed a learning-based depth estimation frame-

work, which leverages the geometry structure of the scene

as prior knowledge to conduct depth estimation.

Although the above methods have made some progress,

the gradient disappearance and overfitting in the depth

estimation network model, as well as the blurring of object

edges in the depth estimation results, reduce the accuracy

of depth estimation of the scene structure and affect the

three-dimensional structure of the scene. To provide an

effective guarantee for structure recovery, we design a new

planar depth map learning network introducing upsampling

and adopting a feature-based loss function to generate an

accurate depth map of the omnidirectional image.
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3 Proposed approach

3.1 System overview

The overall method mainly includes three parts: (1) net-

work architecture for planar depth map learning from

omnidirectional image (OmniPDMNet), (2) network

architecture with depth-driven for structure recovery from

omnidirectional image (OmniSRNet) and (3) post-pro-

cessing for 3D structure recovery. For the first two parts, an

encoding–decoding strategy is used to design the corre-

sponding network architecture, and the planar depth map

and the structure corner probability map are estimated,

respectively. We obtain the corresponding geometric

structure and three-dimensional point cloud through peak

processing of a diagonal probability map. The overview of

our framework is illustrated in Fig. 2.

The input of our algorithm is an omnidirectional RGB

image and the corresponding omnidirectional object mask,

and they are jointly input into the planar depth map

learning network from an omnidirectional image

(OmniPDMNet). The object mask guides the network to

predict structural depth maps that only contain depth

information on the main planes (ground, wall and ceiling).

To improve the accuracy of the estimated depth map, the

network uses ResNet50 [50] based on distortion perception

in the encoder of feature extraction, which can perform

effective omnidirectional feature learning and reduce the

interference of omnidirectional distortion on depth

estimation.

On this basis, the planar depth map as geometric prior

knowledge is introduced into the omnidirectional image

structure recovery network (OmniSRNet). This introduc-

tion of depth information enables the network to predict a

more accurate structural corner probability map, which

describes the location of key corner regions where the main

planes intersect. The two networks adopt a phased training

strategy, in which the planar depth estimation network uses

a gradient-based loss function for network convergence to

solve the problem of object edge ambiguity, while the

structure recovery network uses the binary cross-entropy

loss function to converge the network and improve the

accuracy of the predicted corner probability map. Finally,

we recover the 2D structure of the ground, wall and ceiling

in the omnidirectional image, and 3D structure through an

omnidirectional image 3D point cloud recovery method.

3.2 OmniPDMNet: network architecture
for planar depth map learning
from the omnidirectional image

For an empty scene without occlusion, the depth of field of

the scene has a strong correlation with the geometric

structure. The corner points of the scene structure are

located at the local maximum depth of field, and the depth

of field distribution in the same straight line or the same

plane presents a regular pattern. Therefore, we adopt an

encoder–decoder strategy and devise a planar depth esti-

mation network for omnidirectional image to predict the

planar depth map removed movable objects

Fig. 2 Overview of our approach for room structure recovery from a

single omnidirectional image. Given an input omnidirectional image

(fisheye or panorama) and the corresponding mask image, our

approach outputs the bounding cuboid (convex polyhedra) or general

non-cuboid representation of the indoor scene. It consists of (1) the

planar depth map learning network for omnidirectional image

(OmniPDMNet) and (2) the structure recovery network driven by

planar depth map for omnidirectional image (OmniSRNet)
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(OmniPDMNet). Taking it as geometric prior knowledge to

guide the structure recovery of complex scenes, which can

minimize the impact of clutter on key structural areas, and

obtain high-quality structure recovery. To improve the

accuracy of the structure depth, we introduce the distortion-

aware module (DAM) into the encoder to extract accurate

omnidirectional features. And the upward mapping layer

module based on the residual idea is added to the decoder

improving the network learning ability. What’s more, we

design a feature-based loss function to optimize the depth

estimation at the object edge. The overview of the

OmniPDMNet is illustrated in Fig. 2, where we introduce

several important novelties in detail as follows.

3.2.1 Network input

The input of OmniPDMNet consists of two parts, the

omnidirectional RGB image and the corresponding mask

image. The omnidirectional image includes panorama

image with the standard equirectangular projection (ERP)

and fisheye image with general orthographic projection

(Orth). The resolution of the input omnidirectional image,

3 9 H 9 W (for channel, height and width), is a hyper-

parameter and can be adjusted according to the experiment

condition. The mask image is a bitmap, and all the pixels

corresponding to the movable object are set to 0 and

presented in black. The pixel value of other structural areas

is set to 255 and presented in white.

3.2.2 Encoder with DAM

In our approach, we leverage ResNet50 as the backbone

network to extract relevant low/mid/high-level semantic

features from the input omnidirectional image. However,

the omnidirectional image does not conform to the pinhole

camera model [9, 11, 51], and the distortion cannot be

described by the conventional perspective relationship. The

standard convolution with fixed sampling strategy, com-

monly employed in convolutional neural networks, restricts

the receptive field of feature expression and limits the

network’s ability to model geometric transformations,

making it difficult to perform effective omnidirectional

feature learning. Following [52], we introduce the distor-

tion-aware module (DAM) into the last convolutional layer

of ResNet50 to improve the modeling ability of geometric

transformation in structural depth estimation. Specially, we

replace the standard convolution (of 3 9 3 filters) with

EquiConv [19] or OrthConv [52] in the last block for

panorama image and fisheye image, respectively.

Table 1 Ablation study for depth estimation on omnidirectional datasets (panorama and fisheye) with variations in Conv

Type (different convolutions), Loss.Type (Huber and Feature) and Mask.Strategy (Encoder and Decoder). The error and accuracy are shown in %,

and the results are highlighted with bold numbers in blue, yellow and green, indicating relatively superior performances for each ablation study.

The color green corresponds to the best overall performance achieved by OmniPDMNet. Evaluation metrics with (#) signify smaller values being

better, while metrics with (") indicate larger values being preferable
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3.2.3 Decoder with USM

The depth estimation network constructed with conven-

tional decoders will lead to gradient disappearance and

overfitting phenomenon due to the less depth of the net-

work layer, which weakens the ability of omnidirectional

structure depth learning. To this end, we design a decoder

consisting of four upsampling modules (USM) and a 3 9 3

convolutional layer. We use bilinear interpolation for

upsampling to increase the resolution of the feature map to

be consistent with the original image. The USM based on

the residual structure can further increase the depth of the

network structure, avoid gradient disappearance and over-

fitting problems and improve the learning ability of the

depth estimation model. Additionally, we fuse the multi-

scale features in the encoder and decoder with skip con-

nections. This can fully utilize the omnidirectional

semantic information in the feature maps of different scales

and further improves the accuracy of the structural esti-

mation depth.

3.2.4 Feature-based loss function

Depth estimation is a typical regression task, and the mean

square error loss function (mean squared error loss, MSE)

is usually used to optimize the regression problem during

the training process of the estimation network model.

Under the assumption that the collected samples obey the

same Gaussian distribution, MSE uses the residual term as

the loss value in a direct way. However, the image captured

Fig. 3 Qualitative comparison

results of depth estimation

between different loss functions

on fisheye dataset. Left to Right:

For each fisheye image (a), we
show its depth estimating result

by OmniPDMNet using Huber-

based (c) and our Feature-based

(d) loss function, whereas the
ground truth is (b)

Table 2 Quantitative

comparison for depth estimation

on omnidirectional datasets

(panorama and fisheye) using

different networks (FCRN [58]

and JLDNet [36])

Dataset Method Error# Accuracy"

ABS_REL SQ_REL RMSE d1 d2 d3

Panorama FCRN [58] 0.641 1.205 0.469 0.824 0.954 0.988

JLDNet [36] 0.524 1.119 0.388 0.889 0.974 0.989

OmniPDMNet(Ours) 0.298 0.976 0.213 0.952 0.987 0.995

Fisheye T-FCRN 0.421 1.416 0.834 0.736 0.941 0.984

T-JLDNet 0.401 1.302 0.815 0.744 0.962 0.986

OmniPDMNet(Ours) 0.306 1.013 0.335 0.948 0.981 0.990

The error and accuracy are shown in % and bold numbers indicate the best performance. For evaluation

metrics with (#), smaller is better, while for evaluation metrics with ("), bigger is better
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Fig. 4 Qualitative comparison

of different depth estimation

networks on fisheye dataset.

Left to Right: For each fisheye

image (a), we show its planar

depth map estimated by (c) T-
FCRN, (d) T-JLDNet and
(e) our OmniPDMNet,

respectively, whereas the

ground truth is (b)

Table 3 Quantitative comparison for structure recovery on omnidirectional datasets (Synthetic and Real-world) without or with planar depth map

Dataset Depth Train! Finetune Panorama Fisheye

CE (%)# PE (%)# 3DIoU (%)" CE (%)# PE (%)# 2DIoU (%)"

Synthetic w/o w/o 0.25 0.69 96.31 0.67 0.55 95.88

w/ w/o 0.22 0.68 98.44 0.39 0.55 97.94

Real-world w/o w/o 1.86 2.65 80.62 4.54 2.04 76.65

w/ w/o 0.53 1.50 87.81 2.54 1.06 87.16

w/ w/ 0.50 1.00 88.81 2.02 0.92 88.2

The accuracy is shown in %, and bold numbers indicate the best performance. w/o and w/ finetune indicate whether to use synthetic dataset for

pre-training. For evaluation metrics with (#), smaller is better, while for evaluation metrics with ("), bigger is better

Fig. 5 Qualitative comparison of the effect of planar depth map for

structure recovery on synthetic datasets (a � (c) for panorama

dataset, d � (f) for fisheye dataset). Left to Right: For each

omnidirectional image, we show its structure recovered by (a, d) w/

o depth-driven, (b,e) w/ depth-driven, (c,f) point cloud processing.

The predictions of our method with and without depth-driven are

highlighted in green and red, respectively, whereas the ground truth is

in blue
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from real-world scenes contains many features that make it

difficult to obey the uni-modal Gaussian distribution. To

this end, we design the target loss function according to the

loss terms corresponding to different features in the image,

which mainly include depth estimation loss term, gradient

prediction loss term and surface normal loss term.

3.2.5 Depth estimation loss term

The most common feature in actual scene image is that the

objects are different in distance. If this feature is ignored

and using the depth error value of the same weight to

directly calculate the depth loss term, it will cause blurring

in the depth estimation result. Therefore, we design the

depth error with different weight proportions according to

the distance between the object and the camera, specifically

as follows:

Ldepth ¼
1

N

XN

i¼1

ln di � gik k þ að Þ ð1Þ

where a is an adjustable parameter, and the empirical value

is set to 0.5. This term uses the logarithmic form of the

depth error instead of the commonly residual term, making

the distance between the object and the camera propor-

tional to the weight. The closer the object is to the camera,

the greater the error proportion will be. On the contrary, the

farther the object is, the smaller the weight will be. The

trained network model is more stable and beneficial for

structural depth estimation.

Gradient prediction loss term. Another feature that

appears most in the image is the multistep structure of

edges. The depth estimation loss term only balances the

depth transformation direction, and it is difficult to deal

with different offsets in the depth direction. To solve the

problem of the blurred phenomenon at the edge of the

object, we first adopt the Sobel gradient operator to extract

the edge of the feature map. After that, we introduce the

gradient prediction loss term in the process of neural net-

work back-propagation and the expression as follows:

Lgrad

¼
PN

i¼1 ln rx di � gik kð Þ þ að Þ þ ln ry di � gik kð Þ þ a
� �� �

N

ð2Þ

where rx and ry are the gradient magnitudes represented

by the vector, which represent the partial derivatives of the

depth error in the x and y directions, respectively.

3.2.6 Surface normal loss term

Although the gradient loss mentioned above can optimize

the different depths of the edge, it is difficult to effectively

deal with the shape features in the scene, such as the

common main shape features (steep edges, corners and

plane structures). The normal vector can encode the angle

information of the surface of the object, and the plane

feature can be globally constrained by a unified normal

vector. At the same time, the angle information can also be

used to effectively constrain the local structural features.

Therefore, we introduce the surface normal loss term in the

loss function and use the constraint of surface normal to

improve the estimation accuracy of the global and local

details of the structural depth map. It is specifically

expressed as:

Fig. 6 Qualitative comparison of the effect of planar depth map for

structure recovery on real-world datasets (a –c) for panorama dataset,

d–f for fisheye dataset). Left to Right: For each omnidirectional

image, we show its structure recovered by OmniSRNet without fine-

tuning and without depth-driven (a, d), with fine-tuning but without

depth-driven (b, e), with fine-tuning and with depth-driven (c, f). The
predictions of fine-tuning strategies with depth and others are

highlighted in green and red, respectively, whereas the ground truth

is in blue
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Table 4 Quantitative comparison of [17–19, 31–33, 36] and our approach on our refined panorama datasets

Methods PanoContext Stanford2D3D Structured3D

CE (%)# PE (%)# 3DIoU (%)" CE (%)# PE (%)# 3DIoU (%)" CE (%)# PE (%)# 3DIoU (%) "

LayoutNetv1 [31] 1.02 3.81 71.42 0.92 2.42 77.51 1.44 2.98 82.86

LayoutNetv2 [32] 0.93 2.81 76.90 0.88 2.78 78.90 1.35 2.87 83.24

CFLstd [19] 0.79 2.49 78.79 1.44 4.75 65.13 1.87 3.97 78.91

CFLequi [19] 0.78 2.64 77.63 1.64 5.52 65.23 2.04 4.39 78.19

HorizonNet [33] 0.76 2.13 83.39 0.63 2.06 84.09 0.31 1.01 93.74

OmniLayout [18] 0.69 2.10 84.50 0.68 2.14 83.40 0.31 2.73 93.88

JLDNet [36] 0.71 2.08 86.21 0.61 1.74 84.44 0.29 0.98 95.42

LGTNet [17] 0.69 2.07 85.16 0.63 2.11 85.76 0.29 0.84 96.21

OmniSRNet(Ours) 0.48 0.93 88.64 0.52 1.06 88.97 0.22 0.68 98.44

The accuracy is shown in %, and bold numbers indicate the best performance. For evaluation metrics with #, smaller is better, while for

evaluation metrics with ", bigger is better

Fig. 7 Qualitative comparison of different methods on panorama

datasets. Left to Right: For each panorama image, we show its

structure recovered by (a) HorizonNet [33], b JLDNet [36], c LGTNet

[17], d our method with planar depth-driven and e 3D point cloud.

The predictions of our method and others are highlighted in green and

red, respectively, whereas the ground truth is in blue
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vectors calculated in the predicted depth map. ngi ¼
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i

� �

represents the inner product operation of the predicted

normal vector and the ground truth normal vector.

The total feature-based loss function is defined as:

L ¼ x1Ldepth þ x2Lgrad þ x3Lnormal ð4Þ

where Ldepth, Lgrad and Lnormal represent the depth estima-

tion loss term, gradient prediction loss term and surface

normal loss term, respectively. The overall loss is the sum

of the weights of the three losses, and x1, x2 and x3

weight corresponding terms, controlling their importance.

In our experiments, we empirically set them to 1.

3.3 OmniSRNet: network architecture
with depth-driven for structure recovery
from the omnidirectional image

The cluttered arrangement of objects will partially or

completely occlude key areas (edges and corners) in the

scene structure, making it difficult to extract global struc-

tural information, especially in complex Manhattan-type

scenes. How to effectively deal with the occlusion phe-

nomenon is the key to high-quality structure recovery.

Depth of field has a strong correlation with geometric

structure. Based on the study of planar depth, we construct

a network that uses depth as a geometric prior to drive

structure recovery for omnidirectional image (OmniSRNet)

to achieve high-precision results. The overview of the

OmniSRNet is illustrated in Fig. 2, where we introduce

several important novelties in detail as follows.

3.3.1 Encoder-to-decoder

The raw omnidirectional image and the corresponding

planar depth map are fed into a ResNet-based encoder to

extract the effective structure features. Similar to [52], we

set the corresponding distortion perception modules

according to different projection models in the last block of

ResNet50 to improve the accuracy of omnidirectional

image feature extraction. Furthermore, to capture both low-

level and high-level features, the last four feature maps of

the encoder are preserved through a series of convolutional

layers, and the feature maps are reshaped to the same size,

concatenated as a single sequential feature map for Bi-

LSTM input. Bi-LSTM is adopted in the decoder to capture

long-range geometric patterns of objects for global coher-

ent prediction. A parallel horizontal–vertical stepping

module (HVSM) is designed to fully utilize contextual

priors of omnidirectional images to achieve high-quality

probability map of the predicted indoor corners.

Table 5 Quantitative comparison of the modified version of [17–19, 31–33, 36] and our approach on our fisheye datasets

Methods PanoContext-F Stanford2D3D-F Structured3D-F

CE (%)# PE (%)# 2DIoU (%)" CE (%)# PE (%)# 2DIoU (%)" CE (%)# PE (%)# 2DIoU (%)"

T-LayoutNetv1 7.62 7.20 60.75 8.65 6.71 56.72 5.9 6.23 58.21

T-LayoutNetv2 5.73 5.96 75.49 6.64 5.91 70.96 1.33 2.00 90.67

T-CFLstd 8.53 2.19 62.71 9.89 2.78 57.78 5.96 1.34 68.95

T-CFLequi 13.85 3.29 46.21 14.18 3.43 44.82 6.11 1.46 66.79

T-HorizonNet 5.04 2.78 76.32 6.48 3.26 71.04 1.29 1.36 90.67

T-OmniLayout 4.96 2.41 77.64 5.88 3.09 72.49 1.07 1.14 91.92

T-JLDNet 4.36 2.64 82.34 4.18 2.07 80.41 0.88 0.97 94.31

T-LGTNet 4.22 1.97 80.67 4.31 2.29 76.48 0.93 1.03 92.47

OmniSRNet(Ours) 1.96 0.98 89.42 2.07 0.86 86.98 0.39 0.55 97.94

The accuracy is shown in %, and bold numbers indicate the best performance. For evaluation metrics with #, smaller is better, while for

evaluation metrics with ", bigger is better
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3.3.2 3D structure recovery

Taking the omnidirectional image and the corresponding

mask image as input, the above-mentioned planar depth-

guided structure recovery network can predict the proba-

bility map of indoor structure corners. Then we post-

process the predicted corner probability maps by peak

extraction. Under the Manhattan world assumption, the 3D

point cloud of the indoor structure is recovered according

to the geometric constraints of different projection models.

The overall procedure of our method is presented in

Algorithm 1.

Fig. 8 Qualitative comparison of different methods on fisheye

datasets. Left to Right: For each fisheye image, we show its structure

recovered by (a) T-HorizonNet, b T-JLDNet, c T-LGTNet, d our

method with planar depth-driven and e 3D point cloud. The

predictions of our method and others are highlighted in green and

red, respectively, whereas the ground truth is in blue

24418 Neural Computing and Applications (2023) 35:24407–24433

123



4 Experimental results

We first briefly introduce the implementation details

(Sect. 4.1), containing omnidirectional datasets, the com-

mon evaluation metrics and training strategy. For perfor-

mance evaluation, we validate the effectiveness of planar

depth estimation and structure recovery from omnidirec-

tional image(Sects. 4.2 and 4.3), respectively.

4.1 Implementation details

4.1.1 Omnidirectional datasets

We carry out experiments on a large-scale indoor omni-

directional RGB dataset, including panorama datasets

(PanoContext [12], Stanford2D3D [53] and Structured3D

[54]) and fisheye datasets (PanoContext-F, Stanford2D3D-

F and Structured3D-F) constructed by Meng et al. [52].

Both PanoContext and Stanford2D3D are captured from

real-world scenes, containing 512 and 550 panorama

images with corresponding corner annotations, respec-

tively. While Structured3D is rendered with synthetic

scenes, it includes 21521 panorama images with corre-

sponding corner and planar depth map annotations. The

same is true for the distribution of the fisheye datasets.

4.1.2 Evaluation metrics

To objectively evaluate the performance of planar depth

estimation, we use standard evaluation protocols

[21–24, 36, 49] with error metrics and accuracy metrics.

The error metrics include ABS_REL (absolute relative

error), SQ_REL (square relative error) and RMSE (root

mean square error). The accuracy metrics describe the

percentage of estimated accurate pixels in all pixels and

divided into d1, d2 and d3 according to different thresholds.

During the evaluation of structure recovery, we adopt four

widely used quantitative metrics used in previous works

[17–19, 31, 33], including corner error (CE), pixel error

(PE), 2D intersection over union (2DIoU) and 3D inter-

section over union (3DIoU).

4.1.3 Training strategy

We implement our network (OmniPDMNet and OmniS-

RNet) on PyTorch platform and train the model on a single

RTX 3090 GPU with 24GB. The input size of panorama

RGB image and the corresponding ground truth are 1024 9

512, and the size of fisheye image is 1024 9 1024. During

the training process, the Adam optimizer is used to update

the network parameters, and the maximum learning rate is

set to 0.0001. To prevent overfitting during training, we use
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L2 regularization to constrain the network parameters. We

train OmniPDMNet on virtual omnidirectional datasets

with planar depth map annotations. Meanwhile, OmniS-

RNet is trained on both virtual and real-world omnidirec-

tional datasets with corner annotations.

4.2 Performance evaluation of omnidirectional
depth estimation

We perform a series of ablation studies to evaluate the

benefit of our introduced modules, including the distortion-

aware module, loss function and the mask introduction.

And we also validate the effect of our depth estimation

Fig. 9 MR-based video surveillance: a real office environment with

nine fisheye images captured by fisheye cameras from a building

video surveillance system. a The omnidirectional RGB images with

180� FoV. b The structure recovery result of our OmniSRNet for each

fisheye image (marked by green lines). c The 3D structure represented

by 3D point cloud. d The existing CAD models of the office

environment. e The texture model recovered from each fisheye image

consists of one floor and four walls

Fig. 10 VR-based house viewing: an interior scene with six panorama

images captured by a panorama camera from a real estate. a The

omnidirectional RGB images with 360� FoV. b The structure

recovery result of our OmniSRNet for each panorama image (marked

by green lines). c The 3D structure represented by 3D point cloud.

d The existing 2D floor plan of a house. e The panoramic display

from each panorama image consists of floor and walls
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network (OmniPDMNet) by comparing with other

methods.

4.2.1 Effect of distortion-aware module

To illustrate the effect of distortion-aware module, we

compare the omnidirectional depth estimation using dif-

ferent convolutions on both datasets. The quantitative

comparison results are shown in Table 1 (Conv.Type).

Obviously, the results of panorama depth estimation based

on EquiConv are higher than other convolutions (StdConv,

DCNv1 and DCNv2) in various quantitative metrics. And

compare with StdConv, the SQ_REL error is reduced by

nearly 6%, and the accuracy of the network can reach to

98.1%. Also on the fisheye dataset, the OrthConv designed

according to the orthogonal projection model can obtain

lower depth estimation error and higher depth estimation

accuracy. All of these demonstrate that distortion-aware

can improve the accuracy of feature extraction and enhance

the modeling ability of the depth estimation network for

geometric distortion.

4.2.2 Effect of loss function module

To verify the effectiveness of the depth estimation based on

our proposed feature loss function, a comparative experi-

ment between different loss functions is carried out on the

omnidirectional datasets, and quantitative comparisons are

made on error and accuracy indicators, respectively. As

illustrated in Table 1 (Loss.Type), our OmniPDMNet with

feature-based loss function achieves a certain improvement

on panorama and fisheye datasets (0.314 and 0.383 in

RMSE, 0.99 and 0.98 in d3) compared to Huber loss

function.

Figure 3 shows the qualitative comparisons of various

loss functions on fisheye dataset. Each column from (a) to

(d) presents the original RGB image, ground truth and

depth estimation results using Huber-based and Feature-

based loss functions, respectively. Obviously, OmniPDM-

Net with Feature-based loss function is superior to Huber-

based, the prediction results at the object edge are more

accurate and closer to ground truth, demonstrating that it

can better optimize the edges of cluttered objects and

obtain high-quality depth estimation results.

4.2.3 Effect of mask introduction module

To alleviate the interference of cluttered occlusions, the

structure recovery is driven by the planar depth map as the

geometric prior knowledge, while it is generated in the

depth estimation network guided by the object mask map.

The mask map can be introduced in different strategies into

the encoding–decoding network structure. The comparative

quantitative results of different introduction strategies on

the omnidirectional datasets are shown in Table 1

(Mask.Strategy). It can be seen from the results of error and

accuracy indicators that the introduction of mask map in

the encoder on the two datasets is more conducive to

obtaining high-accuracy depth estimation result (0.995 for

panorama and 0.990 for fisheye in d3). This indicates that
the mask map plays a more effective role in removing

object occlusion in the feature extractor.

4.2.4 Comparison of different depth estimation network

Table 2 presents the comparison results of various depth

estimation networks on the omnidirectional datasets,

including the widely used depth estimation network FCRN

[58] and the network jointing structure recovery and depth

estimation, JLDNet [36]. While FCRN is originally

designed for depth estimation in traditional perspective

images, we modify it to work with omnidirectional datasets

and denote it with the prefix ‘‘T-’’. On the other hand,

JLDNet is directly applied for depth estimation of omni-

directional images, and the quantization results show a

certain improvement in various indicators. However, it

does not consider the problem of distortion and overfitting,

resulting in a still high error rate. In contrast, our proposed

OmniPDMNet with DAM and USM achieves good per-

formance by improvement in d1 from 0.824 to 0.889 for

panorama and 0.736 to 0.948 for fisheye, indicating the

efficiency of the proposed depth estimation network.

As shown in Fig. 4, the planar depth map estimated by

our method exhibits higher consistency with the ground

truth compared to other methods, resulting in an overall

superior quality of structural depth is higher. This verifies

the effectiveness of deepening the network model by

introducing up-mapping layers to improve the learning

ability. From the perspective of local details, our results

have clearer structural boundaries, further proving that the

feature-based loss function can better handle the problem

of blurred boundaries and significantly improve the pre-

diction accuracy of the planar depth map.

4.3 Performance evaluation of omnidirectional
structure recovery

In this section, we first examine the effectiveness of planar

depth map for structure recovery on synthetic and real-

world datasets. We then provide a qualitative comparison

against the state-of-the-art methods on panorama and

fisheye datasets and report the numerical comparison and

analysis.
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4.3.1 Effect of planar depth map on synthetic datasets

To validate the effectiveness of planar depth as geometric

prior knowledge for guiding high-quality structure recov-

ery, we conduct comparative experiments before and after

introducing the depth map, and the quantitative results are

shown in Table 3. Obviously, our OmniSRNet with planar

depth map achieves remarkable improvements on synthetic

datasets. Especially on fisheye dataset, it exhibits an overall

performance gain of 2D IoU (2.1%). Moreover, the visu-

alization results (without or with depth-driven) are shown

in Fig. 5. For panorama images ((a)–(c)), the structure

recovery results with planar depth-driven are closer to the

ground truth structure (marked in blue). Similarly, for

fisheye images ((d)–(f)), the structure recovery quality

obtained by depth-driven is significantly higher than the

result without depth-driven. Among them whether it is the

partial occlusion of key corners by small objects or the key

corners by larger objects. The depth prior can guide the

predicted corners to be more consistent with the annotated

corners. The above prove the universality of depth infor-

mation for various scene structure recovery and provide a

guarantee for achieving high-quality 3D point cloud

recovery.

4.3.2 Effect of planar depth map on real-world datasets

To thoroughly validate the effectiveness of our OmniS-

RNet driven by planar depth map on real-world datasets,

we conduct extensive experiments and analysis. However,

obtaining the planar depth of real scene in the omnidirec-

tional dataset is challenging. To overcome this limitation

and perform a comprehensive evaluation, we employ two

fine-tuning strategies with different annotations: i) pre-

training on synthetic datasets without depth annotation,

then fine-tuning on real-world datasets, ii) pre-training on

synthetic datasets with depth annotation, then fine-tuning

on real-world datasets. The quantitative results are shown

in Table 3. Compared to OmniSRNet without depth, with

depth-driven exceeds it by 7.1 and 10.5 percent in terms of

IoU on panorama and fisheye datasets, respectively.

Additionally, the quantitative results (w/ finetune) are

superior to those (w/o finetune), indicating that the pre-

training model significantly enhances the performance of

structure recovery. The qualitative evaluation results are

shown in Fig. 6. Obviously, the use of pre-training on

synthetic dataset can produce more accurate structure

recovery results on real-world datasets ((a)–(c) for panor-

ama images and (d)–(f) for fisheye images). Moreover, the

results of pre-training without and with depth map are

shown in Fig. 6c and f revealing that pre-training with

depth-driven performs better on omnidirectional image and

generates more plausible structure recovery.

4.3.3 Comparison with the state-of-the-art structure
methods on panorama datasets

We compare our method with previous seven works on

omnidirectional datasets, including LayoutNetv1 [31],

LayoutNetv2 [32], CFLstd and CFLequi [19], HorizonNet

[33], OmniLayout [18], JLDNet [36] and LGTNet [17].

Table 4 presents the comparison results of our method with

the state-of-the-art data-driven methods on panorama

datasets. Obviously, our OmniSRNet driven by planar

depth achieves the best performance on all panorama

datasets, including PanoContext, Stanford2D3D and

Structured3D. Our OmniSRNet exceeds JLDNet [36] by

2.43, 4.53 and 3.02 percent in terms of 3DIoU on the three

datasets, respectively. Specially, OmniSRNet with depth-

driven boosts the overall performance on panorama data-

sets by a margin (3.48%, 3.21% and 2.23% in 3DIoU)

compared to LGTNet [17]. This competitive accuracy

shows that planar depth as geometric prior knowledge can

better alleviate the severe occlusion of complex scenes

giving rise to more accurate structure recovery results.

Furthermore, we visualize the comparison results of our

OmniSRNet to other state-of-the-art methods on panorama

datasets (Fig. 7). The first two rows are the comparison

results of all methods on real-world panorama scenes. The

last four rows demonstrate the comparison results on syn-

thetic panorama scenes. Our OmniSRNet is superior to the

other methods on various panorama image and has better

robustness in many situations, such as non-cuboid type and

open corridors as shown in Fig. 7 (5th-6th rows). The

above demonstrates that our method can consistently pro-

duce plausible structure recovery results from various

scenes even with total or partial object occlusion.

4.3.4 Comparison with the state-of-the-art structure
methods on fisheye datasets

To verify the generality and robustness of our OmniSRNet,

we further conduct a comparison on fisheye datasets.

However, there are relatively few methods related to

structure recovery from fisheye image, and presently none

of them has released the source code. Therefore, we first

modify the source code of LayoutNetv1 [31], LayoutNetv2
[32], CFLstd and CFLequi [19], HorizonNet [33],

OmniLayout [18], JLDNet [36] and LGTNet [17] for

fisheye image and marked with the prefix ’T-’. Compar-

isons on three fisheye datasets (PanoContext-F, Stan-

ford2D3D-F and Structured3D-F) are detailed in Table 5.

Compared to T-JLDNet, our OmniSRNet with depth-
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driven presents significant superiority over the competing

methods on all fisheye datasets, with an overall perfor-

mance gain of CE (2.4%, 2.11% and 0.49%), PE (1.66%,

1.21% and 0.49%) and 2D IoU (7.08%, 6.57% and 3.63%),

respectively. What’s more, OmniSRNet makes a remark-

able improvement on these datasets, with a large margin

(8.75%, 10.05% and 5.47% in 2DIoU). Figure 8 displays

the visual comparison result of our method to the state-of-

the-art methods on fisheye datasets. It can be observed that

our method consistently provides excellent performance on

all of fisheye image, which closely matches the human-an-

notated ground truth.

5 Applications

This section verifies the effectiveness of the omnidirec-

tional structure recovery from practical applications. It is a

useful input for numerous applications, such as video

surveillance based on Mixed Reality (MR) and house

viewing based on Virtual Reality (VR).

6 MR video surveillance

MR fusion technology [59–65] integrates multiple video

streams into 3D space, offers users an immersive visual

experience with detailed information and maintains space-

time consistency, enhancing the cognitive ability of global

spatial information. However, this technology is inefficient

and costly in the projection process. Our proposed omni-

directional image 3D structure recovery algorithm presents

a promising solution to address this issue. An example of

MR-based video surveillance in a real building is shown in

Fig. 9.

This scene comes from an office environment in a real

video surveillance system of a building. Nine fisheye

cameras are deployed in this environment to capture 180�
omnidirectional RGB images, as shown in Fig. 9a. Using

the omnidirectional image structure recovery network

proposed in this paper to predict the 2D structure in the

fisheye image (marked by green line segments), as shown

in Fig. 9b. The corresponding 3D structure is recovered by

the omnidirectional image 3D point cloud method, as

shown in Fig. 9c. The recovered 3D structure is registered

in the 3D environment, which contains the 3D model

corresponding to the office scene. The model is constructed

through the artificial CAD model, which is one of the main

display elements and provides an overall space for MR

video surveillance, as shown in Fig. 9d. Real-time video is

projected as texture onto the registered 3D model through

texture mapping technology to achieve immersive video

surveillance, as shown in Fig. 9e. This technology realizes

the simultaneous visualization of multiple video streams

and can be used for monitoring and management of smart

buildings.

7 VR house viewing

Virtual viewing [66–68] is mainly to replicate the simulated

virtual environment of the real or imagined world through

virtual reality technology, providing users with a precise and

immersive viewing experience in the virtual environment.

By leveraging 3D panoramic reality technology, VR house

viewing allows users to explore and understand the structure

and details of a house online. However, traditional modeling

methods for building structures often suffer from high

workload, significant cost and lengthy processing cycle. The

omnidirectional image 3D structure recovery algorithm

proposed in this paper can be used for efficient house

structure recovery, improving efficiency and reducing costs.

An example is shown in Fig. 10.

For real estate VR viewing, the scene is captured using a

panoramic camera, resulting in six 360� omnidirectional

RGB images, as shown in Figure (a). Taking the panoramic

image as the input, the omnidirectional image structure

recovery network proposed in this paper predicts the two-

dimensional structure (marked by the green line segment)

including the ground, wall and ceiling in the panoramic

image, as shown in Fig. 10(b). Utilizing the panoramic

projection model, the 3D point cloud structure corre-

sponding to the panoramic image is generated by the point

cloud recovery method, as shown in Fig. 10(c). The gen-

erated 3D model and 2D floor plan, as shown in Fig. 10(d),

ensure that the floor plan and the 3D model can be perfectly

matched by data correction, and generate a panoramic

display effect of the entire indoor scene for VR viewing, as

shown in Fig. 10(e). With a brand-new visualization,

contextualization and immersive viewing experience, this

technology not only allows users to explore properties in a

more context-rich and immersive environment but also

fulfills the business requirements for digital exhibitions.

8 Conclusions and future work

In this paper, we propose an effective and efficient

approach to generate high-quality structure recovery from a

single omnidirectional image. Firstly, we devise a planar

depth map learning network (OmniPDMNet), introducing

upsampling strategy and adopting a feature-based loss

function to improve the accuracy of depth estimation. Then

we construct a geometric-driven omnidirectional structure

recovery network (OmniSRNet), leveraging the planar

depth map as geometric prior to alleviate the key areas
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interference from cluttered objects and generate high-

quality recovery results. We demonstrate the flexibility and

effectiveness of OmniSRNet through numerous applica-

tions, such as MR-based video surveillance and VR-based

house viewing. Finally, a large variety set of experiments

are carefully designed and conducted to validate the

effectiveness of OmniSRNet on omnidirectional datasets.

Experiments demonstrate that our method significantly

outperforms the state-of-the-art methods in both quantita-

tive metrics and visual results. To further boost the per-

formance of structure recovery, we will explore a 3D loss-

based unified framework without the limitation of Man-

hattan assumption. We will attempt to extend our

OmniSRNet to floor plan recovery from multiple omnidi-

rectional images. What’s more, we plan to explore object

recovery from omnidirectional image and recover the

entire scene layout to enhance perception and understand-

ing of the scene.

Appendix A: Evaluation metrics

A.1: Quantitative metrics of depth estimation

To keep the evaluation metrics for depth estimation con-

sistent with the previous works [21–24, 49], we adopted the

following four standard metrics to quantitatively evaluate

the performance of our approach. The metrics are:

Absolute Relative Error

(ABS�REL), which is the absolute value of the dif-

ference between the pixel by pixel predicted depth and

ground truth depth. It is normalized by the real depth value,

and the normalized sum is normalized by the total number

of pixels, and defined as

ABS�REL ¼ 1

N

XN

i¼1

dpdi � ggti

			
			

ggti

ðA1Þ

where N is the pixel number of ground truth. dpdi and ggti
denote the depth value of the predicted and ground truth,

respectively. The lower of this metric, the accuracy of the

network model, and the better the result of depth

estimation.

Square Relative Error (SQ�REL), which is the absolute

value square of the difference between the pixel by pixel

predicted depth and ground truth depth. It is also normal-

ized by the real depth value, and the normalized sum is

normalized by the total number of pixels, and defined as

Fig. 11 Qualitative comparison of the effect of planar depth map for

structure recovery on panorama real dataset. Left to Right: For each

panorama image, we show its original image (a), and the structure

recovered by our method w/o depth-driven (b), w/ depth-driven (c),

3D point cloud (d). The predictions of our method with and without

depth-driven are highlighted in green and red, respectively, whereas

the ground truth is in blue
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SQ�REL ¼ 1

N

XN

i¼1

dpdi � ggti

			
			
2

ggti

ðA2Þ

where N is the pixel number of ground truth. dpdi and ggti
denote the depth value of the predicted and ground truth,

respectively. The lower of this metric, the accuracy of the

network model, and the better the result of depth

estimation.

Root Mean Square Error (RMSE), which represents the

depth difference between the predicted structure depth and

ground truth, and defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jNj
XN

i¼1

dpdi � ggti

			
			
2

vuut ðA3Þ

where N is the pixel number of ground truth. This metric is

mainly used to evaluate the accuracy of non-cuboid 3D

structure recovery, and the lower the value, the better.

Percentage of Pixels (d), which is defined as the per-

centage of pixels with the ratio (or its reciprocal) between

predicted depth and ground truth depth smaller than the

thread T, as follows

max
dpd

dgt
;
dgt

dpd


 �
¼ d\T ðA4Þ

where T ¼ 1:25. The higher the value of this metric, the

better.

A.2: Quantitative metrics of structure recovery

To keep the evaluation metrics for structure recovery

consistent with the previous works [17–19, 31, 33, 36], we

adopted the following four standard metrics to quantita-

tively evaluate the performance of our approach. The

metrics are:

Fig. 12 Qualitative comparison of the effect of planar depth map for

structure recovery on panorama synthetic dataset. Left to Right: For

each panorama image, we show its original image (a), and the

structure recovered by our method w/o depth-driven (b), w/ depth-

driven (c), 3D point cloud (d). The predictions of our method with

and without depth-driven are highlighted in green and red, respec-

tively, whereas the ground truth is in blue
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Corner Error(CE), which is the normalized L2 distance

between predicted corners and ground truth corners across

all images, and defined as

CE ¼

PNc

i¼1 cpdi � cgti

			
			
2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þW2

p ðA5Þ

where Nc is the number of corners in structure. H andW are

the height and width of the image. For panorama image

H ¼ 1024, W ¼ 512, while for fisheye image

H ¼ W ¼ 512. cpdi and cgti denote the position coordinates

of the predicted and ground truth corners, respectively. The

lower of this metric, the accuracy of the network model,

and the better the result of structure recovery.

Pixel Error (PE), which is the pixel-wise error between

the predicted plane classes (ceil, wall and floor for panor-

ama; wall and floor for fisheye) of structure and the ground

truth across all images, and defined as

PE ¼
PNp

i¼1 H pi 6¼ gið Þ
W � H

ðA6Þ

where Np is the number of pixels in structure. pi and gi
denote the pixel value of the predicted and ground truth,

respectively. Hð�Þ is an indicator function, with Hð�Þ ¼ 1 if

Fig. 13 Qualitative comparison of the effect of planar depth map for

structure recovery on fisheye real dataset. Left to Right: For each

fisheye image, we show its original image (a), and the structure

recovered by our method w/o depth-driven (b), w/ depth-driven (c),

3D point cloud (d). The predictions of our method with and without

depth-driven are highlighted in green and red, respectively, whereas

the ground truth is in blue
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pi ¼ gi and 0 otherwise. This metric can evaluate the global

structure, and the lower the value, the better.

2D Intersection over Union (2DIoU), which calculates the

pixel-wise intersection-over-union between predicted 2D

structure under ceiling view and ground truth for fisheye

image, and defined as

IoU ¼ Vpd
2 \ Vgt

2

Vpd
2 [ Vgt

2

ðA7Þ

where Vpd
2 and Vgt

2 stand for the floor plane occupancy of

the predicted and ground truth, respectively. This metric

can evaluate 2D accuracy for global structure, and the

higher the value, the better.

3D Intersection over Union (3DIoU), which calculates the

pixel-wise intersection-over-union between predicted 3D

structure and ground truth for panorama image, and defined

as

Fig. 14 Qualitative comparison of the effect of planar depth map for

structure recovery on fisheye synthetic dataset. Left to Right: For each

fisheye image, we show its original image (a), and the structure

recovered by our method w/o depth-driven (b), w/ depth-driven (c),

3D point cloud (d). The predictions of our method with and without

depth-driven are highlighted in green and red, respectively, whereas

the ground truth is in blue
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IoU ¼ Vpd
3 \ Vgt

3

Vpd
3 [ Vgt

3

ðA8Þ

where Vpd
3 and Vgt

3 represent the 3D structure occupancy of

the predicted and ground truth, respectively. This metric

can evaluate 3D accuracy for global structure, and the

higher the value, the better.

Appendix B: More results of our method

B.1: Effectiveness of planar depth map
for structure recovery

We provide more structure recovery results to validate the

effectiveness of planar depth map on the omnidirectional

datasets, containing panorama and fisheye dataset. The

structure recovery results from panorama image are shown

in Figs. 11, 12, 13 and 14 display the structure recovery

results from fisheye image. For each result, we show its

original image, the structure recovered by our method w/o

and w/ depth-driven and 3D point cloud, respectively.

B.2: Comparisons results with structure recovery
methods

We report the comparison results with state-of-the-art

structure recovery methods on omnidirectional datasets,

containing panorama and fisheye dataset. For each panor-

ama image, we present the comparison results with Hori-

zonNet [33], JLDNet [36] and LGTNet [17], and they are

shown in Figs. 15 and 16. Additionally, since there is

currently no public available code for fisheye structure

recovery, we firstly modify the author-provided code of

Fig. 15 Qualitative comparison of different methods on panorama

real dataset. Left to Right: For each panorama image, we show its

original image (a), and the structure recovered by HorizonNet (b),

JLDNet (c), LGTNet (d), our method with depth-driven (e). The

predictions of our method and others driven are highlighted in green

and red, respectively, whereas the ground truth is in blue
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these methods to work with fisheye image and marked with

the prefix ‘‘T-’’, such as T-HorizonNet, T-JLDNet and

T-LGTNet. And the comparison results are shown Figs. 17

and 18.

Fig. 16 Qualitative comparison of different methods on panorama

synthetic dataset. Left to Right: For each panorama image, we show

its original image (a), and the structure recovered by HorizonNet (b),

JLDNet (c), LGTNet (d), our method with depth-driven (e). The

predictions of our method and others driven are highlighted in green

and red, respectively, whereas the ground truth is in blue
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Fig. 17 Qualitative comparison of different methods on fisheye real

dataset. Left to Right: For each fisheye image, we show its original

image (a), and the structure recovered by T-HorizonNet (b),

T-JLDNet (c), T-LGTNet (d), our method with depth-driven (e).
The predictions of our method and others driven are highlighted in

green and red, respectively, whereas the ground truth is in blue

24430 Neural Computing and Applications (2023) 35:24407–24433

123



Data availability Data available on request from the authors.

Declarations

Conflict of interest The authors declare that they have no conflicts of

interest.

References

1. Su Y-C, Grauman K (2017) In: 2017 IEEE Conference on

Computer Vision And title=Making 360� Video Watchable in

2D: Learning Videography for Click Free Viewing, Pattern

Recognition (CVPR), pp 1368–1376

2. Ramakrishnan SK, Al-Halah Z, Grauman K (2020) Occupancy

anticipation for efficient exploration and navigation. In: Vedaldi

A, Bischof H, Brox T, Frahm J-M (eds.) Proceedings of the

European Conference on Computer Vision (ECCV), pp 400–418

Fig. 18 Qualitative comparison of different methods on fisheye

synthetic dataset. Left to Right: For each fisheye image, we show its

original image (a), and the structure recovered by T-HorizonNet (b),

T-JLDNet (c), T-LGTNet (d), our method with depth-driven (e). The
predictions of our method and others driven are highlighted in green

and red, respectively, whereas the ground truth is in blue

Neural Computing and Applications (2023) 35:24407–24433 24431

123



3. Saito H, Baba S, Kanade T (2003) Appearance-based virtual view

generation from multicamera videos captured in the 3d room.

IEEE Trans Multimedia 5(3):303–316

4. Albanis G, Gkitsas V, Zioulis N, Onsori-Wechtitsch S, White-

hand R, Ström P, Zarpalas D (2023) An ai-based system offering

automatic dr-enhanced ar for indoor scenes. In: Nakamatsu K,

Patnaik S, Kountchev R, Li R, Aharari A (eds.) Advanced

Intelligent Virtual Reality Technologies, pp 187–199

5. Sankar A, Seitz SM (2017) Interactive room capture on 3d-aware

mobile devices. In: Proceedings of the 30th Annual ACM Sym-

posium on User Interface Software and Technology, pp 415–426

6. Da Silveira TLT, Jung CR (2022) Visual computing in 360�:
Foundations, challenges, and applications. In: 2022 35th SIB-

GRAPI Conference on Graphics, Patterns and Images (SIB-

GRAPI), vol 1, pp 302–307

7. Zhang C, Cui Z, Chen C, Liu S, Zeng B, Bao H, Zhang Y (2021)

Deeppanocontext: Panoramic 3d scene understanding with

holistic scene context graph and relation-based optimization. In:

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pp 12632–12641

8. Gkioxari G, Ravi N, Johnson J (2022) Learning 3d object shape

and layout without 3d supervision. In: Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp 1695–1704

9. Jia H, Yi H, Fujiki H, Zhang H, Wang W, Odamaki M (2022) 3d

room layout recovery generalizing across manhattan and non-

manhattan worlds. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp 5192–5201

10. Hedau V, Hoiem D, Forsyth D (2009) Recovering the spatial

layout of cluttered rooms. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV ’09)

11. Wang H, Hutchcroft W, Li Y, Wan Z, Boyadzhiev I, Tian Y,

Kang SB (2022) Psmnet: Position-aware stereo merging network

for room layout estimation. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp 8616–8625

12. Zhang Y, Song S, Tan P, Xiao J (2014) Panocontext: A whole-

room 3d context model for panoramic scene understanding. In:

European Conference on Computer Vision, pp 668–686

13. Yang H, Zhang H (2016) Efficient 3d room shape recovery from

a single panorama. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp 5422–5430

14. Yang Y, Jin S, Liu R, Kang SB, Yu J (2018) Automatic 3d indoor

scene modeling from single panorama. In: 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp 3926–3934

15. Fernandez-Labrador C, Perez-Yus A, Lopez-Nicolas G, Guerrero

JJ (2018) Layouts from panoramic images with geometry and

deep learning. In: IEEE Robotics and Automation Letters, vol 3,

pp 3153–3160

16. Li M, Zhou Y, Meng M, Wang Y, Zhou Z (2019) 3d room

reconstruction from a single fisheye image. In: 2019 International

Joint Conference on Neural Networks (IJCNN), pp 1–8

17. Jiang Z, Xiang Z, Xu J, Zhao M (2022) Lgt-net: Indoor

panoramic room layout estimation with geometry-aware trans-

former network. In: 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp 1644–1653

18. Rao S, Kumar V, Kifer D, Giles CL, Mali A (2021) Omnilayout:

Room layout reconstruction from indoor spherical panoramas. In:

2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pp 3706–3715

19. Fernandez-Labrador C, Facil JM, Perez-Yus A, Demonceaux C,

Civera J, Guerrero JJ (2020) Corners for layout: End-to-end

layout recovery from 360 images. In: IEEE Robotics and

Automation Letters, vol 5, pp 1255–1262

20. Ruder M, Dosovitskiy A, Brox T (2018) Artistic style transfer for

videos and spherical images. Int J Comput Vision

126(11):1199–1219

21. Wang F-E, Yeh Y-H, Sun M, Chiu W-C, Tsai Y-H (2020) Bifuse:

Monocular 360 depth estimation via bi-projection fusion. In:

2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp 459–468

22. Jiang H, Sheng Z, Zhu S, Dong Z, Huang R (2021) Unifuse:

unidirectional fusion for 360 panorama depth estimation. IEEE

Robot Autom Lett 5:1–1

23. Cheng X, Wang P, Zhou Y, Guan C, Yang R (2020) Omnidi-

rectional depth extension networks. In: 2020 IEEE International

Conference on Robotics and Automation (ICRA), pp 589–595

24. Chen H-X, Li K, Fu Z, Liu M, Chen Z, Guo Y (2021) Distortion-

aware monocular depth estimation for omnidirectional images.

IEEE Signal Process Lett 5:334–338

25. Coughlan JM, Yuille AL (2000) The manhattan world assump-

tion: Regularities in scene statistics which enable bayesian

inference. In: Advances in Neural Information Processing Sys-

tems 13, Papers from Neural Information Processing Systems

(NIPS) 2000, Denver, CO, USA

26. Schwing A, Hazan T, Pollefeys M, Urtasun R (2012) Efficient

structured prediction for 3d indoor scene understanding. In: 2012

IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2012, pp 2815–2822

27. Hedau V, Hoiem D, Forsyth D (2010) Thinking inside the box:

Using appearance models and context based on room geometry.

In: European Conference on Computer Vision

28. Pero LD, Bowdish J, Kermgard B, Hartley E, Barnard K (2013)

Understanding bayesian rooms using composite 3d object mod-

els. In: IEEE Conference on Computer Vision and Pattern

Recognition, pp 153–160

29. Xu J, Stenger B, Kerola T, Tung T (2017) Pano2cad: Room

layout from a single panorama image. In: 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV),

pp 354–362

30. Yang S-T, Wang F-E, Peng C-H, Wonka P, Sun M, Chu H-K

(2019) Dula-net: A dual-projection network for estimating room

layouts from a single rgb panorama. In: 2019 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR),

pp 3358–3367

31. Zou C, Colburn A, Shan Q, Hoiem D (2018) Layoutnet: recon-

structing the 3d room layout from a single rgb image. In: 2018

IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pp 2051–2059

32. Zou C, Su JW, Peng CH, Colburn A, Shan Q, Wonka P, Chu HK,

Hoiem D (2021) Manhattan room layout reconstruction from a

single 360� image: a comparative study of state-of-the-art

methods. International Journal of Computer Vision, pp 1–22

33. Sun C, Hsiao C-W, Sun M, Chen H-T (2019) Horizonnet:

Learning room layout with 1d representation and pano stretch

data augmentation. In: 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp 1047–1056
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