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VirtualLoc: Large-Scale Visual Localization using Virtual
Images
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Systems, Beihang University, P.R.China
ZHONG ZHOU ∗, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University,
P.R.China and Zhongguancun Laboratory, P.R.China

Robust and accurate camera pose estimation is fundamental in computer vision. Learning-based regression
approaches acquire 6 degree-of-freedom (DoF) camera parameters accurately from visual cues of an input
image. However, most are trained on street-view and landmark datasets. These approaches can hardly be
generalized to overlooking use cases, such as the calibration of the surveillance camera and unmanned aerial
vehicle (UAV). Besides, reference images captured from the real world are rare and expensive, and their
diversity is not guaranteed. In this paper, we address the problem of using alternative virtual images for
visual localization training. This work has the following principle contributions: First, we present a new
challenging localization dataset containing 6 reconstructed large-scale 3D scenes, 10594 calibrated photographs
with condition changes, and 300k virtual images with pixel-wise labeled depth, relative surface normal, and
semantic segmentation. Second, we present a flexible multi-feature fusion network trained on virtual image
datasets for robust image retrieval. Third, we propose an end-to-end confidence map prediction network for
feature filtering and pose estimation. We demonstrate that large-scale rendered virtual images are beneficial
to visual localization. Using virtual images can solve the diversity problem of real images and leverage
labeled multi-feature data for deep learning. Experimental results show that our method achieves remarkable
performance surpassing state-of-the-art approaches. To foster research on improvement for visual localization
using synthetic images, we release our benchmark at https://github.com/YuanXiong/contributions.
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1 INTRODUCTION
Visual localization is a fundamental task in computer vision. Robust and accurate camera pose
estimation is a key to many applications in digital twin. These include camera calibration in GPS-
denied environments such as the surveillance camera [1] and augmented reality use cases, including
mobile navigation[30], photo tourism[44], telepresence[54], and manipulation localization[15, 16].
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It is helpful to map real images to the 3D virtual world with accurate camera poses for an immersive
user experience. However, due to the frequent changes in illumination, weather, season and other
environment conditions, existing work face great challenges in robustness and accuracy. This
is mainly due to the appearance change of features in the query image that are significantly
different from those in the dataset. In addition, mainstream visual localization approaches are
trained on expensive real-image datasets with insufficient diversity. These datasets lack accurate
3D information and semantic labeling.

In general, visual localization approaches can be divided into three categories according to their
use of 3D information. Image-based approaches rely on the understanding of 2D visual cues in
the image. Their 3D information is either unused or used only for visualization. These include
retrieval-based localization [2, 20, 51] and end-to-end learning-based pose regression [6, 24]. While
point-cloud-based approaches [10, 12, 22, 34, 35, 52, 53], on the other hand, extract 3D features as
input and directly map them to point clouds. This 3D information can be obtained from additional
devices or multi-view stereo reconstruction. Recently, researchers have combined the advantages
of 2D and 3D representations to propose a new framework: structure-based localization. These
methods [14, 17, 31, 37, 39, 46, 49] match 2D features and 3D coordinates for pose estimation.

Point-cloud-based approaches are difficult to generalize because the query image to be localized
may not contain depth information. Structure-based approaches extract 2D features from the input
image and map them to existing 3D representations for pose optimization. They have achieved
state-of-the-art performance on street view and indoor localization tasks. They usually employ
image-based localization in pre-processing for coarse estimation. However, these methods can
hardly be generalized to surveillance and UAV images with large elevation differences and significant
appearance changes. With the development of oblique photography and Structure-from-Motion
(SfM) techniques, the reconstruction of large-scale outdoor scenes becomes accessible and easy to
use. As a result, we build our self-collected dataset by rendering large amounts of virtual images of
reconstructed large-scale scenes. Besides, our dataset contains pixel-wise depth, relative surface
normal, and semantic segmentation, providing supplementary features for different visual tasks.

In summary, the paper makes the following contributions:

• We present the NAVELoc dataset with meshed 3D models, point-wise semantic annotation,
calibrated photographs, and rendered virtual images. Convincing results show that the
localization performance can be improved when using virtual images for training instead
of real images. To foster research on the challenging visual localization task, we release our
benchmark at https://github.com/YuanXiong/contributions.

• We propose a multi-feature fusion (MFF) network which is tolerant of season, weather, and
illumination changes in the stage of retrieval. The multi-branch fusion can leverage semantic
and normal information to provide robust descriptors.

• We design an end-to-end network for confidence map prediction and illustrate how to use it
for feature filtering. It inspirits the pose estimation to focus on stable feature points, reducing
mismatches caused by viewpoint and appearance changes.

Experimental results prove that the proposed method achieves the best performance, surpassing
state-of-the-art visual localization approaches on large-scale datasets.

2 RELATEDWORK
Visual localization is similar to place recognition, for they both predict the camera pose of the
query image from visual cues. Their differences are mainly reflected in the complexity, accuracy,
and data. Tolf et al. [47] introduced commonly used datasets and discussed the performance of
state-of-the-art approaches on them.
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Image-based visual localization. Image-based visual localization approaches extract 2D features[11,
51] from the input image for visual localization. Recent work employ end-to-end regression[24],
classification[19] or retrieval[2, 20, 51] neural networks. Since put forward, end-to-end pose re-
gression methods, such as PoseNet[24] and MapNet, have attracted many researchers because of
their ability to predict pose parameters from an input image directly. However, it performs poorly
when the images to be localized are randomly scattered around in large-scale scenes. Mainstream
retrieval-based localization methods[2, 20, 51] retrieve a database to obtain a group of calibrated
images with the highest similarity to the query image. NetVLAD [2] is the most commonly used
method because its deep learning-based descriptors are more robust than traditional methods,
such as the DenseVLAD[51]. Sattler et al.[43] conduct extensive experiments to prove that current
end-to-end regression approaches perform similarly to retrieval-based methods.

Table 1. Comparison with existing urban visual localization datasets. Our dataset with condition changes
contains 300k+ images and 6 scenes reconstructed from high resolution photographs. We also provide absolute
depth, surface normal and semantic information for virtual images.

Datasets Capture 3D Model Images Localization Condition
Changes

Additional
Features

Viewport Train Query Pose Acc. Weather Season Night Semantic Norm.

Aachen[41] hand point cloud free 4.3k 922 6DoF m ✓
CMU[3] car point cloud sequential 60.9k 56.6k 6DoF m ✓ ✓
RobotCar[28] car sequential 20.8k 11.9k 6DoF m ✓ ✓ ✓
San Francisco[42] hand point cloud free 610k 0.4k 6DoF m
Cambridge[24] hand point cloud free 6.3k 6DoF m

KITTI 2015[29] car point cloud sequential 200 200 GPS m 28 classes
CityScapes[9] car sequential 25k GPS m 30 classes
ApolloScape[21] car point cloud sequential 140k 6DoF cm ✓ 28 classes

NAVELoc(ours) UAV mesh free 300k 10.6k 6DoF cm ✓ ✓ 7 classes ✓

Point-cloud-based visual localization. Point-cloud-based approaches extract 3D features included
in query data andmap them to the reference 3Dmodel in the dataset. The PointNet family [34, 35, 52]
and its variants [22, 53] have aroused interest in point cloud analysis. Some [10, 12] include semantic
segmentation for robust feature matching. These approaches usually require depth information from
additional devices. Some of them work for both RGB and RGBD inputs [5]. Since depth information
is hard to obtain and the spatial distribution of query images is often unknown. Additional research
is needed before point-cloud-based matching algorithms can be generalized.

Structure-based localization. Early approaches, such as ActiveSearch [40], extract visual vocab-
ulary from the image and directly match them to the SfM point cloud or prestored keypoints.
These methods usually require query images to correspond with those in the dataset. Researchers
have paid more attention to long-term visual localization in recent years because of its strong
robustness in matching images with significant appearance changes. State-of-the-art approaches
adopt a hierarchical pipeline similar to hloc[37], recover the coarse camera pose from the image
representation, and then optimize it using 3D information. Such an optimization can be finished by
a pose solver, such as the most commonly used RANSAC Perspective-n-Point (PnP) solver [55],
which relies on the correspondence between 2D pixels in the image and 3D points in the dataset.
Researchers have made considerable improvements based on this pipeline. Dusmanu et al.[13]
propose the deep learning-based cross-descriptor as an alternative to conventional image repre-
sentation. S2DNet[17] employs deep neural networks to improve the accuracy of correspondence
feature matching. Depth prediction[50] is included to assist feature matching. Barath et al. [4]
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replace the RANSAC-PnP solver with learning-based models to improve precision. MeshLoc[31]
uses synthesized views for better initialization of the optimization. PixLoc[39] replaces the pose
solver with a deep learning-based end-to-end pixel shift estimation network for direct pose change
prediction.
Researchers include semantic segmentation for Visual localization in urban scenes to improve

robustness [26, 45, 48, 49]. However, most semantic segmentation is trained on autonomous ve-
hicle datasets[9, 21]. FGSN[25] proposes that not all pre-trained semantic segmentation benefits
visual localization. Its main contribution is a self-supervised network to generate robust semantic
segmentation clusters. SegLoc[33] only uses semantic features for visual localization. Although its
accuracy is slightly lower than conventional color-based localization algorithms, it performs well
in memory consumption and privacy preservation.

Datasets. Panek et al.[32] show that photographic models with high resolution textures are
beneficial to the localization accuracy. However, such data is rare and lacks accurate labeling. As a
result, we are motivated to collect our datasets with large-scale 3D models. In Table 1 we compare
our dataset with existing visual localization datasets. Mainstream visual localization algorithms rely
on urban datasets. Images taken by stereo cameras on street view cars are sequential. As a result,
datasets[3, 9, 21, 28, 29] built on them have a strong regularity in the distribution of camera poses.
Place recognition datasets with images taken from handheld cameras[24, 41, 42] are not limited
to street view scenes but are usually small in size due to the high labor cost in calibration and
labeling. Autonomous driving datasets [9, 21, 29] containing localization information can also be
used for visual localization tasks. They usually provide semantic segmentation information in their
benchmark. However, these datasets either lack condition changes or are not publicly accessible.
Besides, their semantic segmentation classification needs to be simplified for visual localization
tasks and often leads to incorrect retrieval results.

Regarding precision and diversity, networks trained on these datasets may not be generalized to
surveillance and UAV scenes. As a result, we propose our self-collected dataset as a complement
for semantic visual localization.

3 VIRTUALLOC: LOCALIZATION USING VIRTUAL IMAGES
The overview of our visual localization framework is shown in Figure 1. Our system consists of
two major modules: (1) A coarse retrieval-based localization module is responsible for searching
the dataset to obtain high-ranking reference images. (2) A confidence map-based filtering module
is used to generate robust feature matching pairs and estimate the camera pose of the query image
using the RansacPnP solver. In the retrieval stage, we fuse multiple semantic features to optimize
the retrieval result. We generate confidence maps in a completely different way from PixLoc[39] and
LearningRansac [4]: we use pixel-wise dense reprojection residuals to train the encoder-decoder
network instead of using the feature-based keypoints filtering strategy. Like MeshLoc[31], we use
virtual images instead of real images for camera calibration. The major difference between us is
that our dataset exhaustively covers the entire space above the 3D scene, while MeshLoc generates
images distributed around the locations of the real images. Besides, MeshLoc employs a weighted
pose averaging strategy for pose estimation. We never do pose averaging. Instead, we always use
the best reference image with minimum reprojection error for re-ranking the retrieval result and
iteratively reducing the reprojection error. For query images with significant illumination change,
we include illumination augmentation using shaders.
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Fig. 1. Large-Scale Visual Localization using Virtual Images (VirtualLoc). VirtualLoc is trained on
datasets with multiple features, including texture, semantic segmentation, and relative surface normal. Our
goal is to render large amounts of virtual images of urban scenes to calibrate query images, because real
images are rare and expensive to capture. Experimental results show that virtual reference images are better
than real images because virtual images are widely distributed, and the illumination-based augmentation
can enhance feature matching, significantly improves the accuracy of pose estimation.

3.1 NAVELoc dataset
The NAVELoc dataset is labeled on our 3D platform, designed by the Networked Augmented
Virtual Environment(NAVE) group. We complete point-wise annotation of large-scale 3D models
and render large amounts of virtual images for training visual localization networks. A visualized
example of our dataset is shown in Figure 2. In order to cover the scene, we use a dense sampling
strategy to distribute virtual images.

(a) Side view (b) Top view

Fig. 2. A visualized example showing one of our scenes. The distribution of cameras is shown from different
perspectives. The camera groups of virtual images are highlighted by white wireframes. The cameras of real
images are highlighted by cyan wireframes. To cover the 520.41𝑚 × 495.05𝑚 scene, we set up camera groups
in 720 different locations. The distance between them is about 30m horizontally and 20m vertically. Each
group contains 120 cameras with different rotation angles. Some cameras with bad viewpoint quality are
removed. Finally, 49809 virtual images are rendered for training, and 380 real images are calibrated for testing.
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Data acquisition. Our data collection system includes a DJI Phantom 4 RTK (84°FOV, 8.8mm
/ 24mm focal length(35mm equivalent), 8 - 1/2000s mechanical shutter and 8-1/8000s electronic
shutter, 1 inch CMOS with maximum resolution 5472 × 3648 for photographs and 1080P for video)
and a DJI Phantom 3 (94°FOV, 20mm focal length(35mm equivalent), 8 - 1/2000s mechanical shutter
and 8-1/8000s electronic shutter, 1/2.3 inch CMOS with maximum resolution 4000 × 3000 for
photographs and 1080P for video) and 3 spare batteries. The maximum flight time of DJI 4 RTK is
30 minutes (15 minutes in winter) and 25 minutes (10 minutes in winter) for DJI 3. Considering the
return cost of each task, the actual flight length is 3 to 5 minutes shorter, depending on the weather
and fight distance. Considering the height control and security restrictions, we limit the UAV’s
flight height to 50 to 200 meters. Therefore, the size of our reconstructed 3D scenes is between
0.1𝑘𝑚 to 1𝑘𝑚. We use ContextCapture for 3D reconstruction and texture mapping. For parallel
acceleration and rendering optimization, we split our 3D models into planar tiles of 60𝑚 × 60𝑚.
The NAVELoc dataset contains photographs collected from 6 different cities. Altogether 10594

calibrated photographs are provided as query images. Only some of them are used for reconstruction.
Most of them are collected from different seasons and weather with various illumination conditions.
We also rendered more than 300k virtual images as training sets. These images are distributed in
different scene locations, with different parameters, including the elevation height, yaw-pitch-roll
angle and illumination simulation. For query images, we provide their intrinsic parameters (focal
length and distortion) and extrinsic parameters (6DoF camera poses). For virtual images in the
training set, we employ GPU shaders to directly render additional channels with pixel-wise accurate
semantic segmentation, absolute depth, and surface normal.

Fig. 3. The user interface of our self-developed 3D labeling and rendering platform. We design practical tools
for mesh-wise labeling and massive rendering.

Classification. We follow Apolloscape[21] to create a point-wise 3D model labeling tool and
manually label 7 types of semantic segmentation that are helpful to the visual localization problem.
In Table 2 we list these classes in detail. Based on the experimental results, we conclude similarly
to FGSN [25] that not all pre-trained semantic segmentation classifications are beneficial to visual
localization. For example, extracting the semantic segmentation of pedestrians for the autonomous
task is important. However, for localization tasks, pedestrians can be categorized as moving objects
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and be ignored in feature matching. Another example mentioned by PixLoc [39] is that tiny objects
such as poles, trash bins, and traffic signs are rare and often not visible in some cases, which can
lead to overfitting of the localization network. Therefore, to improve the performance of the MFF
network, it is important that apparently similar images must have similar semantic segmentation
results. However, we do not follow FGSN [25] to generate more clusters through self-supervised
training. Instead, we simplified our classification definition by selecting those stable scene elements
and improve the semantic segmentation accuracy through supervised training.

Table 2. Details of used classes in our dataset. We only extract segmentation classes from ApolloScape[21]
that are helpful to the visual localization problem. The reference colors in CityScapes[9] are also given.

Class Category Color ApolloScape
Class Id

Reference in
CityScapes

building construction #c00080 ■ 97 #464646 ■
vegetation nature #808040 ■ 113 #6b8e23 ■
ground nature #510051 ■ 192 #510051 ■
road flat #c080c0 ■ 49 #804080 ■
car vehicle #00008e ■ 33 #00008e ■
sky sky #4682b4 ■ 17 #4682b4 ■
others other #000000 ■ 0 #000000 ■

Labeling. Our color scheme for semantic segmentation is consistent with ApolloScape [21], so
the semantic rendering result is well differentiated and can be directly used by retrieval networks.
We develop a single document-based window application as our labeling platform, as shown in
Figure 3. The user can load the model tiles and render them in the main window using embedded
OpenGL dialog. Unlike point-cloud based annotation, our system considers the occlusion and
orientation of meshes, which allows the user to select or deselect objects quickly. For training
and labeling convenience, all moving objects are categorized as vehicles and are ignored during
localization. Sidewalks and planar surfaces where vehicles are prohibited are classified as "ground".
Parking lots and surfaces where vehicles can drive are classified as "road". Grass, bushes, and trees
are classified as "vegetation". The "sky" label is reserved for automatic detection and generation.

3.2 Multi-feature fusion for image retrieval
The design purpose of our MFF network is to improve the robustness of retrieval results without
retraining the retrieval backbone, as shown in Figure 4. The input query image usually contains only
RGB color information. In order to exploit the prior knowledge, including semantic segmentation
and surface normal, we have to predict them using trained deep neural networks. In our framework,
we employ DeepLabv3+[7] for semantic segmentation prediction. It combines the spatial pyramid
pooling module and encoder-decoder structure to predict semantic segmentation with multi-scale
contextual constraints and sharp boundaries. However, the pre-trained DeepLabv3+ does not
perform well on localization datasets, as shown in Figure 5. It may predict significantly different
semantic segmentation results for paired similar images with wrong classification and inaccurate
boundaries. As a result, we retrain it on our dataset using the standard pipeline and cross-entropy
loss function with our rendered virtual images. Depth in the wild (DIW)[8] is an end-to-end relative
depth estimation network. In our approach, it is adapted and retrained on the NAVELoc dataset for
relative surface normal prediction with the cosine loss function. Then, we include the backbone
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Fig. 4. Our MFF network for image retrieval.

network to compress these input channels (color, semantics, and normal) into 64 × 128 features.
Our method is flexible and generalized, in which the backbone network can be replaced by either
traditional visual bag of word approaches or mainstream deep learning-based approaches. As the
experimental results Table 3 show, we found that in practice, the best backbone is NetVLAD[2].
In the MFF network, a whitening [23] process is employed to compress descriptors into 4096 × 1
features. Then we train a fully connected (FC) layer to merge them into a single feature. Instead
of merging multiple features in the beginning for NetVLAD retraining, we use the FC layer for
late feature fusion. The backbone network, such as the NetVLAD is already trained on the original
dataset. Retraining may affect the generality and cause overfitting problems.
To train the MFF network, we generate tuples 𝑞, 𝑝𝑞, 𝑛𝑞

𝑖
, where 𝑞 is the query image, 𝑝𝑞 is the

ground truth positive image randomly chosen from the positive groups 𝑝𝑞 , and 𝑛𝑞
𝑖
is the negative

group chosen from the rest of the dataset. In our dataset, we have the accurate 6DoF pose of
each image, so we do not need to pick potential positive and negative images manually. Instead,
we directly filter them according to their absolute pose difference to the query image, with the
frequently used threshold [2] (25m/15°), which is larger than our dataset sampling interval (20m/10°).
We use the triplet loss function with a margin for the ranking loss 𝐿, defined as

𝐿 =
∑︁
𝑖

𝑙 (𝑤𝑖𝑑 (𝑞, 𝑝𝑞) + 𝛼 − 𝑑 (𝑞, 𝑛𝑞
𝑖
)), (1)

where 𝑙 (𝑥) =𝑚𝑎𝑥 (𝑥, 0) is the hinge function, 𝑑 (𝑥,𝑦) is the L2 distance of input descriptors 𝑥 and
𝑦, 𝛼 = 0.1 is the margin constant, and 𝑤𝑖 is the compensation weight. In our implementation,
we randomly choose 1 positive image from the positive group and 10 negative images from the
negative group in each iteration.

3.3 Confidence-based keypoints filtering
We train an encoder-decoder network to generate a pixel-wise confidence map, which indicates the
possibility that a 2D pixel is registered to a correct 3D point. Based on our experience in large-scale
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Fig. 5. Comparison of using the pre-trained semantic segmentation model on RobotCar[28] (first row) and
CMU Season Ex[3] (second row) with the results of retraining on our dataset (third row). For pairs of similar
images (a) and (c) and their semantic segmentation prediction (b) and (d), the CityScapes[9] pre-trained
model gives different results (highlighted in white), while the results are more consistent after retraining on
our dataset. Please refer to Table 2 for label definitions and color schemes.

3D reconstruction, we define that a good point is a 3D point whose reprojection residuals at different
viewpoints are similar to its neighbors. On the contrary, the reprojection residuals of a bad point at
different viewpoints differ from its neighbors. Using bad points as feature matching keypoints is
more likely to produce large reprojection errors in the camera calibration. To train the network, we
generate its ground truth confidence map.

A 2D pixel point 𝒙𝒒 in the query image can be represented by a homogeneous vector [𝑥,𝑦,−𝑓 , 1]𝑇
, where 𝑥 and 𝑦 are 2D image coordinates and 𝑓 is the normalized focal length in the X-right-Y-up-
Z-back camera coordinates. It can be converted to another 2D point 𝒙 𝒊 in the 𝑖th reference image
viewport using the function 𝐹 as

𝒙 𝒊 = 𝐹 (𝑥𝑞, 𝑖) = 𝑃𝑖𝑀𝑖 (𝑑𝑖𝑀−1
𝑞 𝒙𝒒), (2)

where 𝑀 = [𝑅 |𝑡] denotes the model view matrix with rotation 𝑅 and translation 𝑡 that converts
a world point in the 3D scene to a 3D point in the camera coordinates, and 𝑃 is the constant
perspective matrix that converts a 3D point in the camera coordinates to the 2D point in the image
coordinates. The scale factor 𝑑 can be obtained from the depth map. With the help of GPU rendering
on the NAVELoc dataset, we can accurately obtain these parameters for every calibrated real image
and all virtual images. The reprojection residual 𝑟 of a pixel 𝑥 between the query image and the 𝑖th
reference image is defined as

𝑟 (𝑥, 𝑖) = |𝐹 (𝑥, 𝑖) − 𝑥 | (3)

Then we can calculate the confidence value 𝐶𝑞 of a pixel using the average standard deviation of
its neighbors using

𝑆 (𝑥, 𝑖) =
√︄

1
𝑛

∑︁
Δ𝑥

(𝑟 (𝑥 + Δ𝑥, 𝑖) − 𝑟 )2 (4)

𝑟 =
1
𝑛

∑︁
Δ𝑥

𝑟 (𝑥 + Δ𝑥, 𝑖) (5)
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𝐶 (𝑥𝑞) =
1
𝑚

𝑚∑︁
𝑖

𝑒−𝑆 (𝑥𝑞 ,𝑖 ) , (6)

where Δ𝑥 is the offset, 𝑛 is the number of offsets, and𝑚 is the number of referenced images. In
our implementation, we search all neighbor pixels around 𝑥𝑞 within the range |Δ𝑥 | < 10 pixels.
The top 20 candidates returned by the retrieval module are used as reference images. The result of
Equation 6 can be normalized to generate a ground truth confidence map.

However, the reprojection residual can not be calculated for real query images with RGB channels.
Based on the observation of the residual distribution, we found that features on artificial structures
and dense vegetation are robust. Moreover, surfaces perpendicular to the current view direction are
less likely to be occluded when the viewpoint changes. This shows that in addition to textural fea-
tures, semantic segmentation, and surface normal information also play an essential role in camera
pose estimation. As a result, we design an encoder-decoder network for confidence prediction, as
shown in Figure 6. The network accepts multiple features as input, where semantic segmentation
and surface normal can be predicted in the stage of retrieval. We use DeepLabV3+ for feature
extraction and segmentation and embedding layers for dimensionality reduction. The embedding
contains a 1 × 1 convolutional network(CNN), 2 batch normalization (BN) layers, and 2 ReLU
activation layers. To train the network, we use the generated residual confidence map as ground
truth labels for supervised learning. We use the standard L1 loss function for backpropagation and
Adam optimizer for acceleration. We use DeepLabV3+ as our backbone because it can retain both
high-level semantic information and detailed segmentation boundaries. We initially adopted the
early fusion strategy to train the network by merging multiple features.

Then, we can use the predicted confidence map to filter out feature points in low confidence areas.
The confidence threshold 𝐶 < 0.1 is determined by the result of keypoint matching experiments,
as shown in Figure 11. Feature keypoints with low confidence are more likely to be wrongly
matched with large reprojection errors. In our implementation, the confidence-based filter is
adopted together with the RANSAC PnP solver. Unlike MeshLoc[31], we do not average poses
obtained from referenced virtual images. Instead, we choose one with minimum reprojection
error and re-rank the retrieval result. We iteratively optimize the pose 5 times to minimize the
reprojection error.

Fig. 6. The design of our confidence prediction network.
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(a) Query (b) GT confidence (c) Predicted confidence

Fig. 7. Example of our end-to-end confidence map prediction. (a) query image; (b) ground truth reprojection
residual-based confidence map generated by Equation 6; (c) confidence map prediction of our method. Some
details are magnified for better visualization.

4 EXPERIMENTS
In this section, we conduct two experiments. First, we compare the proposed MFF network with
mainstream retrieval-based localization approaches using the ablation study. Second, we compare
our pose estimation with state-of-the-art localization approaches with statistics and visualization.

Dataset. As shown in Table 1, long-term localization datasets do not contain semantic annotations.
The localization performance using pre-trained semantic segmentation is poor, as shown in Figure 5.
On the other hand, the localization accuracy of semantic segmentation datasets depends on GPS,
except for ApolloScape[21]. However, ApolloScape is not publicly accessible yet. The condition
change of these datasets is insufficient. Besides, the pose of the vehicle-mounted camera does not
cover different pitching angles. Most of them are sequential. Deep learning methods trained on
these images may not perform well when dealing with free viewport cases. None of these datasets
provide high-quality meshed 3D models and surface normal annotation. As a result, we conduct
experiments on our NAVELoc datasets.

Implementation details. Our system runs on a regular Dell workstation computer and is equipped
with an NVIDIA GeForce RTX 2080 Ti graphics card, 6 Intel i7-8700 CPU cores @ 3.20GHz, 32GB of
RAM, and 2TB of disk. To quickly render the large-scale virtual scene and generate virtual images
including texture, depth, normal and semantic segmentation, we employ GLSL shader programs
running on the GPU pipeline and directly save the frame buffered images to a file. The average time
from rendering to saving a virtual image is about 92.6ms, including additional information. The
absolute surface normal is included in vertex data in the stage of triangulation. However, to make
it learnable and generalized, we use its relative form by converting them to camera coordinates
using the X-right-Y-up-Z-back coordinate system. For the retraining of semantic segmentation
using DeepLabv3+[7], we set the batch size to 8 and stopped at 20 epochs. For the retraining of the
surface normal network using DIW [8], we stopped after 40 epochs when there was no significant
gain. For the feature fusion, we train 1000 epochs with batch size = 128. We stopped training the
confidence prediction network after 300 epochs.

4.1 Retrieval-based localization experiments
Baselines. For the retrieval test, we compare NetVLAD [2], DenseVLAD [51], PatchNetVLAD

[20], and DIR [18] on our dataset and the improvement included by our MFF module. All baseline
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Table 3. Ablation study of our MFF network on the improvement of different approaches. We compare the
recall rate of top 1, 5, 10, and 20 ranking results of state-of-the-art retrieval methods. We also compare the
features fusion results with/without semantic segmentation and surface normal.

Baseline Features Top1↑ Top5↑ Top10↑ Top20↑

PatchNet-
VLAD[20]

RGB 67.1% 88.9% 91.9% 93.7%
semantic 66.4% 88.1% 91.7% 93.3%
normal 66.5% 85.6% 89.6% 92.2%

RGB+semantic 74.2% 92.3% 94.4% 95.6%
RGB+normal 75.8% 92.7% 94.9% 95.6%
MFF(ours) 79.1% 93.6% 95.7% 96.2%

Net-
VLAD[2]

RGB 80.1% 95.7% 96.4% 96.7%
semantic 73.6% 92.3% 94.8% 95.6%
normal 77.6% 92.8% 94.6% 95.5%

RGB+semantic 83.3% 95.3% 96.5% 96.7%
RGB+normal 83.7% 95.8% 96.6% 97.0%
MFF(ours) 85.0% 95.9% 96.5% 96.8%

Dense-
VLAD[51]

RGB 43.6% 73.9% 83.4% 89.5%
semantic 32.9% 64.7% 84.8% 82.1%
normal 56.0% 79.7% 84.7% 88.6%

RGB+semantic 48.6% 78.7% 86.2% 91.8%
RGB+normal 64.5% 88.2% 92.2% 94.7%
MFF(ours) 66.3% 90.0% 93.1% 95.3%

DIR[18]

RGB 74.3% 93.0% 95.8% 96.6%
semantic 59.2% 85.8% 90.5% 92.6%
normal 65.0% 88.3% 91.9% 93.9%

RGB+semantic 78.4% 94.7% 96.0% 96.6%
RGB+normal 78.9% 94.7% 96.5% 96.9%
MFF(ours) 81.4% 95.6% 96.6% 97.2%

methods are reproduced using their original implementation and pre-trained models. In the input
stage, we use retrained DeepLabV3+[7] and DIW[8] to produce semantic and normal features. We
also train the feature embedding using the triplet loss function Equation 1.

Metrics. We followed NetVLAD[2] and evaluated the recall rate of each test. A query image
is considered successfully localized if at least one of the top N retrieved candidates is good. A
reference image is considered a good candidate if the camera pose difference between the query
image and the reference image is smaller than the threshold (25m/15°). Since the sampling interval
of the dataset is (20m/10°), this ensures that the mutual visual zone between the query image and
the correctly retrieved image is large enough to satisfy the requirement of subsequent feature
matching and pose optimization algorithms.

Result and discussion. To assess the benefits of our method, we conducted an ablation study for
baseline approaches with and without feature fusion. In addition to comparing the performance
difference between the baseline method and our method, we also specifically compared the individ-
ual channels and their fusion results. The detailed ablation study result is shown in Table 3. From
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the comparison of single-feature retrieval results, we see that learning-based methods, including
PatchNetVLAD[20], NetVLAD[2], and DIR[18] can better leverage the color information included
in RGB channels, and their accuracy is high. However, for the DenseVLAD[51] algorithm, its Root-
SIFTs do not perform well, and its performance is better when processing normal and semantics.
Although PatchNetVLAD[20] was proposed later, we did not find its advantage over NetVLAD[2].
We found that NetVLAD[2] is the best backbone retrieval method especially on datasets with
appearance changes. The performance of fusing normal is better than fusing semantics because
normal prediction is related to the scene geometry and is more accurate than semantic segmentation.
When more features are fused, all methods have significant improvements in the performance of
the top 1 recall rate, and fusing both semantic segmentation and surface normal (our MFF) is better
than fusing one of them. However, such an improvement in the performance of the top 10 recall
rate of NetVLAD is not significant because it has reached its saturation. Experimental results show
that our MFF module can enhance mainstream retrieval-based localization baseline methods in
terms of recall rates.

Overall, our method can handle season, weather, and illumination changes in the stage of image
retrieval, as shown in Figure 8. This is mainly because our method can take advantage of semantic
and normal information. With robust retrieval results, we can further improve the accuracy of
feature-based visual localization by providing more matching pairs.
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Fig. 8. Visualization of our retrieval results for different scenes with appearance changes. (a), (c) and (e) are
query images; (b), (d) and (f) are retrieved virtual images. Images are resized for better visualization.

4.2 Pose estimation experiments
Methods. As mentioned in the related work, structure-based localization approaches achieve the

highest performance. As a result, we only compared our method with state-of-the-art structure-
based approaches on our dataset, including DenseVLAD [51], hloc [37], D2-net [14], R2D2 [36], and
MeshLoc [31]. For hierarchical methods, we used NetVLAD[2] as a retrieve-based baseline method
to obtain reference images and coarse estimation of their poses. We also tested our performance
with the improvement of our MFF network as an alternative to the NetVLAD retrieval.

Metrics. We follow hloc[37] and evaluate the percentage of successfully localized images with
different criteria (0.25m / 0.5m / 5m, 2°/ 5°/ 10°). We decompose the 6DoF camera pose into position
and orientation components. For the position components, we measure the Euclidean distance
between the position of the query image and the ground truth position. For the orientation, we
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convert the rotation matrix to quaternions and evaluate the angular difference between the query
image and the ground truth.

Table 4. Experimental results of our pose estimation. For query images, we fuse multiple features using
deep neural networks. Instead of matching real images, we render augmented virtual images for robust and
accurate visual localization.

(a) Query image (b) Predicted
semantics

(c) Predicted
normal

(d) Predicted
confidence

(e) Retrieved
real image

(f) Augmented
virtual image

(g) Feature Matching between
query and virtual images

Table 5. Large-scale pose estimation results. Our approach outperforms others on all criteria.

Methods (0.25m, 2°) (0.5m, 5°) (5m, 10°)

hloc [37] 62.1% 85.1% 91.1 %
D2-net [14] 64.3% 81.4% 89.2 %
R2D2 [36] 65.0% 82.2% 87.6 %
MeshLoc [31] 59.5% 86.3% 95.5 %
DenseVLAD [51] 61.7% 80.25% 84.8%
Ours 67.1% 89.8% 98.2 %

Results and discussion. The result of the localization is shown in Table 5. Our method outperforms
state-of-the-art approaches on all criteria. Notice that the result of our method surpasses the
retrieval baseline on the (5m, 10°) criteria. Our method can find a more accurate pose estimation
even if the initial retrieval result is not accurate because our method supports re-ranking the
retrieval result filtered by the current best estimation, and the PnP solver is robust to tolerate the
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Fig. 9. The cumulative position error. About 90% of our estimates are less than 0.5m in position error.
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Fig. 10. The cumulative orientation error. About 98% of our estimates are less than 1°in orientation error.

viewpoint differences between the query image and the reference image as long as they have the
mutual visual zone. The overall performance of MeshLoc [31] is good, except for the accuracy on the
(0.25m, 2°) criteria. This is mainly because the diversity of real images used by other learning-based
methods is not enough, and the use of massive virtual images as calibration reference can improve
the success rate. However, too many reference virtual images can reduce accuracy when averaging
poses. On the other hand, we solve this problem by using the reference image with minimum
reprojection error for iterative optimization.
To illustrate the effectiveness of our methods, we visualized our results. As shown in Table 4

(a) and (e), query images and dataset images have different appearances due to the change in
illumination and seasonal conditions. Besides, the retrieved real images may have a large difference
in viewpoint compared to the query image. However, as shown in Table 4 (f), virtual images are
not limited by this. We use illumination-based augmentation to reduce appearance differences, and
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Fig. 11. The ratio of correct matches to wrong matches. The ratio drops sharply when the confidence level is
less than 0.1.

cover the virtual space with exhaustive rendering to avoid blind spots. Besides, as shown in Table 4
(b) and (c), our method predicts useful features for MFF. The confidence map in Table 4 (d) shows
that the confidence map network successfully identifies stable patterns in the scene (building, open
zone, and lane lines, dense woods), ignores faraway objects(sky, distant buildings) and filter out
other low confident objects (cars, isolated trees and patterns covered by trees). Table 4 (g) shows
the robust and accurate feature matching result filtered by the confidence map and RANSAC.
We used line charts to illustrate the distribution of cumulative position/orientation errors of

different methods. As shown in Figure 9 and Figure 10, our method is more accurate than others.
About 90% of our estimated results are less than 0.5m in position error, and 98 % of them are less
than 1°in orientation error.

In order to determine the threshold of our confidence-based filtering, we design an experiment to
find the correlation between the feature matching and the predicted confidence map. We compared
three feature matching algorithms: SIFT [27], SuperGlue [38], and our hybrid matching method.
Our hybrid method combines SIFT and SuperGlue, which merges keypoints from both algorithms
and iteratively optimizes the pose estimation using the fundamental matrix constraint. We collect
all keypoint matches from the localization experiments and use the ground truth reprojection
error as an evaluation metric. All matches with a reprojection error of less than 1% of the image
size (about 10px in our dataset) will be marked as correct, and others will be marked as wrong.
As shown in Figure 11, the ratio of correct matches to wrong matches gradually decreases when
confidence ≤ 0.3 and drops sharply when confidence ≤ 0.1. This shows that for the query image,
matched keypoints with a confidence level less than 0.1 have a larger probability of being wrong.
We conclude that filtering out these low-confidence feature matches can reduce the reprojection
error of our camera pose estimation.

5 CONCLUSIONS
In this paper, a visual localization dataset is proposed with annotation of semantic segmentation
and relative surface normal. An MFF network for improvement of retrieval and a confidence
map prediction network for feature filtering are also proposed to prove the usefulness of these
features. The major improvement of our method comes from the use of virtual images. We conduct
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experiments to prove that virtual images have advantages over real images in terms of dataset
size, diversity, and multi-features. The major difference between the proposed approach and other
virtual image-based localization methods is that it does not rely on the distribution of real images.
We uniformly distributed dense sampling to make virtual images cover as much space as possible.
Experimental results show that, due to the use of virtual images with semantics and normal
information, our approach surpasses state-of-the-art visual localization approaches.

Limitations. Our method requires high-quality photographs for 3D reconstruction. Therefore, its
performance needs to be improved in street view datasets with sparse 3D point clouds. However, its
accurate and robust localization is suitable for overlooking scenarios such as surveillance camera
registration and drone camera calibration.

Future work. Our future work focuses on increasing the diversity of our dataset, including
collecting more data with condition changes and labeling part-level scene semantic segmentation
for challenging visual localization tasks.
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