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Abstract Image and video stitching have made tremendous progress in the construction of wide field-

of-view (FOV). However, some long-term challenges still exist, including wide baselines between cameras,

large parallaxes, and low texture in overlapping areas. The augmented virtual environment (AVE) captures

videos as live textures of 3D models in a virtual environment, and provides another 3D solution to overcome

the aforementioned challenges. Existing AVE methods primarily follow from video projection, and cannot

produce satisfactory stitching results compared with image stitching. In this paper, we propose a novel

model-guided 3D stitching algorithm for AVE. The algorithm recovers an approximate 3D model for each

video streaming and optimizes the warping of the models to meet the requirements of feature point matching

of the 3D models from adjacent videos. Compared with previous state-of-the-art methods, experiment results

illustrate that our method significantly improves the stitching quality.
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1 Introduction

Recently, the use of digital images and videos has increased remarkably in surveillance and social network-
ing. The quantity of media places a cognitive burden on users, particularly in tasks such as monitoring
videos captured from massive camera networks. The most widely used method to display massive surveil-
lance videos is to arrange them in a monitor matrix, which is not effective. Researchers have investigated
alternative ways to effectively organize and visualize the videos captured from such networks. In pre-
vious decades, image and video stitching techniques have been studied since they can construct wide
field-of-view (FOV) videos by stitching multiple images or videos. Some studies have applied a registered
camera array [1–3], requiring intrinsic and extrinsic parameters of the cameras obtained in advance. This
reduces reliance on feature correspondences and requires fixed relative positions of the cameras. Recent
studies employ 2D meshes for optimizing alignment [4, 5], performing content-aware warping and stitch-
ing to reduce artifacts due to the parallax. Here, the input videos can be captured using unregistered
camera arrays. First, an optimized warp [6–9] is calculated, and then mesh-based deformation [10, 11] is
performed to improve the quality of alignment. However, some long-term challenges still exist, including
wide baselines between cameras, large parallaxes, and low texture in overlapping areas.

Augmented virtual environment (AVE) techniques composite multiple videos to a 3D virtual environ-
ment and have a larger FOV [12–15]. Their major advantage is fusing multiple real-time video streaming
using 3D models to have depth-consistent views. However, existing AVE methods mainly use video pro-
jection, which relies on 3D model accuracy and cannot produce satisfactory stitching results compared
with image stitching.

To overcome these challenges, we present a novel approach beyond the previous image and video
stitching methods in 2D canvas. Our model-guided 3D stitching algorithm develops single image-based
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Figure 1 (Color online) Left: simultaneous frames from 3 input videos. Center, right: stitched results rendered from 3 different

viewpoints.

modeling [16] to recover 3D models of the scene. Then, these models are stitched in 3D using an
energy minimization-based warp. Next, an optimal seam between adjacent models is calculated, and the
mapping between each 2D video streaming and the 3D model is established. Finally, the stitched view
can be produced using the original video as texture, as shown in Figure 1. Our work primarily aims at
city surveillance and can be applied to other scenarios. Notably, the foreground object motion between
different stationary cameras is not considered in AVE systems. Therefore, as with image stitching, we
are concerned about stitching the video background frames in a frame-by-frame fashion.

Our algorithm requires the input of multiple synchronized videos of a scene captured from static
cameras whose views overlap to some degree. A ground image, typically an aerial image from Google
maps, provides a base ground for modeling. Suppose the scene includes several dominant planar structures
(roads, buildings) and moving objects (vehicles and pedestrians) that are relatively small compared to
the previous objects. Our approach is flexible since it does not require a registered camera array. The
output can be written in a new format called image-based modeling type (IBMT), which can be rendered
in real time and supports augmented reality applications and viewing.

Our approach projects 2D feature points in the regions where adjacent videos overlap into 3D spaces
for matching. These matched feature points in 3D guide optimization-based warping for stitching. The
application of 3D stitching instead of the 2D one used in existing methods makes our approach more robust
for challenging setups with large parallax, as our experiments later demonstrate. Since our approach
provides a high-quality output without registered camera arrays, it can use existing surveillance camera
networks.

2 Related work

2.1 Image and video stitching

Traditional image-stitching methods align the input images by estimating a global 2D transformation and
have been comprehensively discussed in [17, 18]. The underlying assumption is that either the image is
captured from a fixed viewpoint or the scene is far from the viewpoint, i.e., the entire scene is considered
approximately planar. However, such methods cannot handle cases when the input images have significant
parallax. Several methods have been proposed to solve this problem; however, mesh-based optimization
is the most promising. The advanced mesh-based methods are mainly divided into two categories: the
local-adaptive warping and seam-driven blending methods.

Local-adaptive warping methods use local homography transformations instead of a global one. Early
studies by Zaragoza et al. [4] split the input into a grid of cells and applied an as-projective-as-possible
(APAP) warp to optimize alignment by estimating a homography that varies smoothly from cell to
cell. Chang et al. [5] proposed the shape-preserving half-perspective method (SPHP), which reduces
perspective distortion but is affected by unnatural rotation artifacts. Chen et al. [8] proposed the global
similarity prior method (GSP) to improve the stitching result by combining local and global similarities.
Li et al. [9] proposed a parallax-tolerant method from robust elastic warping (REW) for accurate and
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efficient image stitching. Zheng et al. [19] proposed a novel projective-consistent plane-based image
stitching method (PCPS) that achieves stitching results with few seams and projective distortion by
dividing the overlapping regions of the input image into several projective-consistent planes using the
normal vector orientation and reprojection error. Zhang et al. [20] proposed an efficient approach for
content-preserving stitching with regular boundary constraints. However, it is nonfunctional on images
with many lines in local regions. Lee et al. [21] proposed an image stitching algorithm that uses the
warping residuals for images with large parallax. It partitions the input image into superpixels and
adaptively warps each superpixel using the optimal homography to alleviate the parallax artifacts. Li
et al. [22] proposed a local-adaptive image alignment method from a triangular facet approximation
(TFA) to achieve accurate and efficient alignment of perspective and non-perspective images. However,
it does not obtain appreciable stitching results for input images containing serious occlusions. Li et
al. [23] explored the importance of semantic planar structures under perspective geometry and proposed
an image-stitching method using semantic planar region consensus to obtain accurate local alignments
and maintain transition naturalness. Although these methods can handle input images with moderate
parallax, they fail for images with large parallax. Furthermore, a more common problem of these methods
is ghosting artifacts. These artifacts are the consequence of moving objects appearing in different positions
in neighboring images.

Seam-driven blending methods hides artifacts by selecting an optimal seam for stitching. Zhang et al. [7]
proposed the parallax-tolerant image stitching (PTIS), which uses content-preserving warping to solve
parallax. Zhang et al. [10] constructed a multi-viewpoint panorama from wide-baseline (WB) images,
which eliminates incorrect matching using a direct linear transformation and estimates the optimal seam
using a different map. Lin et al. [11] proposed a seam-guided local alignment method (SEAGULL), which
accomplishes plausible warping by iteratively optimizing the seam via a structure-preserving strategy.
Although these methods reduce ghosting artifacts, the output quality of these methods on images with
large parallax remains poor.

Video stitching techniques, an extension of image stitching, have gained widespread research interest.
Since our surveillance scenario has cameras in fixed positions, we mainly review video-stitching methods
from static cameras. Jiang et al. [24] applied for the latest advances in parallax-tolerant image-stitching
and video stabilization to perform spatiotemporal local warping and seam finding and solve the temporal
coherence in video stitching. Perazzi et al. [25] combined global prealignment with warping adjustments
to generate a panoramic video from unstructured camera arrays having a certain degree of parallax.

Although the aforementioned methods have made progress in image and video stitching, two major
problems still exist. The first problem is the challenge associated with processing inputs having a small
degree of overlap, particularly for real video surveillance, using these methods. The second problem is
the challenge associated with reduced stitching quality as parallax in the input videos increases. Our
approach targets these problems using the single image-based modeling [16] to recover a 3D model of
the scene, which greatly affects the final stitching results. Our approach produces better stitching results
than existing methods in the presence of small overlap and large parallax.

2.2 Augmented virtual environment

Various situation awareness techniques have been proposed for exploring video collections. They can be
divided into two categories. The first one is the methods relying on associations between the videos, e.g.,
semantic relations [26] or corresponding locations in a 2D map [27]. The other is AVE methods, which
fuse multiple videos in a 3D virtual environment to obtain a larger FOV [12–15,28]. We propose that the
latter methods provide more useful results since they can be viewed from a broad range of viewpoints,
providing a more user-friendly viewing experience.

Existing AVE approaches are primarily based on video projections. Neumann et al. [13, 14] first
elaborated AVE and proposed a prototype system. DeCamp et al. [15] applied the fisheye camera for
the AVE system to build an indoor immersive system named as HouseFly. Li et al. [28] proposed a
fast, topology-accounting method for multi-video fusion with 3D geographic information system scenes
to ensure efficient fusion with 3D scenes. However, these methods face several long-term problems. One
such difficulty is associated with the virtual-real alignment, which makes video boundary consistency with
3D models or other overlapping videos in the environment difficult. The other is the distortion problem
in fusion results [29], consisting of several artifacts.

To tackle these problems, we proposed a single image-based modeling [16], where a single frame is
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Figure 2 (Color online) Model-guided 3D stitching for augmented virtual environment. Given a ground image and multiple

video streamings with overlapping views (source input), first, we recover the 3D planar structures in their backgrounds (3D scene

structure recovery), which are then stitched in 3D using mesh-based warping and seam-driven blending (3D stitching). The output

video is rendered in real time from the stitched 3D model and the input video textures (real-time video rendering), guaranteeing

high-quality fusion results (fused video).

selected from the video to recover a 3D model of the scene. Our approach generates a mixed virtual
environment with video fusion using the recovered 3D models. For complex real-world scenes, where
automatic modeling can be inaccurate and manual refinement is needed, the method in [30] provides
efficient interactive modeling.

3 Overview

The input comprises multiple video streamings from fixed cameras with partly overlapping views and a
ground image, which is an aerial image of a simple terrain without height in a 3D scene. Suppose the
scene in each video streaming is dominated by several planes and that all moving objects are relatively
small. Our goal is to seamlessly stitch these videos to provide a 3D model of the scene, which is rendered
to provide a stitched output video from an arbitrary viewpoint in real time. From Figure 2, our approach
comprises three basic steps: per video 3D scene structure recovery, 3D stitching, and real-time video
rendering. The 3D scene structure recovery and 3D stitching are performed using only background frame,
created by a classical fast background extraction method ViBe [31]. Furthermore, the 3D structure of the
scene in each camera is determined by recovering its dominant planes, as with the approach in automatic
photo pop-ups [32]. However, our approach differs because it is interactive, allowing us to deal with
complex scenes in the real world for which automated methods fail.

For 3D stitching, we calculate the relative positions of different cameras by matching key points between
their background frames. The matched feature point pairs in 2D are projected into the recovered 3D
structure calculated in the previous step and used to guide an optimal warp of the recovered 3D model
of each background frame for better alignment. Once aligned, adjacent models with a certain degree of
overlap are evaluated. We calculate optimal seams between adjacent models to reduce artifacts during
texturing. Then, the video model with rectification and clipping maps (stored in the IBMT format) is
generated. Finally, the video content provides the texture of each model to achieve high-quality fusion
results with large FOV. Since we have a 3D model of the whole scene and textures, we can render the
scene from an arbitrary viewpoint.

4 Model-guided 3D stitching algorithm

4.1 3D scene structure recovery

The 3D background structure recovery process is performed separately for each input video. We conduct
three steps to do so: vanishing point (VP)-based camera calibration, image registration and image popup.
In order to handle complex real world scenes and ensure high modeling quality, when needed, we use an
interactive refinement tool [30] in the image registration and image popup (3D model creation from an
image) [33] steps.
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Camera calibration. The essence of camera calibration is to calculate the camera intrinsic and
extrinsic parameters. A simplified camera model is used in our camera calibration process, where the
intrinsic parameter is focal length and extrinsic parameter includes rotation and translation matrix. The
latter refers to the rotation and translation of the local coordinate system composed of the unit vector
corresponding to the vanishing point with respect to the camera coordinate system. The procedure of
our camera calibration method mainly consists of three steps: line set optimization, VP estimation, focal
length and rotation matrix estimation. We adopt vanishing point-based calibration [34] to calculate focal
length, rotation and translation matrix.

Image registration. The positions of different cameras in the unified world coordinate system are
unknown, so we introduce the ground image as the unified 3D environment. On the basis of camera
calibration, different cameras are registered into ground image through 2D-3D registration technology [16]
to achieve the positioning of the space-time relationship between cameras. In other words, the captured
images are registered into the 3D environment under the same perspective. The 3D scene is represented
by as an existing 3D models with geographic information provided by the ground image (using an aerial
image as a simple terrain without height in 3D scene). The images are automatically registered by
matching 2D image line segment with 3D line segment from the 3D scene, including starting point
matching, direction vector matching, and length matching.

Image popup. We employ single frame-based modeling method which recovers the 3D scene structure
the background frame through image interactive popup to improve the quality of fusion results. Based on
the camera pose, the depth of each point can be obtained by way of viewray intersection. We define the
plane primitive and add it to our 3D scene through incremental interactive operations, which includes
adding point and push/popup planes. In the process of creating a 3D plane (composed of A, B, C and
D corresponding to a, b, c, and d in the image), we first select the starting point a in image editor,
and calculate point A by the intersection of viewray at point a and the 3D scene. Then, the diagonal
point c is selected based on the given normal n of this plane, and the point C is determined by the
intersection of the viewray at point c and the plane 〈A,n〉. In addition, points B and D are obtained by
plane constraints and orthogonal relations. When we continue to add primitive, the background frame
modeling is completed, defined as the video model. In this process, we try to make the modeled primitives
cover the entire image.

4.2 3D stitching

Given the recovered 3D models for adjacent input videos, our next goal is to stitch them. We start by
matching the feature points of the two models based on local planes, generating a guiding control point
set per plane. We then align the adjacent models by mesh-based warping driven by these guiding control
point sets. Finally, seam-driven blending is performed based on the constructed virtual view.

Local plane feature matching. We extract and match feature points from the input texture images
for adjacent video models by combining global matching under the local-plane constraint. Our local
matching strategy helps to reduce the matching error and refine the matching results. Based on this, we
calculate their guiding control points for warping.

(1) Feature point matching. As in many previous methods, we first use SIFT [35] to detect the feature
points. We match them between the two original images (IA, IB), to produce an initial matching result.
Next, several planes are separately recovered from IA and IB by image popup (shown in thin green lines
in Figure 3(a)), generating the corresponding video model MA, MB. The corresponding local plane sets
are LPA={lp1, . . . , lpi, . . . , lpm} and LPB={lp1, . . . , lpj , . . . , lpn}, where m and n are the numbers of
local planes in video models MA, MB, respectively. Finally, we find the corresponding local plane pairs
(shown in red quadrilaterals in Figure 3(a)) in the two sets, and reject mismatched points for each local
plane pair by RANSAC [36], generating the dense, uniformly distributed, refined matching feature points
for image warping.

(2) Generation of guiding control point sets. Based on the refined matching feature points, we inter-
polate the spatial locations of the matched feature points to generate guiding control point sets. They
are used to guide the underlying warping (Figure 3(b)). Given one matched feature point pair (p, q) in
the original images, we compute their projection positions P and Q. They are obtained by intersecting
the projection rays with MA and MB, where the rays pass the corresponding p and q starting from C1

and C2, respectively. Then the final projection position T of the (p, q) is generated by intermediate
interpolation P and Q with a weight w = 0.5. w denotes the distances from the midpoint T to P and
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guiding control point sets of the refined matching feature points are generated by projection and back-projection.

T to Q are equal. Finally, we separately project back T to the original images IA and IB, obtaining the
corresponding guiding control point p′ and q′. They are added to the guiding control point sets used as
the local alignment term for warping.

Energy function of image warping. The local plane feature matching provides control point sets
to guide the warping. We use a mesh-based warping algorithm with a carefully chosen energy function.
We generate an initial regular grid V = [x1y1, . . . , xmym]T for each input background image, where m
is the index number of grid vertices. Since a control point can be represented by its 4 neighborhood
vertices, we define an energy function of 4 terms using the positions of the control points as constraints.

(1) Local alignment term. A local alignment term is used to ensure alignment quality by back-projecting
matched feature points in 2D to the same point in 3D. Note that our algorithm performs local alignment
using the guiding control point sets from two model textures separately. Next, we align p to its guiding
control point p′ in IA, and q to q′ in IB (the purple arrow in Figure 3(b)) after warping. We define the
local alignment term on IA as (1), and the same for IB.

Ea(V ) =
∑

(p,q)∈S(A,B)

(‖Φ(p)− p′‖
2
+ ‖Φ(q)− q′‖

2
), (1)

where S(A,B) is a set containing matched feature points of image pair (IA, IB), and Φ(p) and Φ(q) give

the warped position of matched feature points p and q, respectively. Φ(p) =
∑4

t=1 wtvt, where vt ∈ V are
the four vertices of the warped grid cell containing p and wt denotes the corresponding bilinear weights
found by bilinear interpolation on the original grid. The position of the corresponding control point p′

for a given p is defined as
p′ = ΠC1(F(Π−1

C1
(p),Π−1

C2
(q))), (2)

where C1 and C2 are camera locations of cameras 1 and 2. Π (R3 7−→R
2) is the camera projection model

from 3D space to image space, and Π−1 (image space to 3D space) is its inverse. F(Π−1
C1

(p),Π−1
C2

(q))
returns the linear interpolation of two points, which refers to the corresponding 3D point obtained by
projecting the two matched feature points (p, q) into 3D space.

(2) Similarity transformation term. The local alignment term only constrains grid cells with matching
feature points. According to [11], we adopt a similarity transformation term to ensure the naturalness
of the warped image by ensuring similar transformations at adjacent vertices of the grid. (v1, v2, v3, v4)
are the four vertices of the initial grid cell that the matched feature point sits in. (v̂1,v̂2,v̂3,v̂4) and
(v′1,v

′
2,v

′
3,v

′
4) are the four vertices of the actual and desired warped grid cell, respectively. Each grid cell
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is divided into two triangles. Each vertex can be represented by a local coordinate system constructed
by a vector between the other two vertices and the R90. We calculate the local coordinates (u, v) of v1
in the local coordinate system defined by v2 and v3:

v1 = v3 + u(v2 − v3) + vR90(v2 − v3), (3)

where R90 = [ 0 1

−1 0
]. Given u, v, v̂2 and v̂3, the desired location for v̂1 is defined as

v′1 = v̂3 + u(v̂2 − v̂3) + vR90(v̂2 − v̂3), (4)

where v′2 and v′3 can be defined similarly. Then we estimate the error associated with the triangle based
on v′1, v

′
2 and v′3 as

Ctri =
∑

i=1,2,3

‖v′i − v̂i‖
2
. (5)

Finally, we take the error sum of all triangles as the error of the entire grid, and then the total similar
transformation term is defined as

Est(V ) =

{A,B}∑

i=A

Ti∑

j=1

Ci,j
tri , (6)

where Ti is the number of triangles of Ii. C
i,j
tri represents the error value of the jth triangle in image Ii.

(3) Scale-preserving term. The scale-preserving term is defined in the same way as in [10]. It is used
to constrain the minimum global scale change of the image and ensure no local perspective distortion
through calculating the ideal scale of each image, measured by the four edges of the image. First, we
calculate the relative scaling factor for matched image pair (IA, IB) according to the feature points:

RAB =
PA

PB
, (7)

where PA is the perimeter of convex polygon, built on the feature points from IA. PB is the perimeter of
convex polygon in IB corresponding to the convex polygon in IA. Next we estimate the absolute scaling
factor for IA and IB by minimizing

argmin
K

∑

(A,B)∈SI

|RABKB − KA|
2

s.t.
∑

A∈I

KA = NI , (8)

where SI is the set of the matched image pairs. I is the set of images, and NI is the number of images.
KA and KB are the absolute scaling factors of IA and IB, respectively. For this conditional extreme value
problem, we adopt the Lagrangian multiplier method to solve it. Finally, based on the absolute scaling
factor, the scale-preserving term is defined as

Esp(V ) =
∑

IA∈I

‖δ(ÎA)−KAδ(IA)‖
2
,

δ(IA) =

[
‖et‖ ‖eb‖

‖el‖ ‖er‖

]
,

(9)

where δ(IA) and δ(ÎA) represent scale matrices of the original image IA and the warped image ÎA,
respectively. et, eb, el and er are the four (top, bottom, left and right) edges of IA.

(4) Line-preserving term. To help constrain all lines to be straight after warping, we define a line-
preserving term. Firstly, we employ the LSD algorithm [37] to detect the line segments and generate
the corresponding lines set L = {l1, . . . , ln}. Then we sample m discrete points for each l in L, denoted
by l = {τ1, . . . , τm}. These points must be in different grid cells and represented by the grid vertices
via bilinear interpolation to facilitate subsequent optimization. The corresponding warped points set is
l∗ = {τ∗1 , . . . , τ

∗
m}. Finally, the deviation of each line segment from the corresponding line is accumulated

as the line-preserving term, defined as

El(V ) =
∑

l∈L

m−1∑

i=1

([al, bl]⊥ · (Φ(τi)− Φ(τi+1))) , (10)
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where [al, bl]⊥ is the orthogonal vector, calculated by τ∗1 and τ∗m. Φ(τi) gives the warped position of the

sampled point τi. Φ(τi) =
∑4

t=1 wtvt, where vt ∈ V are the four vertices of the warped grid cell.
The total energy is defined as

E(V ) = Ea(V ) + λ1Est(V ) + λ2Esp(V ) + λ3El(V ), (11)

where λ1, λ2 and λ3 weight corresponding terms, controlling their importance. In our experiments, we
empirically set them to 1. Since the scale-preserving and line-preserving term (i.e., Esp and El) are non-
quadratic in the energy function E(V ), we replace these terms with their linear approximations and then
update the results iteratively like the method in [10]. Next, the energy function E(V ) can be optimized
by conjugate gradients, and the calculated grid is then used to guide warping [38].

Seamless blending of model textures. After warping, artifacts may still exist, caused by geometric
and photometric errors in the overlapping regions. To reduce them, we conduct optimal seam-driven
blending to refine the stitching result in the overlapping regions. Blending has two steps: virtual view
construction and optimal seam generation. After that, we further blend images based on the smooth strip
with alpha blending to reduce artifacts. We only consider blending two models. For multiple overlapping
images, we have a default input order. Each step only stitches one input image to the already stitched
image and performs seamless blending, and maintains a current image with a mask for the next input.

(1) Virtual view construction. We construct a virtual view as a reference view for seam-driven blending
(Figure 4). We first calculate the center of the bounding box containing the two models, denoted as O,
and then construct a line through O that is the angle bisector of the two lines C1O and C2O. We choose
that point on the angle bisector with the minimum distance required to just capture the union of the
two mapped images as the virtual camera position. C1 and C2 are the camera positions of the two input
images. The warped images are projected to the constructed 3D models, and then matched 3D points
are back-projected onto the corresponding sub-region of the virtual view for seamless blending.

(2) Optimal seam generation. Due to the lack of structural information, previous image composition
methods usually find the optimal seam by measuring color differences on both sides of the seam. In
our scenario, we have recovered the scene geometry, so we can measure both structural and textural
differences to improve the seam quality. We consider the alignment error and color difference as follows.

Alignment error. Given two overlapping images IA and IB, we first calculate the alignment errors for
S(A,B) in virtual view and map them to [0, 1] via the Gaussian of

s(p,q) = exp

(
−
‖p̃− q̃‖

2

σ2
1

)
, (12)

where (p, q) ∈ S(A,B). p̃ = ΠCv
(Π−1

C1
(ΨA(p))) and ΨA(p) is the warping function corresponding to IA.

Similarly, we can figure out q̃ in terms of ΨB(q) and C2. σ1 is a constant, empirically set to 0.003D, where
D is the diagonal length of the image. When the alignment error is greater than 0.01D, the corresponding
feature point pair is considered unreliable and is discarded. Then, we compute the contribution of feature
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Figure 5 (Color online) Mask calculation in the smooth strip with alpha blending. The orange curved line indicates the optimal

seam. The mask value of smooth strip with alpha blending for IA decreases from left to right, while for IB it increases.

points to the overlapping region pixel x, defined as the weight coefficient:

w(p,x) = exp

(
−
‖ΠCv

(Π−1
C1

(p))−ΠCv
(Π−1

C1
(x))‖

2

σ2
2

)
, (13)

where σ2 = 0.4D · s(p,q). Similarly, we can figure out w(q,x) in terms of q and C2. Next, we define the
alignment error of IA and IB, respectively, taking IA as an example:

SIA
a (x) =

∑
p∈S(A,B)

w2
(p,x)s(p,q)∑

p∈S(A,B)
w(p,x)

. (14)

Similarly, we repeat the above process for IB to produce SIB
a (x). Finally, the final alignment error is

defined as

Sa(x) =
1

2
(SIA

a (x) + SIB
a (x)). (15)

Color difference. The color difference is calculated as the Euclidean distance of pixel RGB value in
the overlapping region of the virtual view. The color difference value is scaled to [0, 1] using a Gaussian
function:

Sc(x) = exp

(
−
‖ΥA(x

′
A)−ΥB(x

′
B)− µ‖

2

σ2

)
, (16)

where x′
A = ΠCv

(Π−1
C1

(x)). ΥA and ΥB are pixel colors in the overlapping. µ and σ are the mean and
standard deviation of the pixel distance in the overlapping region.

The final energy function combines alignment error and color difference as follows:

S(x) =
(Sa(x) + Sc(x)) −min

max−min
, (17)

where max and min are the maximum and minimum values of Sa(x) + Sc(x), respectively. Sa(x) and
Sc(x) ∈ [0, 1]. S(x) denotes the consistency of (IA, IB) at pixel x, while the accumulation of S(x) over the
seam pixels gives the total consistency. We solve this optimization to give the seam using graph-cut [39].

After obtaining the optimal seam, illumination differences may still exist along the seam. To further
reduce artifacts, we use the smooth strip with alpha blending arranged along the seam to blend the
images (Figure 5). We calculate masks for the two images with mask values in [0, 1]. Pixels in the non-
overlapping region of the mask are set to 1, while in the smooth strip with alpha blending their values
are calculated as

DA(x̃) =
(W − Gu(x̃)) · (H − Gv(x̃))

W ·H
, (18)

where x̃ indicates a pixel in the smooth strip with alpha blending, Gu(x̃) and Gv(x̃) calculate coordinates
of x̃ in the smooth strip with alpha blending in x and y directions, respectively. W and H are the width
and height of the belt, respectively. The mask DB(x̃) of the image IB is calculated in the same way. The
color of each pixel in the smooth strip with alpha blending is a linear combination of the color values in
the two images:

C(x̃) = DA(x̃) ·ΥA(x̃) + (1 −DA(x̃)) ·ΥB(x̃), (19)

where ΥA(x̃) and ΥB(x̃) are the colors of x̃ in IA and IB.
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Video streaming

Mapping

Rendering resultVideo model
Blending & adjusting

Figure 6 (Color online) Rendering the output video. The input is the video captured in real time. First, the video content is

mapped directly to the video model as a texture for each model. Then the texture is blended and adjusted based on the rectification

map (storing the warped result, shown above) and the clipping map (storing the blended result, shown below) from the 3D stitching

algorithm to achieve a high-quality rendering result.

5 Real-time video model visualization

Using the recovered 3D models as well as the stitched textures, we can now generate a 3D model with
superimposed video textures in real time. The results are provided in a XML-described IBMT format
file. It is designed for fast rendering of the video model.

For video model rendering, we first perform occlusion detection and calculate the occluded surface
through shadow mapping [40]. This method can solve the problem that there may be multiple points
on the path of light emission and the same image may be projected more than one in the scene. Then
the projective texture mapping [41] is conducted to achieve real-time rendering. This strategy works
well for a model recovered from a single input video. For models recovered from multiple input videos,
ambiguity exists in overlap regions when there are moving objects. In this situation alpha blending is
used to blend the textures of the two models in the overlapping region. We also make minor adjustments
to the textures, including rectification and clipping, to further improve rendering results, as shown in
Figure 6.

6 Experiments and discussion

One assumption of our approach is that input videos are captured by stationary cameras. Thus, we make
comparisons with state-of-the-art image stitching methods. Synthetic datasets were gathered and used
to evaluate our model-guided 3D stitching algorithm including 12 sets of images taken by us from video
surveillance systems and 20 sets from publicly available images and videos in [4, 5, 7, 9, 11].

6.1 Evaluation metrics

We evaluated the following aspects of our 3D stitching quality: alignment quality, warping quality, seam
quality and subjective user evaluations. We employed root mean squared error (RMSE) of an estimated
warping Φ to quantify the alignment quality on the matched feature points set S(A,B), defined as

RMSEΦ =

√√√√
∑

(p,q)∈S(A,B)
(‖Φ(p)− p′‖

2
+ ‖Φ(q)− q′‖

2
)

NS(A,B)

, (20)

where NS(A,B)
is the number of matched feature point pairs in S(A,B). Warping quality is measured using

the root mean squared distance (RMSD) of the estimated warping Φ on the matched feature points set
S(A,B), defined as

RMSDΦ =

√√√√
∑

(p,q)∈S(A,B)
(‖Φ(p)− p‖

2
+ ‖Φ(q)− q‖

2
)

NS(A,B)

. (21)

In the blending stage, a visible seam may produce structure inconsistency visual artifacts. We adopt
the assessment strategy in [11] to quantitatively measure seam quality. Similarity in the blending region
is calculated by zero-base normalized cross correlation (ZNCC) on the optimal stitching seam with N
pixels, defined as

SQ =
1

N

N∑

i=1

(
1−

ZNCC(xi) + 1

2

)
, (22)
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Table 1 Surveillance video data used in Figures 7–9a)

Scene name Basic parameters Quantitative results

Videos Resolution (P) Average baseline Field of view Overlap RMSE RMSD Modeling time Stitching Stitching

length (m) (Mean/Max/Min) (Mean/Max/Min) (%) (Mean/Max/Min)↓ (Mean/Max/Min)↓ (Avg.) (min) ↓ time (Avg.) (min) ↓ score (Avg.) ↑

‘square’ 4 1080 46.2 37◦/43◦/30◦ 23.7/33/17 0.379/0.498/0.161 0.145/0.351/0.041 4 7 7.75

‘junction’ 4 1080 48.9 38◦/43◦/35◦ 25.5/48/7 0.036/0.051/0.026 0.114/0.26/0.032 6 9 8.10

‘street’ 33 1080 21.6 55◦/56◦/49◦ 10/20/5 0.152/0.486/0.033 0.166/0.37/0.035 4 13 8.05

a) ↓: lower values denote better performance; ↑: higher values denote better performance.

66 m
51 m

22 m

(a) (b)

Figure 7 (Color online) Stitching results for the ‘square’ scene. (a) Stitching result without blending. The total number of local

planes is 45. (b) Final stitching result with blending. The baseline between adjacent cameras is marked as a red dotted line.

where SQ is the mean of the blending texture similarity over all seam pixels, in the interval [0, 1]. Smaller
values indicate higher seam quality.

We also conducted a user evaluation to subjectively evaluate the results of our approach and other
methods. 20 participants were involved. Half of them were in-lab students while the rest were students
in other majors. 32 scenes were selected randomly and each time the stitching results from 8 methods
were presented to the participants in random order who rated their quality from 1–10 (stitching score,
larger meaning better perceptual quality). For each scene the scores of all the participants were averaged
for each method to give a score for that method.

6.2 Performance analysis of our model-guided 3D stitching method

We validate the effectiveness and robustness of our algorithm in two ways. Firstly, we employed our
stitching algorithm on challenging real world videos. Then, we performed a flexibility analysis on our
approach, to verify that it can handle scenes with complex structures as well.

Stitching quality. We present 3D stitching results of our approach on 3 scenes captured from a video
surveillance system. The ‘square’ scene and ‘junction’ scene are wide scenes taken from a high building,
while the ‘street’ scene is a long narrow roadside scene viewed from light poles. Key characteristics of
the scenes are provided in Table 1. Note that further details of the modeling, stitching time and results
of each scene can be found in Appendixes A–E.

Figure 7 shows the stitching result for the ‘square’ scene. Our approach generates visually pleasing
results for this case. Figure 8 shows a fused result for the ‘junction’ scene stitched from 4 videos. From
left to right we see background frames of the input videos with modeling lines, the recovered models for
each video with textures, stitched models with alpha blending and a comparison between our fused result
without (above) and with (below) 3D stitching. Figure 9 shows another long scene example stitched from
33 input videos; the cameras used to capture these videos were mounted on one side of the street. Our
approach works well in this case—the rendered result is shown in Figure 9(a). Details of the fused result
for part of the scene are shown in Figure 9(b), with close-up views in Figures 9(c)–(e). We quantitatively
evaluated our stitching results using both objective and subjective metrics, as shown in Table 1. Objective
evaluation results indicate that our approach achieves high alignment accuracy while subjective evaluation
results show that our approach can generate visually satisfying results.

Modeling flexibility. Our modeling method approximates the scene geometry using local planes.
Appropriately choosing the number of planes can balance the quality and complexity of the modeling
process. We explored the effect of increasing the number of planes used in the modeling process for a
case with two scenes (denoted as scene1 and scene2), and gave the alignment results as well as their
corresponding RMSE and RMSD. Results are shown in Figure 10. We first limited the number of planes
for each scene to 3; the alignment result is shown in Figure 10(a). In this case there is serious misalignment
and structural distortion (marked by a red rectangle). Then we increased the number of local plane for
scene1 to 9 while decreasing the number of local plane for scene2 to 2; the alignment results are shown
in Figure 10(b). This slightly improved the alignment quality, giving a lower alignment error (RMSE =
4.168) and a smaller warping degree (RMSD = 1.882), but misalignments still exist (marked by the red
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(a) (b) (c)

(d)

Figure 8 (Color online) Modeling and stitching performance for the ‘junction’ scene. (a) Input frames with line drawings.

(b) Image-based modeling results. The total number of local planes is 45. (c) Blending results after stitching adjacent frames.

(d) The fused results without 3D stitching (above), and with 3D stitching (below).

…… 1 2 3 ……

1 2
3

1 2 3

(a)

(b)

(c) (d) (e)

Figure 9 (Color online) (a) The fused results for the ‘street’ scene using 33 videos. The total number of local planes is 70.

(b) Close-up view of ‘street’ scene using 7 videos. (c–e) Zoom-in details of three parts of (b).

(a)

(c) (d)
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Figure 10 (Color online) Alignment results with differing numbers of local planes. Each case includes two recovered video

models (M1-p and M2-p) and their warped model, evaluated by RMSE and RMSD. The misalignment and perspective distortion

are indicated by red rectangles respectively. ‘M1-p = 3’ indicates the number of local planes of the first video model is 3. (a) RMSE

= 6.554, RMSD = 2.726; (b) RMSE = 4.168, RMSD = 1.882; (c) RMSE = 3.926, RMSD = 1.508; (d) RMSE = 0.242, RMSD =

0.095.
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Figure 11 (Color online) Alignment results with differing local plane orientations (an angle between the facade and the ground,

marked by a red double arrow). Each case includes two recovered video models (M1-θ and M2-θ) and their warped model, evaluated

by RMSE and RMSD. The misalignment is indicated by a red rectangle. ‘M1-θ = 180◦’ indicates the angle between the facade and

the ground of the first video model is 180◦. (a) RMSE = 0.244, RMSD = 0.164; (b) RMSE = 0.223, RMSD = 0.086; (c) RMSE =

0.213, RMSD = 0.073; (d) RMSE = 0.217, RMSD = 0.088.

rectangle). By setting the number of local plane of scene1 to 3 and increasing the number of local plane
of scene2 to 10, we achieved similar result as shown in Figure 10(c). Finally we set the number of local
plane for scene1 to 9 and for scene2 to 10, which lead to a perceptually satisfactory alignment result,
as shown in Figure 10(d). This setting has low alignment error (RMSE = 0.242) and warping degree
(RMSD = 0.095).

We can also choose different local plane orientations relative to the ground, the choice being parallel,
obtuse angle, right angle or acute angle. Parallel is the most basic choice which always produces the
worst result, as shown in Figure 11(a). We also show results using different angle combinations for two
input scenes in Figures 11(b)–(d), and provide the corresponding RMSE and RMSD values. The minor
misalignments are marked by red rectangles. These alignment choices produce different results and in
practice choices should be made based on the scene structures.

6.3 Comparison with state-of-the-art image stitching methods

We compared our stitching algorithm with seven state-of-the-art image stitching methods on the synthetic
datasets. The compared methods include such local-adaptive warping methods as APAP [4], SPHP [5],
GSP [8], REW [9] and TFA [22], and such seam-driven blending methods as WB [10], PTIS [7], SEAG-
ULL [11]. Since the source code of PTIS is not published, we only compare with its released stitching
results. We also quantitatively evaluated the results using the methods in [10, 11].

Results on our video dataset. Figure 12(a) shows results for the ‘square‘ scene with four input
videos. Severe misalignment and perspective distortion (red rectangles) exist in the results from SPHP,
APAP, GSP, REW, TFA, SEAGULL and WB. Additionally, the result of REW suffers from ghosting
artifacts. Our approach works well on this scene (green rectangles), as there is no visible parallax error
and shape distortion in the stitching result.

Results on public datasets. Figure 12(b) shows stitching results for seven methods for a scene from
the SEAGULL dataset with two input images. Obvious misalignments exist in the results of SEAGULL
and WB, and ghosting artifacts exist in the results of SPHP, APAP, GSP, REW, TFA and WB. In some
results, structural objects such as the pillar are distorted. Our approach outperforms these methods,
producing a better stitching result as shown in the last row.

Quantitative evaluation. We quantitatively evaluate the results of WB, SEAGULL and our ap-
proach as shown in Table 2. Twelve scenes were tested in this evaluation. Our approach achieves best
results under the RMSE metric for all scenes, where our approach has the smallest alignment error. For
the RMSD metric, we only evaluate SEAGULL and our approach, since WB employs the reference plane
to generate the stitching, and original feature points in the corresponding image are not in the same
coordinate system. Our approach has better RMSD than SEAGULL in all cases: our approach produces
better warping quality than SEAGULL. The stitching score shows that participants preferred our results
over the results of WB and SEAGULL. We also compared our approach with WB and SEAGULL on
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GSP

Ours

REW

SPHP

APAP
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SEAGULL

TFA

(a) (b)

Figure 12 (Color online) Comparison with state-of-the-art methods on our dataset and public datasets. (a) The ‘square’ scene

from our dataset. (b) SEAGULL scene from a public dataset. Top to bottom: results of SPHP, APAP, GSP, REW, TFA,

SEAGULL, WB and our approach. In each result, the misalignment, perspective distortion and ghosting artifacts are indicated by

red rectangles. A green rectangle emphasises our plausible result. The total numbers of local planes in our results are (a) 45 and

(b) 8.

these 12 scenes using the SQ metric. In all cases except for the third, our results have smaller SQ than
SEAGULL and WB: our approach provides better seam quality than WB and SEAGULL.

6.4 Limitations

Our approach achieves plausible results with less distortion and misalignment for large parallax videos.
The approach has shown its effectiveness and robustness. However, it also has some limitations. (i) The
distance from the camera to moving objects needs to be far. Since moving objects are not modeled,
rendering will give incorrect depths for them. If they are far, this effect is tolerable. However, when
near, such objects will be rendered with the depths of certain planes, resulting in stretching distortion for
viewpoints far from the original camera. (ii) Our approach cannot deal with videos from cameras with
opposing orientations. If an object is near the camera, cameras with opposite orientations will capture
the object from different directions, and stitching results in overlap areas will not be satisfactory. To
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Table 2 Quantitative comparison of [10, 11] and our approach on twelve datasetsa)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Image/video number 2 2 2 2 2 2 2 2 2 2 2 2

Resolution 1920 × 1080 1920 × 1080 1920 × 1080 1000 × 750 1000 × 750 1000 × 750 1000 × 750 1000 × 620 1000 × 620 1000 × 620 653 × 490 653 × 490

WB [10] 24.14 80.90 1.02 1.84 1.63 7.73 10.55 2.32 0.68 2.20 2.16 0.36

RMSE ↓ SEAGULL [11] 22.1 Fail 1.42 1.87 1.32 1.02 3.95 1.04 0.14 4.05 1.84 2.14

Ours 0.18 0.22 0.03 0.16 0.44 0.10 0.10 0.11 0.16 0.10 0.18 0.02

RMSD ↓
SEAGULL [11] 12.7 Fail 2.70 1.39 0.75 1.23 3.97 6.50 0.13 0.33 2.33 1.71

Ours 0.10 0.13 0.03 0.10 0.44 0.10 0.12 0.11 0.10 0.10 0.18 0.02

Stitching
WB [10] 5.7 2.8 3.5 6.9 2.6 4.5 6.5 6.2 4.3 6.5 7.1 2.7

Score (Avg.) ↑
SEAGULL [11] 5.3 Fail 3.8 4.5 5.5 5.6 7.2 6.1 7.6 5.0 5.8 4.0

Ours 8.3 8.1 8.3 8.2 7.5 7.9 8.1 8.1 8.4 8.1 7.7 8.5

WB [10] 0.475 0.487 0.212 0.440 0.490 0.420 0.440 0.435 0.205 0.479 0.326 0.224

SQ ↓ SEAGULL [11] 0.424 Fail 0.478 0.510 0.480 0.470 0.420 0.538 0.271 0.496 0.229 0.413

Ours 0.275 0.344 0.212 0.320 0.300 0.360 0.250 0.265 0.178 0.280 0.110 0.221

a) #1–#3 are our own scenes, #4–#7 are from [11], #8–#10 are from [7], #11 is from [5] and #12 is from [4]. ‘Fail’ indicates

stitching failed.

obtain better results, real-time 3D object reconstruction needs to be considered; this is a topic for future
work. (iii) In situations where a strong resolution difference exists in the stitching zone from different
videos, the results may be blurred.

7 Conclusion and future work

We proposed a novel model-guided 3D stitching method for augmented virtual environment method for
cityscapes. Our approach is robust and can generate plausible results. The effectiveness and robustness
of our approach are validated on collected video datasets and several public datasets. We compared our
approach with seven state-of-the-art stitching methods: qualitative and quantitative evaluations show
that our approach outperforms other methods. In future, we plan to use semantic feature matching
techniques to improve the automation process of the modeling of complex scenes.
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