Manuscript Click here to view linked References %

O©CoO~NOUTAWNPE

Web-based Mixed Reality Video Fusion with
Remote Rendering

15t Qiang Zhou 2" Zhong Zhou
Sate Key Laboratory of Virtual Reality Technology Sate Key Laboratory of Virtual Reality Technology
and Systems, Beihang University and Systems, Beihang University
Beijing, China Beijing, China
ZB2006108@buaa.edu.cn zz@buaa.edu.cn

Abstract—Mixed Reality (MR) video fusion system fuses video runs on a remote server, allowing it to render 3D models
imagery with 3D scenes. It makes the scene much more realisti with more realistic effects by utilizing powerful serverada
and helps the users understand the video contents and tempalr taking advantage of advanced graphics card features like ra

spatial correlation between them, thus reducing the user'sogni- tracks. Bv utilizing th d dule of f e th
tive load. Nowadays, MR video fusion has been used in various racks. By utilizing theé encoder moduie ot our framewor

applications. However, video fusion systems require powésl rendered image will be encoded by graphics card hardware,
client machines because video streaming delivery, stitahg, and which is more effective than soft encoding. Then the encoded
rendering are computation-intensive. Moreover, huge bandidth videos are sent to the user’s browser through Web Real-Time
usage is also another critical factor that affects the scatdlity -qommunication (WebRTC) [1]-[3] protocol. It will protect

of video fusion systems. The framework proposed in this pape o -

overcomes this client limitation by utilizing remote rendeing. (€ original 3D model from malicious users because the

Furthermore, the framework we built is based on browsers. transferred data are video images displayed in the user's
Therefore, the user could try the MR video fusion system with browser. Subsequently, the proposed framework is devedlope

a laptop or even pad, no extra plug-ins or application prograns to be more user-friendly based on the B/S model, where users
need to be installed. Several experiments on diverse metsc .4|q access video fusion services via web browser without
demonstrate the effectiveness of the proposed framework. o

Index Terms—mixed reality, video fusion, WebRTC, remote pre_—mstallmg client software. As shown in our qgalltgtlex—
rendering periments, users could access a smooth video with high fame

per second (FPS) and don't feel lagging when taking action
|. INTRODUCTION in the browser. It seems the system is just running locally

Mixed Reality (MR) video fusion systems have the impresather than running remotely. To compare our quantitative
sive ability to produce highly comprehensive imagery and &xperiments, we bring a general-purpose game engine, Unrea
yield temporal-spatial consistent scenes. They thus haee bEngine 4 (UE4). It is found that the proposed framework
extensively used in many industries such as public secur@igceeds UE4 for the metric like bandwidth usage, and these
and transportation. MR video fusion systems, on the oth&vo systems are at the same level when comparing freeze
hand, face a number of challenges. To begin with, existifiggme count and FPS.

MR video fusion systems are built to run on the client side. Our main contributions are summarized as follows:

Still, the core tasks of these systems, such as image engodin
and rendering multiple video streams with 3D models, requir
a powerful server that is beyond the capability of the clgent
personal computer. Secondly, in some user cases, 3D models
are copied and modified by malicious users when loaded by
clients. Therefore, the copyright of those models could not
be protected within existing MR video fusion systems. Last
but not least, with the popularity of web applications, many
systems have released their web application formats based o
modern browsers. However, existing MR video fusion systems
still lack web applications to the best of our knowledge.

We create a web-based MR video fusion framework with
remote rendering to address the aforementioned issues. Thi
framework proposes a fusion method for dynamically preject *
ing video images into 3D models as texture. This process

o We propose a web-based MR video fusion framework
with remote rendering. In the render server, a camera’s
model-view matrix and projection matrix are computed
based on its position and pose and utilized to project
video imagery onto scene models. Then the occlusion is
detected by using the depth map of the scene. Selective
projection onto camera visible models could accelerate
fusion computation and add a far plane for every cam-
era to supplement our scene structure. In the encoder
component, several streaming encoding techniques are
introduced to a proposed framework to fulfill different
scenarios.

Several experiments are performed on our proposed
framework and another remote rendering system. Thus,
the proposed framework shows its effectiveness via ex-

This work was supported in part by National Key R&D ProgranChiina periments,
(Grant No. 2018YFB2100601), and in part by the National Ket$cience . .)
Foundation of China (Grant No. 61872024). The remainder of the paper is organized as follows. In

https://www.editorialmanager.com/vrih/viewRCResults.aspx?pdf=1&docID=291&rev=1&fileID=3825&msid=f31bc17e-83d7-4203-8b6d-b6478c04afeb
https://www.editorialmanager.com/vrih/viewRCResults.aspx?pdf=1&docID=291&rev=1&fileID=3825&msid=f31bc17e-83d7-4203-8b6d-b6478c04afeb

O©CoO~NOUTAWNPE

Section Il, we review the literature related to the proposemitput into a media stream, passing through a lightweight
framework. The system architecture of our proposed systeameb service stack. Users can then view that broadcast stream
is presented in Section Ill. In Section IV, details of MRn standard web browsers running on other computers and
video fusion rendering are discussed, and we present anotmebile devices. Zhang et al. [10] implemented an educaltiona
key component of the proposed framework, WebRTC-baskdboratory platform. Models in this platform are divideddn
video streaming with interaction, in Section V. Experingnttwo categories: background and interactive objects. On the
evaluation is presented in Section VI, and the article amet cloud side, the background is rendered, encoded into anemag
in Section VII. with H.264, and then pushed to the client via the real-time
message protocol (RTMP). Besides, lightweight rendergng i
used for interactive models. Finally, the rendering resalte

To achieve the above benefits of a web-based MR videombined at the end terminal. Lightweight rendering legesa
fusion system, two techniques must be discussed. The fiasterminal-oriented adaptive algorithm to transfer reader
is how to fuse multiple video streaming with an augmentedodels based on computing power and network latency. The
virtual environment (AVE). The second is how to render thauthors also propose an improved 3D-warping and holegillin
mixed environment remotely and display it on a web browsealgorithm that significantly improves image quality where th

MR video fusion technology is one of main research aspectser’s viewpoint changes. Viitanen et al. [11] presenteova |
in virtual reality (VR) to fusion models of the virtual scene latency edge rendering scheme for remote VR gaming. The
and objects into the real world. The target is to enrichroposal aims to reduce the energy and computation burden
the expression effects of scene models. Moezzi et al. [df the end user devices by performing game rendering on the
presented the concept of video and 3D scene fusion. The@rver sideThe rendered views are sent to the user as encoded
system captured objects’ motions using cameras with @iffer high efficiency video coding (HEVC) video frames. The
viewpoints, reconstructed the objects utilizing 3D voxelsd system creates 360 equirectangular projection (ERP) video
finally fused the reconstructed models to the virtual emdrofrom the rendered views, divides it into 128 pixel-wide ireag
ment dynamically. The concept of the AVE [5], [6] is firstlyslices, and uses the user’s head orientation data to limit th
proposed by Neumann et al. to promote video augmentednsmission of the image slices to that of the field of view
virtual scene technology. Based on the conception of aalirtFoV). The selected slices are encoded in real time and in
city, they map video captured to the corresponding builslinground half bit rate over the case where all slices are emncode
and terrain models in real time. Several campus scenes arés indicated above, existing VR/panorama video systems
built, and the 3D models are dynamic according to the reddenefit greatly from remote/cloud rendering technologywHo
time video image. Sawhney et al. [7] presented a method tleaer, video fusion systems usually need to fuse multiple
exploits real-time videos as the texture of existing 3D ni®devideo streaming and large-scale 3D scenes, so they are quite
Firstly, it takes several calibrated camera videos, sdgondiemanding for computing power, limiting their application
applies texture mapping technology to render the 3D modsdenarios. Remote/cloud rendering is just in time to elatdén
in real time. The new method brings a uniform viewpoint fothis obstacle. We present a web-based MR video fusion system
users to observe models and videos. It enhances the spatigth remote rendering, introducing remote rendering to the
expression of videos and extends the user’s observatigerarvideo fusion system and using a web browser as the front
Zhou et al. [8], [9] presented a method of multiple video dusi end, which is quite user-friendly.
in a 3D environment. Users initially interact with a newly
designed background model named video model to register
and stitch videos’ background frames offline. The method the This section describes the key components of our web-based
fuses the offline results to render videos in a real-time rmannMR video fusion system and the data flow and interfaces

There are several commercial software or web services tihatween these components.
can perform remote or cloud rendering. Nvidia has releasedAn overview of the system architecture is shown in Fig. 1.
an SDK called CloudXR, which aims to deliver advance@®ur system is developed based on the B/S mote server-
graphics performances to thin clients by rendering complside implementation consists of a video connector, a render
immersive content on Nvidia cloud servers and streaming teerver, and a generic WebRTC-based cloud rendering library
result to the clients. Google Stadia, a cloud gaming servicensisting of a command receiver, a video encoder, and a
operated by Google, launched in November 2019, streatransmitter.
games directly to users’ desktop, laptop, compatible pluoshe The render server can read the 3D scene files from the
tablet, or TV with Chromecast Ultra. Unreal Engine presentiatabase and multiple videos streaming from the video con-
a new feature called pixel streaming since its version 4.2dector. Then render server will fuse videos into the 3D
With pixel streaming, users run Unreal Engine applicatiorstene and then render original pixel-data images into dhare
remotely on a computer that they probably never see. Themory where other components could access these images
Unreal Engine uses the resources available to that compuytdore details will be illustrated in Section 1V). When users
like CPU, GPU, and memory to run the game logic anahanipulate the scene via their browsers, the command esceiv
render every frame. It continuously encodes this renderedmponent will publish a command that users trigger, such as

II. RELATED WORK

IIl. SYSTEM ARCHITECTURE

O©CoO~NOUTAWNPE

Camera ...

Command
Browser receiver

Video connector

Network . Interaction

RTP package RTP K
package
~ WebRTC
: peer Pixel data ixel d
T gy - Video Pixel data
- - encoder — - | Render server
———
Shared Memory Interaction
Video streaming

encoded by

Interaction H.264/VP9
Transmitter

3D scene

Fig. 1. System architecture.

changing viewport or zoom in/out a particular ar8zcause congestion.
the render server subscribes to a Redis (an open source, innteraction is an important feature of the MR system. For
memory data structure store) queue, those commands willdae proposed system, user interactions from the web will
pushed to the render server and triggered to re-render del sent to the command receiver, and parameters will be
generate a new image to the shared memory. transformed and transmitted to the render server. Thus, the
The video encoder is a key component within the clougnder server acts as a thrift server and the command receive
rendering library. It accesses shared memory, decoding &f®a thrift client in this process. More details will be dissed
original pixel data generated by the render server utijzirn Section V.
H.264/VP9 [12], which could be customized. The encoder will
utilize hardware acceleration technology if it detectsmarged
GPU. For example, Nvidia encoder (NVENC) is a feature in The render server is responsible for fusing videos and 3D
Nvidia graphics cards that performs video encoding, offlegd scenes, which is the key feature of our system.
this compute-intensive task from the CPU to a dedicated partAs illustrated in Fig. 2, the input of the render server are
of the GPU. It was introduced with the Kepler-based GeFor@® models and video images, and the output of the render
600 series in 2012. The encoded stream will be sent to therver is fusion result in a frame buffer. The whole process i
transmission component. It will be packaged to the reaétintlescribed as follows. (1) Transform the position and pestidr
transport protocol (RTP) package and sent to WebRTC peke camera to the position and posture of the 3D environment.
resident in the user’s browser. (2) Calculate the model-view matrix and projection matrix
The transmitter component is responsible for establishingoased on the output of step (1). (3) Calculate the frustum
connection with web peers and delivering media. Becausestfucture in the 3D environment of the camera and take the far
the network address translation (NAT) and firewalls, it ma§lipping plane as a far plane to supplement scene strugtjre.
have problems to establish a peer-to-peer connection.eTh&elect visible model collections based on the frustum tedpe
constraints were solved in the transmitter componentzirii up the fusion process. (5) Render depth information of camer
the session traversal utilities for NAT (STUN) server, gesal viewport using the model-view matrix and projection matrix
using relays around NAT (TURN) server, and interactivand then perform occlusion detection toward the model's
connectivity establishment (ICE) protocol. Firstly, IOfies to vertex utilizing depth information. We only perform video
connect peers directly with UDP. In this process, the STUfNSsion for the not occluded parts and keep the occlusion part
server is helping the peer behind NAT to find its public IPf models their original texture. (6) Do the fragment tekigr
address and port. When UDP does not pass through, &l coloring (FTC) operation in graphic cards and put frames
transmission control protocol (TCP) is utilized. The TURNNnto a frame buffer.
server will be utilized finally if TCP still does not work. .)
When the connection is established, the transmitter coemgon” Visible model selection
packages media data into RTP and send them to the web peeFusing videos requires traversing all models of the scene.
A Google congestion control(GCC) algorithm working wittHowever, the camera can only observe a subset of the models
RTP/RTCP protocols is utilized in the transmitter compdnerTherefore, choosing visible models from the view point of
It is based on the idea of using delay gradient to infehe camera could speed up the traversal process. We calculat

IV. MR VIDEO FUSION RENDERING

O©CoO~NOUTAWNPE

Render server
3D
Models
. Frame buffer
Occlusion
detection
Transformation Computation off Fragment
of camera's Model-View | | Model || —»| Texturing
i position and Matrix and selection and Coloring[|
_VldEU posture Projection
images Matrix Far
clipping
plane

Fig. 2. Rendering process of video fusion.

the frustum bounding box of the camera, and perform anAs illustrated in Fig. 4, if observed from the camera’s
intersection operation for the camera’s bounding box wétthe viewport O, area ABCD of model M is occluded by model
model. Only the models whose bounding box intersects with so a patch E inside area ABCD is invisible. However,
the camera frustum will be taken into account. if observed from the user’s viewport, E is not occluded and
The models we are going to fuse consist of constructiatisible to the user. If we don’t perform occlusion detectian
models and a terrain model. For the construction models, wieleo image patch will be wrongly projected at the occluded
only fuse video images with constructions that interse¢hwipart. When the user observes point E from D, the observed
the camera frustum; for the terrain, we slice it based onrpriarong picture will cause cognitive confusion.
knowledge, demonstrated in Fig. 3.

L N
(0.0) [[I 1(4.0) =, | A 4
'?\17 [I I b
____/_'_____}_XZ\V_'T____' _____ .
| N [
[[I o | x A S
[[I [D S0
= serlames =che === bem sl == i
| | 1 | <> X
" ! e ;@ | o
[I - [
((;3) —L\l-”\j -0 —Ir - _< Sk _:?43)_ T Fig. 4. Occlusion between models.
: : | : To solve this problem, detecting occluded parts based on

depth values should be performed to correct fusion results.
Fig. 3. Terrain slices. Our system utilizes the render-to-texture (RTT) technplog
to render and save depth information of visible scenes based
The whole terrain is sliced into 20 pieces, and all pieces as@ the model-view matrix and projection matrix. However,
numbered. For example, the upper left slice is numbered ta® depth value’s accuracy error exists because of the scale
(0,0), while the bottom right slice is numbered as (4,3). Silifferences for the camera’s visible space and the whole
cameras are deployed in the whole terrain, and each camsgéne’s space. To reduce this kind of accuracy error, théndep
can only observe a subset of the terrain pieces. The actgfilscene can be projected to the RGB color space, and will
terrain slices guarantee that the frustum of a certain cameg transformed back to depth if a depth judgment is needed.
should cover four slices at most. During the fusion processig. 5 shows a depth texture picture from one of our cameras.
the proposed method will filter nearby slices based on thewhen performing FTC, we calculate the relative depth of
camera’s position and then intersect those bounding bokesfragment of the current viewport. If the relative depth of
slices with the camera’s frustum, finally fuse the interséct fragment is less than the corresponding depth in texture, ou
models with the video images. system treats this fragment as visible for the camera arm the
assigns pixels of the image to this fragment. Otherwise, the
fragment will keep its original color. When the scene varies
We optimize our fusion result from the following aspectsor the camera’s parameters change, our system willre-rende
(1) avoiding occluded parts to be fused with video imagedepth to get the correct depth texture.
(2) projecting video image without a corresponding scene toNormally, when modeling for an outdoor scene, we don't
the far plane; (3) tailoring the outside structure of builji model the sky, trees, road signs, street lamps, etc., so cor-
to observe indoor fusion result. responding objects in the video are missing in the 3D scene.

B. Optimization of fusion result

O©CoO~NOUTAWNPE

Fig. 7. Before (left) and after (right) tailoring a buildisgoutside part.

V. WEBRTC-BASED VIDEO STREAMING WITH
INTERACTION

Fig. 5. Depth texture of a visible scene.

The output is a video image from the render server. We

))) should find a way to transmit those images to the user’s
Because of this, those contents will not be projected to #80d@,\ser, and at the same time, the user should interact with

during the fusion process. As a result, the user will be awaggy mqdels. Action on the client side should be got immediate
of this situation of object missing in the image. In our sys{e teeqhack. To achieve this, as illustrated in Fig. 8, we dgvel

a far plane will be set to improve this missing issue 10 SOMgepRTC-hased cloud rendering library. Images will be trans
extent. Each camera generates the stereoscopic plane basgfed from RGB to YUV format and encoded using specified
on the far clipping plane of the frustum and then adds it iQanqards. H.265 outperforms H.264 in several benchmarks,
the far plane node. The system processes vertexes in aygf que to lack of support by mainstream web browsers,
plane as follows. (1) If the relative depth of vertex is les§q select H.264 as one of our options. VP9 introduced by
than th.e cgrresponding depth in depth texture, it_implieﬂ thGoogIe has a higher compression ratio than H.264 for the
vertex in video image doesn't have a corresponding modeldf e \ideo quality, apparently lower bandwidth usage,'so it
the scene. In this case, the video image will be projected 10 ,iher encoding standard for our system.

the corresponding position in the far plane. (2) If the et Encoder component consists of a hardware encoder based
depth of vertex is more than the corresponding depth in depih \he GPU and a software encoder like x264/libvpx [13]. A
texture, it implies that models in the scene occlude vert er could change one of the encoders to encode the image
Users should not observe the corresponding picture, so t Sdered by the render server. The principle of choosing an
vertex is set to be transparent.The comparison for whethgio,qer is” described as follows. If using codecs that the
adding a par plane is shown in Fig. 6. The left part of Fig. 8, ront hardware encoder can't support (like VP9), the daco
shows the fusion effect before adding the far plane and the, e will utilize a software encoder (libvpx); If a senteas
right part shows the fusion effect after adding the far plang \i1er cpu (like an AMD Ryzen 9 or Intel i9), the encoder
The r_ight picture.is quite intact compared to the left oned @hodule should utilize x264 with CPU, because x264 with
the visual effect improves to some extent. powerful CPU could get better image quality than hardware-
accelerated encoders; Otherwise, the encoder moduleegtili
hardware-accelerated encoders to encode images.

In the next step, encoded images go into the transmitter
component, where they are packaged into the real-time pro-
tocol (RTP) [14] message and sent to the user’s browser via
networks.

Streaming keyboard and mouse events to the render server
makes our system interactive. Keyboard and mouse events

Fig. 6. Before (left) and after (right) adding a far plane. are captured using their native JavaScript event handlers.
Next, they are converted to binary commands and sent over

In another scenario when users want to observe inda@rdata channel where the events are decoded and passed
fusion results, the indoor models are occluded by the oaitsitb the command receiver. For example, when users press a
model because the indoor models are inside buildings. Key, the browser generates a keydown-type event, and when
make the indoor models visible, the system should tailot parsers release a key, a keyup event is generated. The events
of the outside model to observe the indoor fusion result® Thontain the localized key character, such as a, s, d, or f, and
tailoring effect is shown in Fig. 7, where the left is the fusi a JavaScript key code such as KeyA, KeyS, KeyD, or KeyF.
result before tailoring the building’s outside part, whttee Mouse events are captured by JavaScript codes as absolute
right is the fusion result after tailoring. Apparently, thiew positions or as relative motions. By calculating the brawse
after the tailoring is better because it would not be ocdludelient viewport, video scaling factor, and page offsetsy ou
by the outside part so that users could observe the fusioift resystem can send the translated mouse events to the command
of the indoor scene directly. receiver.

O©CoO~NOUTAWNPE

Vidio inage WebRTC-based cloud rendering library i Nstisik
Video
| Encoder Transmitter | Streaming .
H.264/VP9 RTP Video
streaming
User's|browser
Command -
Receiver Interaction
Render server - Interaction
re-render

Fig. 8. The workflow of the WebRTC-based cloud renderingalifar

When users perform an interaction generated by keyboanad can also read video files from local disk and send them
or mouse in the browser like zoom in/out, change viewpott browser peers.
etc., as illustrated in Fig. 9, our system captures thig@utéon

and then delivers it to the data channel of WebRTC. The data (XN
I H Local video 2N
channel is an embedded mechanism of WebRTC to exchange e DI
data between peers when data arrive the command receiver s
component, where it will be transformed into a thrift event. Streaming medis [= _ e
server pushing se:\::‘:eeo
Thrift T wﬁf‘:ﬂ:ﬂﬁ; User browser
Interface Data Channel Encoding model
-n— Command WebRTC peer °"":f;':::|"°“ [@]
Rend D ; — running in
ender server Receiver [browser
- e

Fig. 10. Cloud rendering video fusion service that connsttsaming data
from both the streaming media server and local files.
Fig. 9. The interface between components.

The render server has an interface of thrift, so the thrift VI. EXPERIMENTS
event generated by the command receiver will be sent to thene conduct the comparison of our proposed system and
render server, and then a re-render will be triggered. Kinalthe Pixel Streaming of Unreal Engine 4 (UE4) as UE4 also
a new image will be transmitted to the user browser. provides WebRTC-based remote rendering. We deploy the
We develop a cloud rendering library based on WebRT@ixel streaming plugins, signaling server, and web serfer o
The original native WebRTC could only get video sourcedE4 on one laptop, and use a web browser installed in another
from a webcam or captured from the desktop. We develdgptop to access pixel streaming services.
a new source connector to access the pixel image data from . .
shared memory where three-party applications can generfteEXPeriment environment
video frames. The proposed experimental setup is depicted in Fig. 11.
In our case, the render server fuses multiple videos with 3Dcomprises two gaming-grade laptops equipped with Nvidia
scene data and then renders the image to the shared menfdrX 2080 Super with Max-Q (NVENC inside) and Intel i7
area as a publisher. The connector fetches pixel data fram t8.30 GHz CPU. The laptops are connected using 1000 M
shared memory as a subscriber. This connector is designedvieless router for low latency communication.
be general-purpose, suitable for other applications whiaht The experimental scene is near the southeast door of Bei-
to transmit via WebRTC, and to be integrated seamlessly witlang University, Beijing, China, as shown in Fig. 12. Video
other WebRTC implementations utilizing this connector. streaming captured from 3 cameras is introduced and fused
The render server has a model which could encode tigo a 3D scene to observe the real traffic of the road.
rendered image with different codecs and push them via lots o
of channels like streaming media (RTSP [15] and RTMPE- Multi-client concurrency access test
shared memory, UDT (UDP-based data transfer), etc. Then, weéAs illustrated in Fig. 11, we first use one computer as
develop a standalone video pushing service to connect thase client, then two computers, and finally three computers,
streaming data, as illustrated in Fig. 10. It is built basadao to access the video fusion system. Then, the MR video
Go programming language implementation of native WebRTi@sion system is deployed on the server and fuses three video

O©CoO~NOUTAWNPE

video fusion server/nginx
1.8.1/WebRTC go peer
installed.For UE4 testing,
pixel streaming and UE4
are installed

WIFI

laptop B as client

© o

User access video fusion

system or UE4 via

Chrome (Version 91) -
laptop C as client

000M wireless
router

laptop D as client

Fig. 11. Experiment setup.

Fig. 12. Traffic video fusion in a 3D scene.

streaming in a 3D scene. Finally, we record the workload

laptop A as server

(CPU/bandwidth/GPU/memory usage) of the server.

As illustrated in Figs. 13-16, bandwidth and GPU usage
increase linearly according to the number of clients. STFPU
and memory usage do not increase linearly when the number

Fig. 14. Bandwidth usage for the server when multiple clients access
concurrently.

of concurrent clients grows. So if we expect more scalabilit
to our video fusion system, bandwidth, and GPU bottleneck

should be overcome.

50

CPU usage(percentage)

1 client
~~~~~~~~~ 2 clients
——— 3clients

T T T T
00:00:00 04:00:00 08:00:00 12:00:00 16:00:00

Time

Fig. 13. CPU usage for the server when multiple clients access crerdiy.

C. Contrast Experiment results

T
20:00:00

00:00:00

F

Bandwidth usage(Kpbs)

GPU Usage(percentage)

ig. 15.

Memory usage(MB)

We compare two systems on several metrics like FPS, freeze

frame count, and bandwidth usage.

F

ig. 16.

The left picture of Fig. 17 shows the FPS of UE4, and thenty,
right one is that of our proposed system. Most of this time,

1600

1 client
......... 2 dlients
1400 - ’ ——— 3clients N
s
/\,/\\ Il\\ N T o7
v \ \
\ / /
1200 4\ \ N 7NN
)
7 \Y4 \, \/
1000 -
800 1.
600
400 «W
200 T T T T T
00:00:00  04:00:00  08:00:00  12:00:00  16:00:00  20:00:00  00:00:00
Time

60

1 client
......... 2 clients
——— 3clients

0
00:00:00

T
04:00:00

T T T T
08:00:00 12:00:00 16:00:00 20:00:00 00:00:00

Time

GPU usage for the server when multiple clients access crertiy.

700
—_— 1 client
P - \ | e 2 clients
o P \ | =—— 3clients

600 |
550
500 4 "

450

400

00:00:00

T T

04:00:00 08:00:00

T T T
12:00:00 16:00:00 20:00:00 00:00:00

Time

Memory usage for the server when multiple clients accessuren



=
QOWO~NOUITDAWNLE

WWWWNNNNNNNNNNRPRPRPRPRPEPRPRERPERRPRE
WNPFRPOOONODURWNRFRPROOONOURAWNE

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the two systems could keep around 60 FPS and only have one

or two sudden drops during the one-hour testing.

framesPerSecond _ framesPerSecond

- Ayt r e ey

'

Fig. 17. FPS comparison of UE4 (left) and our proposed sygtaght).

We perform bandwidth usage testing between UE4 and our 51
proposed system for 24 hours. The results are shown in Fig. 18

560

ﬁ —@—— our propose_d system
540 A / \ —_— -0 — Unreal Engine 4
5201 Q ]
500 | / \ A /Sf \ /C\aﬂ \)

I 3
4804\ / / \VARY
"1y \J{\N AR,

440

420 4

Bandwidth Usage(Kpbs)

400

380

360 T T T T T
00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 00:00:00

Time

Fig. 18. Bandwidth usage.

35
W Our proposed system
Unreal Engine 4

30 4

20 -

Freeze frame count

1 2 3 4 5 -] 7 8

Time

Fig. 19. Freeze frame count.

rendering method proposed in this paper is universal, nigt on
applied to the MR video fusion system, but can also be adapt
to real-time Augmented Reality (AR) if the network conditio

is fine so that the interaction latency is tolerable. Thewfae

will attempt an AR scenario utilizing the proposed meth@&).

We will customize the data channel in WebRTC by utilizing
the quick UDP Internet connection (QUIC) protocol [16] to
improve network performance.

REFERENCES

[1] C. Vogt, M. J. Werner, and T. C. Schmidt, “Leveraging wtebfior p2p
content distribution in web browsers,” Proceedings of 213t IEEE
International Conference on Network Protocols (ICNP), bg2, 2013.
F. Rhinow, P. P. Veloso, C. Puyelo, S. Barrett, and E. Oalidin, “P2p

2
Our proposed system could reduce roughly 15% bandW|dt[h live video streaming in webrtc,” Proceedings of 2014 WorlthGress on
usage compared to UE4. This improvement is likely because ggﬁpl’tef Applications and Information Systems (WCCAIS), p-6,

VP9 utilized in our system has a better compression rati%]

N. Tindall and A. Harwood, “Peer-to-peer between browseyclon pro-

than H.264 that UE4 uses. Next, we compare freeze frame tocol over webrtc,” Proceedings of 2015 IEEE InternatioBahference
count of the two systems. This metric means to count the on Peer-to-Peer Computing (P2P), pp. 1-5, 2015.

total number of video freezes experienced by the receivel

] S. Moezzi, A. Katkere, D. Y. Kuramura, and R. Jain, “Ratinodeling
and visualization from multiple video sequences,” Comp@taph.

It is a freeze if frame duration, which is a time interval  Appl., vol. 16, pp. 58-63, 1996.
between two consecutively rendered frames, equals or égced5] U- Neumann, S. You, J. Hu, and B. Jiang, “Augmented virgmviron-

Max(3 * avg frame duration ms, avgframe durationms +

ments (AVE): dynamic fusion of imagery and 3D models,” Pextiags
of the IEEE Virtual Reality 2003, pp. 61-70, 2003.

150), where avgirame duration ms is the linear average of [6] L. Wang, S. You, and U. Neumann, “Single view camera cation
durations of the last 30 rendered frames. As illustrated in for augmented virtual environments,” Proceedings of 2@EFH Virtual

Reality Conference, pp. 255-258, 2007.

Fig. 19, the freeze frame count is almost the same for thﬁ] H. S. Sawhney, A. Arpa, R. Kumar, and S. Samarasekeradeti

two systems during the 8-hour testing.

VIl. CONCLUSION AND FUTURE WORK

In this paper, we present a web-based video fusion framé

flashlights: real time rendering of multiple videos for inmsige model
visualization,” Proceedings of the 13th Eurographics \Wbdp on
Rendering, pp. 157-168, 2002.

Y. Zhou, M. Cao, J. You, M. Meng, Y. Wang, and Z. Zhou, “MRdeo
fusion: interactive 3D modeling and stitching on wide-biagevideos,”

work with remote rendering. Our framework consists of a Proceedings of the 24th ACM Symposium on Virtual Reality thafe
render server that could project video images as texture tg and Technology, pp. 1-11, 2018.

9] Y. Zhou, P. Liu, J. You, and Z. Zhou, “Streaming locatibased

_3D moqels' a low latency streaming WebRTC prOtO(_:OI W'th[ panorama videos into augmented virtual environment,” &dings of
interaction, a low latency encoder, a command receiver, and 2014 International Conference on Virtual Reality and Visadion

a transmitter. This framework could overcome the limitatio ]
of PC and mobile device, so that a video fusion system codilé)

(ICVRV), 2014.
H. Zhang, J. Zhang, X. Yin, K. Zhou, and Z. Pan, “Cloudetod
rendering and storage management for virtual reality inegrpental

be applied on a web browser of a low-profile PC or mobile  education,” Virtual Reality Intell. Hardware, vol. 2, pp6&-380, 2020.
device. Based on the developed video fusion framework, dé#l M. Vitanen, J. vVanne, T. D. Hamalainen, and A. Kulmataatency

edge rendering scheme for interactive 360 degree virtaditygaming,”

future work include: (1) We will develop an effective 6-  pyoceedings of 2018 IEEE 38th International Conference istributed

DoF prediction technique to reduce latency. @)e remote

Computing Systems, 2018.



O©CoO~NOUTAWNPE

(12]

(13]

[14]

[15]

[16]

D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Had&Perfor-
mance comparison of H.265/MPEG-HEVC, VP9, and H. 264/MPEG-
AVC encoders,” Proceedings of 2013 Picture Coding SympogRCS),
2013.

L. Guo, J. De Cock, and A. Aaron, “Compression perforoeanompari-
son of x264, x265, libvpx and aomenc for on-demand adaptieaising
applications,” Proceedings of 2018 Picture Coding Sympus{PCS),
2018.

S. Biaz, R. O. Chapman, and J. P. Williams, “RTP and TCsedavIDI
over IP protocols,” Proceedings of the 43rd Annual SouthBagjional
Conference, vol. 2, pp. 112-117, 2005.

Real Time Streaming Protocol (RTSP),
https://datatracker.ietf.org/doc/html/rfc2326, lastessed 01.07.2021.
A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, .Zhang, F.
Yang, F. Kouranoy, |. Swett, J. lyengar, J. Bailey, J. Donima Roskind,
J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton, V.iN@g W.-T.
Chang, and Z. Shi, “The QUIC transport protocol: design antdrnet-
scale deployment,” Proceedings of the Conference of the /ASpdcial
Interest Group on Data Communication, pp. 183-196, 2017.





