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Online multi-object tracking aims at generating the trajectories for multiple objects in the surveillance
scene. It remains a challenging problem in crowded scenes because objects often gather together and
occlude in tracking frames. The main impact of crowd occlusions is that it severely harms the perfor-
mance of the detector and significantly increases the difficulty in extracting object features. In this paper,
we propose an end-to-end tracking framework that alleviates such issues and estimates more accurate
trajectories. Firstly, We design a Center-Point-Pair detection branch for object detection, which learns
the correlations between the object head and the body to simultaneously predict the head and body
regions to alleviate unreliable detection in tracking scenes. Secondly, we introduce the context informa-
tion around the object to the tracker, inspired by the human search pattern. We propose a Context-Aware
Re-Identification branch that includes the Previous-Frame Guided Spatial-Attention Model and the
Previous-Frame Guided Channel-Attention Model to extract more discriminative object features.
Thirdly, to harness the power of deep features for data association in generating reliable trajectories,
we propose the Similarity Cluster Trajectory Management method that expands affinity descriptor and
adopts the minority obeying the majority principle to association trajectories and detections. The exper-
iments on diverse and challenging MOT datasets show that our tracking framework achieves superior
results compared to other state-of-the-arts offline and online multi-object tracking methods.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Multi-Object Tracking (MOT) aims to conserve object identifica-
tions under appearance and motion variation with time and gener-
ate the trajectory information for objects in scenes. Additionally,
pedestrians are an essential class of tracking objects in research
and the tracking algorithms that can accurately estimate pedestri-
ans movements are desirable in broad applications, such as smart
city [1,2], autonomous driving [3,4] and video analysis [5,6]. How-
ever, tracking performance still needs to be improved due to fre-
quent occlusion of tracking objects by obstacles or other
pedestrians, similar appearance features of tracking objects.

The widely used tracking-by-detection frameworks currently
employ two separate networks to estimate object tracklets [7–
10]. Specifically, the detection model firstly detects tracking
objects in each frame. Then the re-identification model extracts
appearance features for each object. Finally, the trajectory manage-
ment method updates trajectory information with similarity
measurement. However, those frameworks cannot perform end-
to-end training and inference. The real-time and complexity of
those tracking frameworks are not satisfactory, especially when
there are many objects in the tracking video.

With the in-depth study of multi-task learning networks,
single-shot trackers which detect objects and extract object fea-
tures by applying an end-to-end network have attracted more
attention [11,12]. These methods employ standard backbone fea-
tures for object detection and feature extraction, which can effec-
tively save computation and improve the real-time performance
of the tracker. Nonetheless, compared with the tracking-by-
detection framework, the tracking performance of those methods
is not satisfactory, especially the performance of MOTA and IDS
[13]. Therefore, we have analysed the profound reason behind such
issues and propose a new end-to-end online multi-object tracker.
In particular, we propose three new models in this paper.

In tracking scenes, objects, especially pedestrians and street
crowds, usually gather together and occlude each other. This
phenomenon seriously affects the detector’s performance and
significantly increases the difficulty in locating tracking objects,
as shown in Fig.1(a). First, in crowd scenes, the object area will

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.11.094&domain=pdf
https://doi.org/10.1016/j.neucom.2022.11.094
mailto:zz@buaa.edu.cn
https://doi.org/10.1016/j.neucom.2022.11.094
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. (a) In crowded multi-object tracking scenes, standard detection methods
may generate unreliable results. The predicted boxes in crowded scenes with
occlusion using generic detection methods are often inaccurate or covering several
mutually occluded individuals. (b) Object locating with head position information
guiding. The head position information can be used as robust information to guide
the detector to estimate accurate object bounding boxes. (c) Inspired by the human
search pattern of humans, the context information around the object can be
introduced to guide the network to extract more discriminative features.
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be primarily occluded, undoubtedly resulting in the inability to
accurately detect each object’s bounding box. We have observed
that the head region is visible clearly, and the head bounding
box regression has few errors caused by the object body occluded.
We believe that the head region can be used as robust contextual
information to guide the detector to predict the bounding box of
the entire object, as shown in Fig.1(b). Second, the anchor-free
based detection methods locate the object by regressing object
bounding box center point and bottom-up information [14], which
can effectively alleviate the above issue. Therefore, we propose a
Center-Point-Pair detection branch to capture object head location
information and bottom-up information to alleviate unreliable
detection.

On the other hand, the occlusion between pedestrians and par-
tial loss in the tracking scene will impact the discriminative ability
of the object appearance feature, as shown in Fig.1(c). To alleviate
such issues, many researchers focused on designing a more com-
plex neural network to extract the object appearance features to
improve tracking performance [15,16]. However, we observed that
those models only used the historical and spatial information of
the object itself for feature extracting. In contrast, the context
information of the object in the scene and inter-frame was not
effectively utilized. As humans, when we estimate the similarity
between a person and a trajectory in a tracking scene, we would
not only look at each individual, but we would also search for
peculiar information in the background. For example, the human
can learn the information of hidden relationships between pedes-
trians and surrounding specific objects as additional cues to extract
more discriminative appearance features, as shown in Fig.1(c).
Motivated by this pattern, we propose a Context-Aware Re-
Identification branch to introduce the previous-frame and
current-frame context information around the object to guide the
tracker to extract object features.

In addition, we propose a new trajectory management method
in this paper. Specifically, to fully use the temporal and spatial fea-
tures of candidates and trajectories. First, we build a new data
association model by expanding the affinity descriptor. Then,
according to the affinity matrix, we apply the Non-negative Matrix
18
Factor (NMF) algorithm to cluster candidates and trajectories,
where each clustering result corresponds to a data association
result. Last, we update object trajectories to complete tracking.

In summary, the main contributions of this paper can be sum-
marized as follows:

1. A Center-Point-Pair detection branch is proposed to detect
pedestrians in crowded tracking scenes. The branch simultane-
ously regresses the bounding box of the object head and body.
The correlation between different object regions is learned and
extracts more distinctive features to alleviate the unreliable
detection in tracking.
2. We design a Context-Aware Re-Identification branch to
extract more discriminative object features. Inspired by the
human search pattern, the branch guides the tracker to exploit
the context information around the object from the previous
and current frames. The tracker learns the detailed feature of
the object and its surroundings to improve the discriminative
of object features.
3. In terms of trajectory management, we propose a new data
association method that can more accurately describe the sim-
ilarity between trajectories and detections by considering the
historical features contained in trajectories. Besides, we use
the NMF algorithm to group trajectory and detection as trajec-
tory association results, which effectively keeps the stability of
trajectories during the tracking.
4. Our tracker dramatically enhances tracking performance in
high-density crowds and complex scenes. Experiments with
challenging public datasets show distinct performance
improvement over other state-of-the-arts offline and online
tracking frameworks.

2. Related works

Given detection by the detector at each frame, the tracking
framework locally associates detections frame-by-frame to gener-
ate object trajectories in general. In recent years there has been an
explosion of technological progress in MOT driven primarily by
object detection strategy [17,18]. Additionally, some recent works
have directly used the dense detection output, before the non-
maximum suppression, as the input to their tracker [19,20].
Although these methods alleviate the unreliable detection results,
they still use one kind of detection information. Hence these meth-
ods cannot effectively alleviate the issue of missing detection or
multiple objects in the same bounding box. Several works use
other category location information to determine the coordinates
of the tracking candidates [21–23]. In [24,25], researchers intro-
duced the head detection results as an auxiliary detection result
input to improve the final detection result of the tracking-by-
detection framework, which can handle occlusion up to a scale.
[23,26] further introduced the position results of human keypoints
through the pose estimation method to generate higher quality
detection results. But the above methods need to design additional
detection result screening strategies to generate tracking bounding
boxes. Therefore, we propose the Center-Point-Pair detection
branch to introduce object head location information. The motiva-
tion is that the head region is visible easily in crowds and thus can
be a piece of powerful guidance information to direct the detection
branch to estimate the bounding box of the tracking object. Our
detection branch differs from the above methods. First, the pro-
posed tracker is an end-to-end tracking framework that directly
introduces object head information in the inference stage to gener-
ate tracking bounding box. Therefore, we do not need to design
additional bounding box generation strategies based on multiple
detection results. Second, we adopt the anchor-free detection
framework, which is more suitable for crowd tracking scenes.



X. Zhang, Y. Ling, Y. Yang et al. Neurocomputing 524 (2023) 17–30
To obtain a more effective appearance model and accurately
distinguish different objects, researchers often introduce re-
identification networks into the Multi-Object Tracking field
[10,19,27]. These methods have shown that discriminative generic
features can be trained using the deep learning module. Yin et al. in
[28] designed a Siamese network that unifies object motion and
affinity model to learn a compact local feature of objects. Zhu
et al. in [16] proposed the Dual Matching Attention Networks
(DMAN), which introduced spatial and temporal attention mecha-
nisms to extract robust features against appearance variations and
cluttered backgrounds. These methods improve the discriminative
ability of extracted features by focusing on key regions in the
detection images. Consequently, these works ignored the context
information around the object, thereby causing inaccurate object
representation. However, in the person search field, researchers
introduce the query image to guide the network to learn context
information around the person, improving search accuracy
[29,30]. Therefore, in this paper, we exploit the context informa-
tion around the object with the Context-Aware Re-Identification
branch. This branch includes the Previous-Frame Guided Spatial-
Attention Model and the Previous-Frame Guided Channel-
Attention Model. Our re-id branch differs from the above methods.
First, guided by the previous-frame image, our model can not only
focus on the area of the object itself in the image but also exploit
the context information around the object. Second, our tracker
can learn the hidden context information according to the inter-
frame dependencies by introducing the previous-frame image.

For generating object trajectory, employing the Hungarian algo-
rithm to data association based on affinity matrix are the generic
methods employed by several multiple object trackers
[10,16,31,17]. In global association methods, trackers build accu-
rate and stable trajectories with all detections for a sequence in
general under tracking scenes [32,33]. In [34], researchers
designed a hierarchical association framework to gradually pro-
duce longer tracklets at each level. Some works solve a global data
association problem using a min-cost flow algorithm in a network
flow [35,36]. In addition, some researchers try to estimate the
object trajectories by optimizing the energy function [33]. Yang
et al. in [37] design an online-learned CRF model and link tracklet
by minimizing an energy function. Inspired by the recent advances
in deep learning, several trackers use deep networks for data asso-
ciation [38,39]. In [40], Ma et al. employ GNN to compute the final
affinity matrix to improve the quality of object trajectory. In [41],
Wang et al. designed a Recurrent Tracking Unit based on Memory
Network that extracts long-term information to score potential
trajectories for tracking. In this paper, we propose the Similarity-
Cluster Trajectory Management method that expands the affinity
descriptor and use the NMF algorithm to perform data association.
Our trajectory management method can be easily integrated into
other tracking frameworks and improve the tracking performance
with a small overhead.

The end-to-end multi-object tracking methods [22,42,43] com-
plete the detection and feature extraction process in one model
and have attracted more attention because of their efficiency and
simplicity. In [22], Voigtlaender et al. proposed Track-RCNN tracker
that introduced a Re-ID head on top of Mask R-CNN [44] to make
the model regress the object bounding boxes and extracted object
feature. Wang et al. [12] designed the JDE tracker built on top of
YOLO v3 [45] to achieve a near real-time tracking rate. Zhang
et al. [11] proposed FairMOT methods based on an anchor-free
detection framework. However, these methods ignored the detec-
tion and feature extraction issues in the MOT that affects the track-
ing results. Unlike the previous trackers, we deeply analyse the
reasons behind the issues and propose our end-to-end tracking
method, which achieves a good performance in multi-object
tracking.
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3. Proposed method

The overall framework of our tracking method is depicted in
Fig. 2. Different from the typical tracking-by-detection framework,
our method is mainly divided into two steps. First, we obtain
pedestrian detection results and object appearance embedding
simultaneously with the proposed multi-task network. Then, we
apply the designed Nonnegative Matrix Factor-based trajectory
association method to manage trajectory. In this section, we intro-
duce our precise tracking method in three components. First, a
Center-Point-Pair detection branch is applied to work out more
reliable detection results in Section 3.1. Then the Context-Aware
Re-Identification branch for extracting more robust object features
is shown in Section 3.2. Finally, the specific process of Nonnegative
Matrix Factor-based trajectory association to improve the rational-
ity and stability for tracking is elaborated in Section 3.3.

We adopt ResNet-50 [46] as the backbone in order to extract
valuable features. We apply a new Deep Layer Aggregation (DLA)
to fuse multi-size features, as shown in Fig. 2. Compared with
the original DLA [47], it not only has more skip connections
between low-resolution features and high-resolution features but
also can perform more inferences at each resolution. Moreover,
we adopt deformable convolution to replace the original convolu-
tion for up-sampling in DLA that can dynamically adjust the recep-
tive field of the network to excavate more hidden features. The
input of the multi-task network is a tracking image of
3 � H � W size, and the output of the backbone network is a fea-
ture map of C � Hf � Wf size. Then we predict bounding boxes of
pedestrians and generate the object Re-id feature with different
branches of the multi-task network.
3.1. The center-point-pair detection branch

3.1.1. Detection branch architecture
The architecture of our designed Center-Point-Pair Detection

Branch is shown in Fig. 3. The detection branch includes three
sub-branches, which are the body detection sub-branch, the head
sub-branch and the center-point-pair detection sub-branch. Differ-
ent from other detection branches in MOT, our method predicts
two bounding boxes for each tracking object in the tracking frame
which specify object head and full-body bounding box, respec-
tively. Meanwhile, the three parallel heads are appended to each
detection branch to estimate heatmaps, object center offsets and
bounding box sizes, respectively, to generate the bounding box.

When detecting objects in crowd scenes, the humans tend to
determine the number and location of person heads first, which
are the most distinct region and can be easily observed. After that,
one can locate objects based on the hidden connections of the
object’s head and body. Therefore, we design the detection branch
to extract the object’s head, and body features simultaneously to
learn the same behavioural patterns as humans. The detection
branch is trained using three sub-branches. The body detection
sub-branch is used to learn to detect object body and judge
whether there is a pedestrian. The head detection sub-branch is
used to learn to detection object head and help the network predict
the number of objects. The center-point-pair sub-branch is used to
learn the hidden connection between the object body and head.
Last, we only use center-point-pair branch to estimate object body
and head bounding box simultaneously to generate the final detec-
tion results.Thereby accurately regressing the bounding box of
each pedestrian in the crowd area.

Specifically, the Center-Point-Pair detection branch takes back-
bone network feature FD as input. The backbone feature map FD

will first be fed into two different convolution layers to extract pri-
mary head feature PFH and primary body feature PFB, which are



Fig. 2. Overview of our proposed approach for multi-object tracking. The tracker takes the tracking frame as input, and fed it to the encoder-decoder network to extract the
backbone feature. Then we apply the multi-task network structure to perform object detection and object feature extraction, respectively. The anchor-free based detection
head introduces the object head position information to simultaneously predict the object head bounding box and body bounding box. The Re-Identification head takes the
current frame feature and previous frame feature as input and guides the tracker to extract the context information around the object to generate more discriminative
features.
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Fig. 3. (a) The structure of our designed Center-Point-Pair Detection branch. which
is consisted of object head detection sub-branch, object body detection sub-branch
and center-point-pair detection sub-branch. The detection branch will simultane-
ously localize the head region and the full-body to generate object bounding boxes.
Detection sub-branches with dotted line only work during training. (b) The object
head bounding box, which is generated based on the prior research statistics. (c) We
manually label the heavily offset object head bounding box.
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specifically extracted to characterize the head and body of an
object. After that, the obtained primary feature PFH and PFB will
be further propagated forward to generate the head feature map
FH and body feature map FB to predict the bounding box of the
20
head and body. In addition, we will fuse the two primary feature
maps with a feature fusion module. Finally, based on fused feature
map FF , the center-point-pair sub-branch will regress the center-
point-pair to predict two bounding boxes representing the regions
of the object’s head and body.
3.1.2. Center-point-pair detection
Unlike other anchor free based detection branches, our detec-

tion branch will regress two types of bounding boxes, one for the
object head and the other for the object’s full-body. We use two
different center points, different bounding box sizes and offsets
to regress the head and body region. However, how to associate
the detection results of two types of bounding boxes from an
object individual is still a problem. We propose a feature fusion
module to make the network learn the correlation between the
detections of the head and body. Meanwhile, we embed this corre-
lation directly into the center-point-pair, so that the detection
branch can use the correlation to improve detection results.

First, in the heatmap head, we estimate the position of the
object’s head and body centers. In particular, the dimension of
the heatmap is 2 � H � W since two types center points need to
be estimated, object body center and object head center. When a
location in the heatmap overlaps with the ground-truth object cen-
ter point, the response at that location is expected to be one. In this
way, two types of object center points can be predicted, denoted as

N centre-point pairs Ci
H;C

i
B

� �n o
i¼1���N

, where Ci
H ¼ Ci

Hx
;Ci

Hy

� �
speci-

fies the center point coordinates of i-th object head bounding box,

and Ci
B ¼ Ci

Bx ;C
i
By

� �
specifies the center point coordinates of i-th

object body bounding box.
In the training process, for each ground truth bounding box

Gbi ¼ xi1; x
i
2; y

i
1; y

i
2

� �
, its center-point can be represented as

Ci
x;C

i
y

� �
, where Ci

x ¼
xi1þxi2

2 and Ci
y ¼

yi1þyi2
2 , respectively. Accordingly,

the center point location in the feature map can be computed by

eCi
x;
eCi
y

� �
¼ Ci

x
n ;

Ci
y

n

� �
, where n is stride. In the heatmap, the response

at the point x; yð Þ is obtained as Mxy ¼
PN

i¼1exp
�

x�eC ix� �2
þ y�eC iy� �2

2r2c ,
where N is the number of tracked objects in the tracking frame
and rc is the standard deviation. Therefore, we define the heatmap
ground truth of center-point-pair sub-branch as a heatmap-pair
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Fig. 4. Our proposed Context-Aware Re-Identification branch. It takes the previous-
frame feature and the current-frame feature as input. Then it adopts the Previous-
Frame Guided Spatial-Attention Model and Previous-Frame Guided Channel-
Attention Model to guide network learning context features around the object
according to intra-frame and inter-frame dependencies.
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MB;MHð Þ where MB is object body detection heatmap and MH is
object head detection heatmap to train the proposed detection
branch to generate object center-point pair.

Then, the network needs to regress the offset and bounding box
size to generate object bounding boxes. For the offset head, since
there are multiple down-sampling and up-sampling operations in
the backbone network, the center-point of the object will be offset.
Therefore, the offset head needs to predict center offset value to
alleviate the impact of down-sampling and up-sampling in the
backbone network to make object location more precise. The offset

ground truth can be generated by Oi ¼ Ci
x
n ;

Ci
y

n

� �
� Ci

x
n

j k
;

Ci
y

n

� 	� �
. The

box size head is used to estimated the width and height of the
object bounding boxes. We compute the ground truth of bounding

box size by Si ¼ xi2 � xi1; y
i
2 � yi1

� �
.

3.1.3. Detection loss
We employ the original anchor free based detection losses to

train the object head detection sub-branch, and object body detec-
tion sub-branch, including (1) heat map prediction loss Lheat that
encourages correct heat map. (2) bounding box prediction loss
Lbbox that ensures correct estimated bounding box size from feature
map. For training data, we use MOT 17 training data to train the
body detection sub-branch and apply generated head detection
training dataset to train the head detection sub-branch. We gener-
ated the preliminary head bounding boxes based on the prior
research statistics. Specifically, the height of the head bounding
box is one-fifth of the height of the body bounding box, and the
width of the head bounding box is one-third of the width of the
body bounding box [48–50]. Afterward, we manually screen the
preliminary head bounding boxes. Last, we manually label the
heavily offset head bounding box to generate the object head’s
final ground truth bounding box, as shown in Fig.3(b) and Fig.3
(c). Concrete definitions of these losses are provided below:

Lheat ¼ � 1
N

X
xy

1� bMxy

� �a
log bMxy

� � bMxy ¼ 1

1�Mxy
� �b bMxy

� �a
log 1� bMxy

� �
otherwise

8><
>: ð1Þ

LO ¼
XN
i¼1

Oi � bOi



 




1
ð2Þ

LS ¼
XN
i¼1

Si � bSi



 




1
ð3Þ

Lbody ¼ Lbheat þ LbO þ LbS ð4Þ

Lhead ¼ Lhheat þ LhO þ LhS ð5Þ

In the above equations, bM is the estimated heatmap, a, b are the

predetermined parameters, bO is the generated offset and bS is pre-
dicted bounding box size. Lbody and Lhead is the loss function for
object body detection and object head detection respectively.

Consistent with the denotation of center-point-pair, the ground
truth of our task should also be a set of heat map pairs MB;MHð Þ,
offset pairs Oi

B;O
i
H

� �n o
i¼1���N

and bounding box size pairs

SiB; S
i
H

� �n o
i¼1���N

, which are generated by the corresponding combi-

nation of the MOT17 training data and head detection training
data. In center-point-pair detection sub-branch, the heat map pairbMB; bMH

� �
, the offset pair bOB; bOH

� �
and the size pair bSB; bSH

� �
can be

generated by the corresponding combination of the MOT17 train-
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ing data and head detection training data. So, we define its loss
function as

Lcpp ¼ Lheat MB;MHð Þ; bMB; bMH

� �� �
þkBf xij

� �
LO OBj; bOBi

� �
þ LS SBj; bSBi

� �� �
þkHf xij

� �
LO OHj; bOHi

� �
þ LS SHj; bSHi

� �� � ð6Þ

where f xij
� � ¼ 0;1f g is an indicator for matching the i-th center-

point-pair to the j-th ground truth of a tracking object instance, kB
and kH are set to 1 as hyper-parameters to balance the three losses.

3.2. Context-aware re-identification branch

In the end-to-end multi-object tracking network, the Re-
Identification branch is used to extract the object appearance fea-
tures. The robust and discriminative appearance feature is crucial
in the tracking process to accurately generate the object tracklet.
Therefore, we introduced the context information around the
object according to the pattern of the human and proposed the
Context-Aware Re-Identification branch. The architecture of the
Context-Aware Re-Identification branch is shown in Fig. 4., includ-
ing the Previous-Frame Guided Spatial-Attention Model and the
Previous-Frame Guided Channel-Attention Model. We apply a con-
volution layer with 256 kernels at the end of the network to gen-
erate the resulting feature map as F 2 R256 � Hf � Wf . The Re-ID
feature Fx;y 2 R256 of object centered at x; yð Þ can be extracted from
the feature map. Note that the object center point is optimized by
offset.

3.2.1. Previous-frame guided spatial-attention model
The Previous-Frame Guided Spatial-Attention Model aims to

guide the network to learn the context information around the
object through the spatial attention mechanism and the previous
tracking frame. Specifically, after getting the current-frame back-
bone feature map, we use a series of 1 � 1 � cð Þ convolution lay-
ers to generate the current-frame feature map Ft and current-
frame value feature map Fvt , respectively. We perform the same
operation on the previous-frame backbone feature map to obtain
the previous-frame feature map Ft�1 and previous-frame value fea-
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ture map Fvt�1. Then, we transform the Ft and Ft�1 into two feature
spaces through a hidden layer. We regard the mapped current-
frame feature map Ft as query feature map Fq, and the mapped
previous-frame feature map Ft�1 as key feature map Fk to calculate
the spatial attention map of the current frame, as the following
formula:

at;t�1
i;j ¼ exp si;j

� �
XN
i¼1

exp si;j
� � ; si;j ¼ Fq xið ÞTFk xj

� � ð7Þ

where at;t�1
i;j is the attention value of the j-th position of key feature

map for the i-th position of query feature map, si;j indicates the sim-

ilarity matrix. Then we multiply at;t�1
i;j with current frame value fea-

ture map Fvt to get the spatial-attention masked current frame
feature map Fatt

t that weight by the spatial-attention map, where:

Fatt
t ¼

XN
i¼1

at;t�1
i;j Fvt ð8Þ

Meanwhile, to prevent the fluctuation of spatial attention training
in the early training stage from affecting the network performance.
We add the feature map Fatt

t and Ft . Therefore the final spatial-
attention feature map of current frame Fsa

t is given by:

Fsa
t ¼ hFatt

t þ Ft ð9Þ
where h is a learnable scalar. For the previous-frame feature map
Ft�1, we transpose the similarity matrix in Eq. 7 to calculate new
attention map at�1;t

j;i . Then we perform the same operation to gener-
ate the final spatial-attention feature map of the previous frame
Fsa
t�1.

3.2.2. Previous-frame guided channel-attention model
Many kinds of physical information are included in the channel

of the feature map, and some unique information is beneficial to
improve the distinguishability of object features. Therefore, after
obtaining the previous-frame guided spatial-attention feature
map, we propose the Previous-frame Guided Channel-Attention
Model to enhance the corresponding channel information between
two frames, which structure is shown in Fig. 4(b). The Previous-
Frame Guided Channel-Attention Model is inspired by the SE-Net
[51]. The main difference is that our model uses both the previous
and current frames to calculate a weight vector and re-weight the
feature map per channel.

In the Previous-Frame Guided Channel-Attention Model, the
two operations are mainly performed on the channel of the feature
map, namely, squeeze and excitation. In squeeze operation, we
employ global average pooling to condense the channel-
descriptors Ct and Ct�1 of the current frame and previous frame,
respectively.

In excitation operation, we concatenate the obtained channel
descriptors Ct and Ct�1 to generate two-frame channel descriptors
Ct ;Ct�1½ � 2 R2C with a non-linear bottleneck. We use the first fully-
connected layer FC1 to obtain the 2C/r channel descriptors, where r
is multiple of dimensionality reduction. Then, we employ ReLU
function and the second fully-connected layer FC2 to re-expands
the channel descriptors to C. Last, the channel attention map is cal-
culated by Sigmoid activation being as follows:

ac ¼ / f 2 d f 1 Ct;Ct�1½ �ð Þð Þð Þð Þ ð10Þ
whereby, f 1 indicates the first fully-connected layer for
dimensionality-reduction, f 2 is the second fully-connected layer
for dimensionality-expansion and / is the Sigmoid activation. We
refer to d as the ReLU function to model nonlinear connection
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between channels. The outputs of Previous-Frame Guided
Channel-Attention Model feature map Fsca

t and Fsca
t�1 for the respec-

tive current frame and previous frame are:

Fsca
t ¼ kac � f 0t þ Fsa

t ð11Þ

Fsca
t�1 ¼ kac � f 0t�1 þ Fsa

t�1 ð12Þ
where f 0t and f 0t�1 are the residual outputs of feature map Fsa

t and Fsa
t�1

respectively, � is channel-wise multiplication, k is the weight
parameter to balance the two types of attention feature map. In this
way, the proposed Previous-Frame Guided Channel-Attention
Model re-calibrates channel weights to take into account inter-
frame channel similarities and dependencies in multi-object
tracking.

3.2.3. Re-identification loss
The objective feature extraction branch can be formulated as a

classification task or a verification task for the training process.
Ideally, we want to extract the discriminative feature to the object
while increasing the distance between different object features.
Therefore, we apply a convolution layer on feature map Fsca

t to
extract appearance features for each object. We denote the result-

ing feature map as Freid
t 2 R256 � H� W , and the object Re-ID feature

Fx;y
object 2 R256 of an object-centred at (x, y) can be extracted.
To learn powerful discriminative features for object appearance

representations in the classification task, we first use identity loss
to classify different object identities with different features. Specif-
ically, we utilize the ground-truth identity to generate the one-hot
label GLi mð Þ. Then we compute the identity loss as:

Lid ¼ �
XN
i¼1

XM
m¼1

GLi Mð Þlog p mð Þð Þ ð13Þ

Where M is the number of classes, p mð Þ is the label distribution vec-
tor mapped from extracted Re-ID feature Freid. Meanwhile, we
employ contrastive loss to increase the distance of different objects
to optimise the verification task. Since the same object appears only
once in a frame, the contrastive loss is given by:

Lcon ¼ q� df i ;f j

� �
ð14Þ

Where df i ;f j is the distance between two different object features,
we utilize both identity loss and contrastive loss to combine these
two complementary tasks. Thus, the total loss for the Re-ID branch
can be calculated as the sum of these two kinds of losses:

Lreid ¼ kiLid þ kcLcon ð15Þ
Where ki and kc are the coefficients of each term individually.

3.3. Similarity-cluster trajectory management method

In object tracking, we generate the bounding box of the object
based on the estimated result by the proposed network. Mean-
while, we also get the object feature embeddings at the estimated
object centers. Then, we calculate the affinity score to associate
detections and trajectories. However, some objects with occlusion
are significantly different from others, so affinity scores between
those detections and trajectories cause association errors. There-
fore, we propose Similarity-Cluster Trajectory Management
Method to associate detections and trajectories.

We design new affinity descriptors to describe the similarity
between trajectories and detections more comprehensively. It is
assumed that M trajectories and N detections need to be associ-
ated. As shown in Fig. 5, we divide the trajectory into k sub-
trajectories in time order and measure the affinity scores between
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X. Zhang, Y. Ling, Y. Yang et al. Neurocomputing 524 (2023) 17–30
the sub-trajectories and detections, respectively, to obtain a new k-
dimensional affinity descriptor.

Moreover, we adopt the minority obeying the majority principle
to decide whether the trajectory and detection match, as shown in
Fig. 5. Specifically, after obtaining the k-dimensional affinity
descriptors S1 and S2 between trajectories and detection. Taking
the maximum similarity value in affinity descriptors or the average
similarity value of affinity descriptors to determine whether the
trajectory and detection are associated will be disturbed by the
noise, resulting in the issue of ID switch. However, the minority
obeying the majority principle can effectively alleviate this issue
to generate correct trajectories.

We employ the similarity-cluster algorithm to implement the
above trajectory management idea. Supposing there are 2 trajecto-
ries and 3 detections that need to be associated. We divide the tra-
jectory into 2 sub-trajectories. First, we adopt Mahalanobis
distance to compute its original affinity matrix, as shown in
Fig. 6(a). Further, we use Kalman Filter to predict the bounding
box of trajectories in the next frame, since trajectories and candi-
date detections cannot be associated with themselves. Therefore,
the final affinity matrix as shown in Fig. 6(b). Then, we adopt
non-negative matrix factorization for clustering to generate associ-
ation results that conform the minority obeying the majority. The
objective optimization function is defined in Eq. 16:

MinJ ¼ W � HHt
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Fig. 6. The process of data association utilizing the similarity clustering algorithm.
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Where W is the affinity score matrix, H is a non-negative matrix,
and Ht is the transpose matrix of H. When the value of the optimiza-
tion function 16 is less than the threshold Tcost or reaches the max-
imum limit of iterations, we output H as the decomposition result,
as shown in Fig. 6(c). The size of H is kM þ Nð Þ � d, and d represents
the number of categories. For each row in H, we set the maximum
value position to 1 and the rest position is set to 0 to obtain the final
non-negative matrix H, as shown in Fig. 6(d). Then, we take out the
index that the value is 1 in each column of H and add it to the cor-
responding class to generate the clustering result. Last, in the clus-
tering result, each category is the association result between the
trajectories and detections, as shown in Fig. 6(e).

For unmatched detections and trajectories, we try to match
them according to the IoU between predicting and detecting
bounding boxes, with the threshold TIoU . Last, unassociated trajec-
tories are terminated if they are not associated for Tterm frames.
Meanwhile, we initialize the trajectory for unassociated detections,
which are not associated with any trajectory in any of the first Tinit

frames.
4. Experiments

In our evaluation, we focus on tracking humans due to its
importance. We first verify the effectiveness of the proposed mod-
els by applying them for ablative studies. Then, we analyze the per-
formance improvement in MOT by the proposed tracking
framework in detail.
4.1. Implementation details

We adopt ResNet-50 [46] as our backbone network and employ
the proposed variant of DLA to fuse multi-layer features. The model
parameters pre-trained on the COCO dataset are used to initialize
our model. Training is performed on two NVIDIA RTX 2080 Ti GPUs.
Hyper-parameters of the proposed tracker are optimized with the
help of the MOT17 dataset [52], for which we specify a validation
set to tune our model. Specifically, we utilize the Cam-02, Cam-04,
Cam-05 and Cam-09 in the MOT 17 training data as the training
set. The Cam-10, Cam-11 and Cam-13 are used as the validation
set for the preliminary optimization of the tracker hyper-
parameters. Our network has an input frame size of 1920*1080,
and the feature map resolution is 480*270. We train our tracker
with the Adam optimizer for 100 epochs. We start the learning pro-
cess with e�4 as the learning rate, which is decreased to 1/10th of
the previous value at epochs 50 and 80. The batch size is set to 6.
We use standard data augmentation techniques, including rota-
tion, scaling and color jittering. Furthermore, we set the threshold
TIoU ¼ 0:7 for associating the unmatched detection and unmatched
trajectories. For trajectory management, we set threshold Tinit ¼ 3
for trajectory initialization and Tterm ¼ 10 for trajectory
termination.
4.2. Datasets and metrics

There are four training datasets introduced as follows: We
mainly use the MOT17 dataset [52] for tracker training. Moreover,
the CalTech [53], CUHK-SYSC [54] and PRW [55] datasets provide
both bounding box and identity that allows us to train our tracker.
We utilize four datasets for training to enable the proposed tracker
to achieve the best performance. However, to fairly compare with
different methods in other experiments, we only use the MOT17
dataset to train the proposed tracking framework. We extensively
evaluate a variety of factors of our approach on the test sets of
three benchmarks: MOT15, MOT16 and MOT17.



Table 2
The effect of different auxiliary detection sub-branches on tracking results.

CPP BDB HDB MOTA" IDF1" FP# FN#
U 58.9 59.2 9328 46859

U 60.4 61.5 13148 41328
U U 63.1 62.8 13487 39534
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In order to measure the performance of tracking results, we
adopt the common CLEAR MOT [56] consisting of multiple metrics,
which includes Multiple Object Tracking Accuracy (MOTA), ID F1
score (IDF1, the ratio of correct detections over the average num-
ber of ground-truth and computed detections), MT (Mostly
Tracked objects, the percentage of ground-truth trajectories cov-
ered by a track hypothesis for 80% of their life or more), ML (Mostly
Lost objects, the percentage of ground-truth trajectories covered
by a track hypothesis for 20% of their life or less), the number of
False Negatives (FN), the number of False Positives (FP), the num-
ber of ID Switches (IDS), the number of trajectory fragmentations
(Frag). Note that MOTA and IDF1 are considered to be the most
important evaluation metrics.

4.3. Ablation studies

In this section, we conduct a number of ablation experiments to
study the contribution of each module in our tracker, including
Center-Point-Pair Detection branch, Context-Aware Re-
Identification branch and Similarity-Cluster Trajectory Manage-
ment Method. In addition, we set up the experiment to illustrate
the impact of the training datasets on tracker performance.

4.3.1. Detection in MOT
In order to verify the effectiveness and contribution of the

designed detection branch, we evaluate five different detection
results which are frequently used by previous works. The first
detection results are Head Detection. We adopt the head detection
sub-branch to locate the object head position and generate the
object detection bounding box according to the ratio between
the human head and body. The second detection results are Faster
R-CNN[57], SDP[58] and Mask R-CNN [44] as the anchor based
object detection results. The third detection results are Soft-Pose
NMS[23], which introduce object pose information to optimize
object detection result. The fourth detection results are the object
bounding boxes generated by the JDE tracker [12]. The fifth detec-
tion results are based on the anchor-free detection branch in Fair-
MOT [11]. The sixth detection result is center-point-pair detection
strategy used in our tracker. In addition, to exclude the disturbance
of other factors, we use PCB [59] to extract object feature and
DeepSORT[10] tracking framework to generate object trajectory.
Both Faster R-CNN and SDP directly use the detection results pro-
vided by the MOT Challenge. Other methods detection threshold
have been turned to make it achieve the best tracking result.

The results are shown in Table 1. We can see that our center-
point-pair detection strategy obtains higher MOTA, IDF1, and FN
than other approaches. Our detection strategy improves 1.7 in
MOTA, 1.5 in IDF1 with the second-best detection method and
effectively reduces FN. These metrics can faithfully reflect the qual-
ity of detection results. In addition, it does not achieve the best
tracking performance when only head or body detection features
are used. By fusing the two detection feature and learning the hid-
Table 1
Evaluation results on MOT16 dataset with different detection method. The arrow each
metric indicates that the higher (") or lower (#) value is better. The best result for each
indicator is bolded.

Detector MOTA" IDF1" FP# FN#
Head Detection + PCB 32.7 39.2 14893 50368
Faster R-CNN + PCB 40.2 52.6 11426 51234

SDP + PCB 60.7 62.4 3417 38041
Mask R-CNN + PCB 62.6 64.1 4867 39478

Soft-Pose-NMS + PCB 64.3 65.9 5115 35732
JDE + PCB 65.8 66.1 8649 48369

FairMOT + PCB 67.2 67.8 13158 31059
Ours + PCB 68.9 69.3 14683 29548
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den connection between body and head, our tracker improves
almost all relevant tracking metrics, justifying our tracking frame-
work. The results validate that center-point-pair detection branch
is more suitable for tracking scenes than the strategies used in the
previous works.

To evaluate the effectiveness of the auxiliary branches on the
final tracking performance. We performed an ablation study of
the Center-Point-Pair Detection branch, for which we designed
the following three ingredients including (a) center-point-pair
detection sub-branch (CPP), (b) body detection sub-branch (BDB)
and (c) head detection sub-branch (HDB). We use the ResNet-50
to extract object feature and DeepSort to generate tracking result.
Table 2 shows the result. We can see that Center-Point-Pair detec-
tion sub-branch improve the MOTA to 60.4, IDF1 to 61.5 and
reduce FN to 41328. Although there is no body feature or head fea-
ture to help the network to refine the features of object, the guid-
ance information from the head regions can still guided the
network to learn the correlation between object head and object
body. We also see that introducing body feature or head feature
can improve the detection effect of the detection branch and
improve the tracking performance. Finally, when both body detec-
tion sub-branch and head detection sub-branch are applied, the
MOTA improve to 64.7, IDF1 improve to 63.9 and FN reduce to
32336. This result suggests that, in the proposed detection branch,
the head feature and body feature information can guide the
center-point-pair detection sub-branch to refine the full-body fea-
ture, thereby accurately estimating the bounding box of the object.
4.3.2. Re-identification in MOT
To demonstrate the contribution of the proposed Context-

Aware Re-Identification branch in our tracker, we compare pedes-
trian feature representations learned by our tracker with PCB [59],
Strong Baseline [60], JDE [12] and Fair MOT [11]. PCB and Strong
Baseline are commonly used person Re-ID networks. JDE and Fair-
MOT are end-to-end multiple object tracking methods. Spa-
tialAttention and ChannelAttention indicate that only spatial and
channel attention mechanisms are used in our proposed re-
identification sub-branch, respectively. Note that the rest of the
factors of these approaches are all controlled to be the same for a
fair comparison. We use SDP [58] detection results, provided by
MOTChallenge officially, to locate object bounding boxes and use
DeepSORT [10] tracking framework to generate object trajectories.

The results are shown in Table 3. By comparing the results of
Strong Baseline and FairMOT, we surprisingly find that specialized
U U 62.9 62.1 13257 38317
U U U 64.7 63.9 14537 32336

Table 3
Evaluation results on MOT16 dataset with different feature representations.

Method MOTA" IDF1" IDs#
SDP + PCB 62.1 60.9 1061

SDP + StrongBaseline 63.3 63.5 837
SDP + JDE 63.9 64.8 785

SDP + FairMOT 64.6 65.7 768
SDP + SpatialAttention 65.9 66.4 729
SDP + ChannelAttention 65.2 65.9 743

SDP + Ours 66.4 67.8 706
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person feature extraction networks do not perform well in multi-
ple object tracking. For example, MOTA decreases by 1.3, IDF1
decreases by 2.2, and the number of IDs increases from 768 to
837, respectively. In addition, both spatial and channel attention
mechanisms can improve the discriminative of extract appearance
features compared to FairMOT. All these results suggest that using
a specialized person feature extraction network cannot effectively
improve the tracking performance. In contrast, the Context-Aware
Re-Identification branch, which introduces the context information
around objects, achieves a higher MOTA score and IDF1 score than
other methods. More importantly, IDs decrease significantly from
768 to 706, suggesting that the context information around the
person has clear advantages for multiple object tracking.

To validate the influence of the context information around the
object on the final tracking results. We performed an analysis of
the Context-Aware Re-Identification branch, for which we
designed the following three variants. (a) Fair MOT is our baseline.
(b) Previous-Frame based Context-Aware Re-Identification branch
utilizes the previous frame image to guide the network to learn
context information around the object. (c) Next-Frame based
Context-Aware Re-Identification branch uses the next frame image
to guide the network to extract object context information. We can
see from Table 4 that the Next-Frame based Context-Aware Re-
Identification branch has improved because it takes full advantage
of all the context information around the object to extract more
robust object features. However, adopting the next frame image
for guidance does not conform to the typical pedestrian search pat-
tern. Therefore, the Previous-Frame based Context-Aware Re-
Identification branch achieves the best tracking performance. It
means context information around the object helps improve the
discriminative ability of the object feature.
4.3.3. Data association in MOT
This section evaluates the two trajectory management methods

and the three ingredients in the data association step, including
bounding box IoU, object appearance feature and Kalman Filter.
We use the Similarity-Cluster Algorithm, and Hungarian Algorithm
[61] to associate trajectories and detection, respectively. The above
three ingredients are employed to calculate the similarity between
detection and trajectories. Table 5 shows the results. We can see
that our method achieves the best tracking results. This fully shows
that the multi-dimensional affinity descriptors and the minority
obeying the majority principle can effectively alleviate the interfer-
ence of the noise in trajectory.
Table 4
The effect of different context information on tracking results.

Method MOTA" IDF1" IDs#
Baseline 65.2 66.3 782

Previous-Frame 67.3 68.5 709
Next-Frame 66.5 67.1 728

Table 5
Comparison of different data association methods and different ingredients on the MOT16

Method Box IoU Object Feature Kalman

Hungarian Algorithm[61] U

U

U U

U U U

Similarity-Cluster Algorithm U

U

U U

U U U
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We also see that only applying bounding box IoU or object
appearance feature causes decreases in tracking performance. This
is because the occlusion between objects is frequent in crowd
tracking scenes, and a single ingredient cannot accurately describe
the similarity between trajectories and detections. Furthermore,
the Kalman filter can obtain smooth trajectories, which effectively
reduces the number of IDs. Therefore, it is essential to employ
bounding box IoU, object appearance feature, Kalman filter and
Similarity-Cluster algorithm to obtain good trajectory manage-
ment performance.

4.3.4. Training data in MOT
We aim to study the impact of training data on the proposed

end-to-end tracker. To this end, we compare the tracking perfor-
mance of the tracker trained on different datasets, such as
MOT17 [52], CUHK-SYS C[54], PRW [55] and CalTech [53]. We con-
duct experiments on the MOT17 test dataset. CUHK-SYSC and PRW
are common person search datasets. CalTech is a commonly used
dataset in pedestrian detection research. ”MIX” represents the
large-scale dataset generated by mixing the abovementioned data-
sets. These datasets provide object bounding boxes and identity.
The experimental results are shown in Table 6. First, the tracker
training on the ”MIX” dataset outperforms other trackers. Second,
due to the small number of persons and the simple scene, the
tracking performance of tracker training on the PRW dataset
decreases. On the contrary, the CalTech dataset enables the pro-
posed model to fully train and improves the tracking performance
with its vast data volume. The results validate that we can improve
the tracking ability of our tracker by augmenting the training data
and making it more competitive in real applications.

4.4. Experiment results On MOTChallenge

We compare our tracking framework to state-of-the-art (SOTA)
methods, including both online and offline tracking methods.

Some published works of JDE [12], Track-RCNN [22] and Fair-
MOT [11] jointly perform object detection and object feature
embedding. We compare our tracker with both of them. Following
the previous work, the testing dataset contains six videos from
MOT15. We use the same data for training these trackers. In partic-
ular, since Track R-CNN requires segmentation labels to train the
network, it only uses the four videos from MOT17 dataset, which
dataset.

Filter MOTA" IDF1" MT" ML# IDs#
60.3 61.8 28.60% 23.90% 2948
60.9 62.1 29.80% 22.10% 1982
61.5 63.2 31.60% 20.50% 1359
62.6 64.9 33.90% 19.30% 1296

60.5 62.1 29.30% 23.20% 2864
61.1 62.5 31.50% 21.20% 1568
62.3 64.4 33.50% 19.80% 1236
64.1 65.3 35.30% 18.50% 1059

Table 6
The effects of different training dataset on the tracking performance.

Dataset MOTA" IDF1" IDs"
MOT17 [52] 67.9 70.1 593

CUHK-SYSC [54] 60.3 62.5 2692
CalTech [53] 64.6 66.8 1862

MOT17 + CUHK-SYSC 68.1 70.6 506
MOT17 + CalTech 69.5 72.3 489

MIX 71.3 74.9 392
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has segmentation labels as training data. In this case, we also use
the same data to train our tracker and other models. The results
are shown in Table 7. We can see that our tracking framework
remarkably outperforms other trackers. In particular, our tracker
achieves a comparable MT, FP, FN and performs favourably against
the other method in terms of MOTA, IDF1, ML and IDs. The results
validate the effectiveness of the center-point-pair detection branch
over the previous detection method.

To comprehensively benchmark our technique for multiple
object tracking, we also evaluate the proposed tracker on MOT16
and MOT17. However, due to we do not use the official detection
results, the private detector protocol is adopted. The final experi-
mental results are evaluated by MOTChallenge.

Quantitative results and comparisons with the other tracking
methods are shown in Table 8 and Table 9. As shown in Table 8,
our tracking method achieves a comparable ML, FP, IDs, Frag score
and performs favourably against the state-of-the-art methods in
terms of MOTA, IDF1, MT and FN on the MOT16 dataset. Our
tracker upgrades MOTA to 69.5, IDF1 to 72.3, MT to 40.3%, and
Table 7
Comparsion of the state-of-the-art end-to-end trackers on the MOT15 dataset.

Method MOTA" IDF1" MT" ML# FP# FN# IDs#
JDE[12] 67.9 67.1 35.4% 18.6% 1881 2083 218

Track R-CNN[22] 69.2 49.4 42.6% 16.5% 1354 2397 294
FairMOT[11] 70.3 65.8 47.6% 11.0% 1263 2598 108

Ours 71.5 67.9 46.3% 10.3% 1348 2084 93

Table 8
Comparing our tracking framework with state-of-the-art methods on MOT16 dataset. The
result for each indicator is bolded.

Tracker MOTA" IDF1" MT"
Offline NLLMPa[62] 47.6 47.3 17.0% 4

LMP[19] 48.8 51.3 18.2% 4
NT[63] 47.5 43.6 19.4% 3
TNT[64] 56.1 49.2 17.3% 4

Online FWT[24] 48.8 51.3 18.2 % 4
EAMTT[65] 52.5 53.3 19.9% 3

Tracktor++[22] 56.2 54.9 20.7% 3
DeepSORT_V2[10] 61.4 52.2 32.8% 1

TMOH[66] 63.2 63.5 27.0% 3
CNNMTT[67] 65.2 62.2 32.4% 2

POI[68] 66.1 65.1 34.0% 2
Tube_TK_POI[69] 66.9 62.2 39.0% 1

Soft_Pose_MOT[23] 67.7 66.4 37.9% 1
CTracker[70] 67.6 57.2 32.9% 1
FairMOT[11] 68.7 70.4 39.5% 1

Ours 69.5 72.3 40.3% 1

Table 9
Comparing our tracking framework with state-of-the-art methods on MOT17 dataset. The
result for each indicator is bolded.

Tracker MOTA" IDF1" MT"
Offline EDMT[71] 50.0 51.3 21.6%

NOTA[72] 51.3 54.7 17.1%
TNT[64] 58.0 51.9 23.5%

Online FWT[24] 51.3 47.6 21.4%
Tracktor++[22] 56.3 55.1 20.1%

TMOH[66] 62.1 62.8 26.9%
POI[68] 63.0 58.6 31.2%

Soft_Pose_MOT[23] 67.3 65.9 37.9%
CTracker[70] 66.6 57.4 32.2%
CTTrack17[73] 67.8 64.7 34.6%
FairMOT[11] 68.2 70.1 38.1%

Ours 69.8 71.5 38.0%
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reduces FN to 40631. Meanwhile, our tracker achieves the best per-
formance in MT and IDs among online methods, demonstrating the
merits of our tracker in object matching and the stability of multi-
object tracking. MOTA and FN correspond to the object detection
capability. Therefore, the improvement of MOTA and FN demon-
strates the merits of our center-point-pair detection strategy in
object locating for MOT. Similarly, Table 9 shows that our tracker
outperforms existing online trackers on more than half of the met-
rics and achieves the best performance in terms of MOTA, IDF1, FN,
IDs and Frag among online and offline methods on the MOT17
dataset.

In terms of tracking speed, our method outperforms previous
state-of-the-art methods on several benchmark datasets. However,
the tracking speed of our tracker is 4.3 FPS slower than FairMOT.
That is because the proposed tracker needs to mine the object head
position information and the context information around the
object to improve the tracking performance. We believe that the
speed penalty paid compared to the improvement in tracking per-
formance is worthwhile, which makes our method more suitable
for practical applications.

In addition, we believe that due to the designed detection
branch can detect these small-scale pedestrians, occluded pedes-
trians, and pedestrians who are not recorded as tracking objects.
Therefore, our detection branch will cause the phenomenon of high
FP, as shown in Table 7 and Table 8, and the similar situation exists
in [11,70,31] too. However, this phenomenon also reflects that the
proposed detection branch can complement missing objects and
reduce unreliable detection, which is more suitable for tracking
scenes.
arrow each metric indicates that the higher (") or lower (#) value is better. The best

ML# FP# FN# IDs# Frag# FPS"
0.4% 5844 89093 629 768 –
0.1% 6654 86254 481 595 –
6.9% 13002 81762 1035 1408 –
0.3% 8400 83702 606 882

0.1 % 6654 86245 481 1534 0.6
4.9% 4407 81233 910 1321 < 5.5
5.8% 2394 76844 617 1068 -
8.2% 5119 63352 781 2008 < 6.4
1.0% 3122 63376 635 1486 0.7
1.3% 6578 55896 946 2283 < 5.3
0.8% 5061 55914 805 3093 < 5.0
6.1% 11544 47502 1236 1444 –
8.6% 11453 42494 579 902 < 5.8
9.0% 8934 48305 1897 3112 6.8
7.5% 13501 41653 953 2399 25.9
7.9% 14538 40631 589 2406 21.6

arrow each metric indicates that the higher (") or lower (#) value is better. The best

ML# FP# FN# IDs# Frag# FPS"
36.6% 22875 252889 2314 2865 –
35.4% 20148 252531 2285 4080 –
35.5% 37311 231658 2294 2917 –

35.2% 24101 247921 2648 4279 0.6
35.3% 8866 235449 1987 3763 –
31.4% 10951 201195 1897 4622 0.7
19.9% 27060 177483 4137 5727 < 5.0
20.7% 20574 195176 2031 3098 < 5.8
24.2% 22284 160491 5529 9114 6.8
24.6% 11498 160332 3039 6102 17.0
20.6% 36541 141899 3303 4349 25.9
21.5% 37932 134803 1835 2783 21.6



064 072 243 251

10
enecS

30
e necS

445 453 613 621

174 190 390 405

205 222 391 416

189 198 502 527

226 235 657 682

181 192 501 524

60
enecS

70
enecS

80
enecS

21
enecS

41
enecS

Frame # ��

064 072 243 251

445 453 613 621

174 190 390 405

205 222 391 416

189 198 502 527

226 235 657 682

064 072 243 251

10
enecS

30
e necS

445 453 613 621

174 190 390 405

205 222 391 416

189 198 502 527

226 235 657 682

181 192 501 524

60
enecS

70
enecS

80
enecS

21
enecS

41
enecS

Frame # �

Fig. 7. Tracking example of the proposed method from MOT17. The colour of bounding boxes identifies the estimated trajectories. The sampling frame results listed in each
row follow the time sequence of the tracking video in MOT17.
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In summary, comparing the results of two datasets, the tracking
framework proposed in this paper can effectively improve the
tracking performance.

4.5. Qualitative results

Fig. 7 shows the effect diagram of the tracker proposed in this
paper on the MOT 17 test set. From the tracking results of
MOT17-03 and MOT17-08, it can be seen that our method per-
forms well in scenes with crowded pedestrians. In particular, our
method can generate accurate bounding boxes when occlusions
between pedestrians are frequent, which benefits from center-
point-pair detection strategy. From the tracking results of
MOT17-01, MOT17-06 and MOT17-07, it can be seen that our
method can maintain the stability of the object trajectory well.
With the help of contextual information around the object, our
method can extract more discriminative object features. The track-
27
ing results of MOT17-12 and MOT17-14 show that our method can
deal with large-scale variations of objects and cope with the issue
of camera movement during tracking. MOT17-14 is similar to the
automatic driving scene, which shows that our tracker is more
appealing in real applications.
5. Conclusion

We present a novel end-to-end multi-object tracking method
that optimizes three main components of most existing trackers,
incluluding detection, feature extraction and data association.
The tracker introduces the object head location information to
locate the object. Then generating more accurate object bounding
boxes by the proposed center-point-pair detection branch also
helps alleviate typical difficulties in tracking, such as occlusion
handling and trajectory offset. Here, with the guidance of the pre-
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vious frame, the network can effectively learn the context informa-
tion around the object and extract more discriminative object fea-
tures. In addition, our proposed similarity-cluster trajectory
management method extends the affinity descriptor that can accu-
rately and comprehensively evaluate the similarity between detec-
tions and trajectories. Meanwhile, we adopt the principle of
minority obeying majority for data association, which improves
the generated trajectory’s quality. Through extensive experiments,
we have proved that the proposed tracking framework leads to
competitive performance improvement.
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