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Abstract—Multi-Object Tracking (MOT) aims to generate
trajectories for multiple objects in the surveillance scene. This is
a challenging task because the pedestrians in tracking video often
gather together and occlude each other. Consequently, the two
main problems in the popular tracking-by-detection framework
are how to alleviate unreliable detection and extract robust object
appearance features. In this paper, we propose a new tracking
method that is composed of two novel types of modules - an object
detection strategy based on pedestrian head point positioning
and a Spatial-Channel Self-Attention feature extraction network
(SCSAN). Specifically, the proposed detection strategy generates
more accurate tracking object bounding boxes with Soft-Head-
NMS, which combines the advantages of object detection and
head point positioning. The head point location information is
used as a guidance to screen unreliable detection. The SCSAN
utilizes the Spatial-Channel Self-Attention mechanism to lead
and determine the optimal attention value for each area and
channel. Extensive experiments are carried out to demonstrate
the proposed tracker achieves competitive results and is state-of-
the-art in half metrics.

I. INTRODUCTION

Multi-Object Tracking(MOT) is the task of linking a number

of object hypotheses detected in surveillance video to generate

tracklets of different objects. It plays an essential role in many

applications of computer vision, such as intelligent traffic

system [1], multi-camera activity analysis [2] and intelligent

surveillance [3]. Current MOT researches mainly adopt the

tracking-by-detection strategy in online tracking, locating ob-

jects in each frame with a detector and associating the objects

in different frames to generate trajectories. However, in re-

turn, the tracking-by-detection frameworks tend to produce ID

switches and to drift under occlusion and unreliable defections

because it is more dependent on detection results.

In natural tracking scenes, objects, especially pedestrians,

often gather together and occlude each other. The main impact
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Fig. 1. Object locating with head point position information guiding. In the
tracking scene, applying only one kind of detection method, the bounding
boxes are unreliable due to heavy occlusion. Head point position information
can help tracker filter and alleviate unreliable detection.

of crowd occlusion is that it severely harms the performance

of the detector and significantly increases unreliable detection

such as false positives, missing detection and multi objects

in the same bounding box, as shown in Fig. 1. To alleviate

unreliable detection interference, some studies combine de-

tection and tracking results as the candidate set for quality

evaluation and use different strategies for data association

[4]. However, these tracking frameworks did not introduce

other location information to screen the unreliable detection

results. Furthermore, we found that the head region is visible

easily in the crowded scene. It seems to be robust guidance

information to direct the tracker to screen unreliable bounding

boxes, as shown in Fig.1. In this paper, we propose a head

point positioning based detection strategy that combines the

merits of head point location and object bounding box in

a unified framework to introduce head point information.



Furthermore, we propose Soft-Head-NMS detection strategy

to use the pedestrian head point information to assist in

alleviating unreliable detection.

On the other hand, the occlusion between objects and partial

loss in tracking will reduce the discriminative ability of object

appearance features, as shown in Fig.1. To alleviate such

issues, [5] introduced the attention mechanism to guide the

feature extraction network to focus on the object areas of

detection images and tracklet images. Additionally, inspired

by [6], we propose a Spatial-Channel Self-Attention feature

extraction network (SCSAN). Specifically, the original self-

attention mechanism only considers global information, re-

sulting in a significant background pixel weight, which brings

the noise to interfere with feature extraction. In addition, it

cannot calculate the attention value of different channels in

the feature map. Therefore, Our model introduces the Spatial-

Weight learning module and the Channel-Attention module in

the Self-Attention mechanism to determine the optimal self-

attention maps for object images.

The main contributions of this paper can be summarized as

follows:

1. A new detection strategy is proposed to combine object

detection and head point position results. The strategy takes

advantage of both object detection and head point position

to alleviate unreliable detection in the online multi-object

tracking framework.

2. We design a Spatial-Channel Self-Attention feature ex-

traction network (SCSAN), which introduces the Spatial-

Weight Learning module and the Channel-Attention module

in the Self-Attention mechanism to allocate different attention

values to each location and channel in the object feature map.

3. Experimental results demonstrate that our tracker

achieves competitive performance on the MOT benchmark

dataset and is state-of-the-art in some metrics.

II. RELATED WORK

A. Detection Strategy

Given detection by the detector at each frame, the tracking-

by-detection framework locally associates detections frame-

by-frame to generate long trajectories in general. Recent

approaches have focused on improving the performance of

detection to improve tracking [7]–[10]. Chen et al. in [4]

combined detection and predicted bounding boxes from track-

let as candidates set for quality evaluation and used different

methods for data association. Voigtlaender et al. in [11] intro-

duced top-down segmentation information instead of detection

information to locate the tracking object. Additionally, some

recent works have directly used the dense detection output,

before the non-maximum suppression, as the input to their

tracker [12]. This is primarily to overcome the limitations

of detectors and non-maximum suppression algorithms when

objects are occluding each other or are too close to each other.

Shu et al. in [13] proposed an extension to deformable part-

based human detector, which can handle occlusion up to a

scale. However, the above methods only applied one kind of

location information to determine the bounding box of the

tracking objects and did not introduce additional information

for guidance, which cannot effectively alleviate unreliable

detection results in tracking. On the contrary, we propose the

Soft-Head-NMS detection strategy to introduce object head

location information. The motivation behind introducing object

head point information is that the head region is visible easily

in crowds and thus can be a piece of powerful guidance

information to direct the detector to screen unreliable detection

and improve the detection results in MOT. Furthermore, our

detection strategy can be easily integrated into other tracking

frameworks to improve the tracking performance further.

B. Feature Extraction
Object appearance is an important clue for identifying cross-

frame observations. Inspired by the recent advances in deep

learning, several Multi-Object Tracking frameworks [14]–[16]

using person re-identification networks [17], [18] to extract

object features. These methods have shown that discriminative

generic features can be trained using deep learning module.

Chu et al. in [5] introduced a Spatial-Temporal Attention

Mechanism (STAM) to handle the tracking drift caused by

the occlusion and interaction among objects. Zhu et al. in

[19] proposed a Dual Matching Attention Networks (DMAN),

which introduced spatial and temporal attention mechanism

to extract robust features against appearance variations and

cluttered backgrounds. In this paper, we introduce the self-

attention mechanism with the Spatial-Weight Learning module

and the Channel-Attention module. Our feature extraction

network differs from the DMAN method. First, the attention

feature map in the DMAN corresponds to the detection image

and trajectory images. Since the attention feature map is

affected by different trajectory images, it becomes unreliable

when other objects appear in the trajectory image. In contrast,

we exploit the image itself to generate the self-attention

map, which is demonstrated to be more robust to noisy

detections and occlusions. Second, we introduce the Spatial-

Weight Learning module and the Channel-Attention module

to alleviate the noise introduced by the background pixels

and learn discriminative feature representations at multiple

channels. Third, compared with DMAN, our network is end-

to-end, which can alleviate the complexity of training and

extracting features.

III. PROPOSED METHOD

Three main components of our tracking framework are

a proposed detection strategy, a designed feature extraction

network and a trajectory management method. The tracking

framework introduces object head point information and im-

proves detection performance by the Soft-Head-NMS detec-

tion strategy. Then we use the Spatial-Channel Self-Attention

Network to compute the attention values of different areas and

channels to extract features. Finally, we update the tracking

state of objects and trajectories.

A. Soft-Head-NMS Object Detection Strategy
After obtaining a new tracking frame, we generate bounding

boxes and head point position of each object through the
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Fig. 2. The bounding box and head point positioning results. (a) shows
the head point position when it matches the bounding box. (b) shows the
false-positive results of head point. (c) shows the false-positive results of the
bounding box. (d) and (e) shows matching results of multiple bounding boxes
corresponding to multiple head points.

object detection network and head point regression network,

respectively. It is necessary to generate a sufficient number

of detection bounding boxes to filter and obtain accurate

tracking bounding boxes. Therefore, we set detection threshold

Tdetcon = 0.5 to generate the object detection bounding boxes.

In order to measure trakcing objects bounding box set

Btrack, we perform preliminary matching on the head points

and bounding boxes firstly. We divide all the bounding boxes

into six parts evenly horizontally and divided into three parts

according to the ratio 1 : 4 : 1 vertically, as shown in Fig.2(a).

If the position of the head point is in the middle grid at the

top of the horizontal, it indicates that the head point matches

the bounding box. In this way, we generate the preliminary

matching result.

Furthermore, we conduct a preliminary screen of the prelim-

inary matching results obtained in the previous step. For the

first situation, when a bounding box corresponds to multiple

head points and these head points do not correspond to other

bounding boxes, as shown in Fig.2(b). We only retain the

head point with the highest confidence. Secondly, because

we lowered the confidence threshold, some redundant bound-

ing boxes are generated. Therefore, for multiple bounding

boxes that associate with the same head point, we only keep

the bounding box with the highest confidence, as shown in

Fig.2(c). After the initial screen, most of the bounding boxes

and head points can be a one-to-one correspondence. However,

the issue of multiple head points corresponding to multiple

bounding boxes still exists, as shown in Fig.2(d) and (e).

In the following step, we perform detailed matching with

KM algorithm [20] to deal with such issue. Specifically, we

calculate the weight between the bounding box and the head

point for bipartite graph matching firstly. For a correctly

matching bounding box, the head point should be at the

horizontal center of the bounding box. Therefore, we define

the distance ratio between the head point and the center point

of the bounding box as CM which can accurately describe

the matching degree between the head point and the bounding

box. The following formula can calculate the CM :

CM =
|xp − xcenter|

W/2
(1)

where xp is the abscissa of the head point, xcenter is the

abscissa of the bounding box center point and W is the width

of the bounding box. For a correct matching bounding box, the

head point should be at the horizontal center of the bounding

box, so CM can accurately describe the matching degree

between the head point and the bounding box. In addition,

we introduce the confidence of bounding box CB and the

confidence of head point CH to calculate the weight between

the bounding box and the head point.

We observe that the issue of multiple head points and

multiple bounding boxes correspondence can be divided into

the following three situations:

Situation 1: the two head points correspond to two bounding

boxes. It is necessary to judge whether the head points and

the bounding boxes are accurate. The calculation formula for

the weights in the matching bipartite graph is as follows:

Ws1 = 3 (CB + CH) + CM (2)

Situation 2: for the issue of two head points corresponding

to three bounding boxes, it is due to redundant boxes. The

matching degree between head point and bounding box be-

comes the main factor that needs to be considered and the

weights in the matching bipartite graph can be given by:

Ws2 = CB + CH + 3CM (3)

Situation 3: the situation of three head points corresponding

to three bounding boxes is similar to the two head points

corresponding to two bounding boxes. Therefore the weights

in the matching bipartite graph can be defined as:

Ws3 = 3 (CB + CH) + CM (4)

Moreover, when the weight of the head point and the

bounding box is inferior, it can be directly considered that the

head point and the bounding box cannot match. We analyze

the weight of head point and bounding box in training data and

set weight threshold TWs1
= 2, TWs2

= 3 and TWs3
= 2 for

the three kinds of multiple head points and multiple bounding

boxes correspondence issues, respectively.

Last, we apply the KM algorithm to associate the head

point and the bounding box to generate head point-optimized

bounding box set BH . In order to highlight the guidance of

the head point, we define the confidence of ith head point-

optimized BHi as:

CBHi = CB + CH (5)

where CBHi is the confidence of the ith head point-optimized

bounding box.

In order to determine the tracking object bounding boxes set

Btrack, we sort all the bounding boxes in the current frame

according to the confidence to generate candidate bounding

boxes set Bcan and output the bounding box Bmax with the

maximum confidence to Btrack as tracking object bounding

box. Then, we re-assign the confidence of remaining bounding

boxes as:
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Fig. 3. (a) shows the architecture of the proposed Spatial-Channel Self-Attention Network (SCSAN). The SCSAN includes two modules, namely the Spatial-
Weight Learning module and the Channel-Attention module. The weights of different pixels are produced in the Spatial-Weight Learning module to reduce
background noise, while the Channel-Attention module is calculating the different attention values in channels to enhance the discriminative of the feature
map. We give an object detection or trajectory image as input. (b) and (c) illustrates calculation and transformation of self-attention map. (b) shows the process
of calculating the self-attention map in the original self-attention mechanism. (c) shows we transform the obtained self-attention map to a three-dimensional
matrix with the size of 16 ∗ 8 ∗ 128.

Ccani = Ccani · exp
(
−IoUi ∗ IoUi

δ

)
(6)

where Ccani indicates the confidence of ith bounding box in

Bcan, IoUi indicates the IoU of bounding box Bmax and

Bcani. Finally, we delete the candidate that confidence less

than the confidence threshold Tcon, until Bcan is empty.

B. Spatial-Channel Self-Attention Network

The appearance feature is vital in calculating the similarity

score between the objects and the trajectories. To get a robust

appearance feature for tracking object, we design a Spatial-

Channel Self-Attention feature extraction network (SCSAN),

as shown in Fig.3(a). In SCSAN, we exploited the ResNet50

[21] as the backbone network and propose Spatial-Channel

Self-Attention mechanism to extract object appearance feature.

Specifically, we design the Spatial-Weight Learning model

to alleviate the issue of image background noise in the

self-attention mechanism. Meanwhile, we introduce Channel-

Attention model to guide the network to determine the atten-

tion value of each channel in the feature map. We describe the

two modules as follows.

In the original self-attention mechanism, the process of

calculating the self-attention map is shown in Fig.3(b). We find

that the feature map Q(x)T and K(x) are learned through two

different 1∗1 convolutional layers, respectively. As a result, the

similarity weight between each pixel is completely dependent

on the channel features of each pixel, and the positional

relationship between the pixels is ignored. Therefore, although

the self-attention mechanism considers global information, it

does not perform weight learning and lacks the adaptability to

pixel positions. This causes the weight of background pixels

with similar features to increase and introduce abundant noise

in object feature maps.

To alleviate such issue, we design the Spatial-Weight Learn-

ing module to optimize self-attention mechanism. First, we

transform the obtained self-attention map R(x), as shown in

Fig.3(c). Each row vector in R(x) represents the influence of

the overall 128 pixels on the ith pixel and the arrangement of

R(x) conforms to the spatial position of the original feature

map. Therefore, we transform it to a three-dimensional feature

map R′(x) of size 16 ∗ 8 ∗ 128. Then, we use the Spatial-

Weight Learning module to guide the network to learn the

weights of pixels at different locations, as shown in Fig.3(a).

Specifically, we regard 128 in the third dimension as the

number of channels. In this way, the yellow vector in R′(x)
represents the influence of the overall pixels to the (i, j) pixel.

Then, we can apply the 1 ∗ 1 convolution layer to learn the

influence weight of 128 pixels in the object feature map to

the (i, j) pixel. Furthermore, in order to enhance the ability

of the network, we introduce two 1 ∗ 1 convolutional layers

in the Spatial-Weight Learning module. Last, we generate the

spatial weight map by a sigmoid activation function, so that

the network can extract more robust feature under the guidance

of spatial information.

In addition, the channels of the object feature map also

have different meanings. Therefore, inspired by SENet [22],

we design the Channel-Attention module to enable the self-

attention mechanism to learn the attention value of different

channels adaptively. Moreover, in order to ease the amount of

calculation and enable the network to converge, we add the

channel attention module after the V alue convolutional layer

in the self-attention module, as shown in Fig.3(a).

First, in the Channel-Attention module, the object feature

performs the global average pooling to enable the network

to focus on the channel information of the feature map. The

difference from SENet is that we apply three convolutional

layers instead of fully connected layers to learn the attention

value of the channel, which can reduce the amount of network

calculations. Finally, we use the Sigmoid activation function

to compress the weight of each channel to (0, 1), which

represents the attention value of the different channels. We



multiply the obtained channel attention map with the original

feature map to generate the channel attention feature map.

We learn appearance feature through a Re-ID task. There-

fore, we use the softmax loss to improve prediction accuracy

of the network. Simultaneously, the object feature map repre-

senting different IDs is adjusted by the triplet loss and center

loss, aiming to learn the similarities and differences between

input image pairs. The training objective of Spatial-Channel

Self-Attention network can be written as a weighted linear

sum of losses:

Ltotal = αLsoftmax + βLtriplet + γLcenter (7)

where α, β and γ are loss weights. We utilize the ground-truth

bounding boxes in the MOT16 training set to generate training

data for the feature extract network training.

C. Data Association and Trajectory Management

We follow the standard online tracking algorithm to asso-

ciate detection bounding boxes and trajectories. We calculate

the similarity score of the detection and tracklet feature maps

firstly, by the cosine distance. Then tracker generates the

affinity matrix with similar scores. Meanwhile, we apply the

Hungarian algorithm [20] for bipartite graph matching with

obtained similarity matrix and link the detected boxes to the

existing tracklets. Last, we also use Kalman Filter to predict

the locations of the tracklets in the current frame. The tracker

associates the remaining detection with unassociated traklet

based on IoU between detection and predict locations of

unassociated traklet, with a threshold TIoUa. For trajectory

management, we initial the trajectory for object detection,

which is not associated with any trajectory in any of the

first Tinit frames. The Trajectory is terminated if they are not

associated with Tterm frames.

IV. EXPERIMENTS

We first verify the effectiveness of the proposed detection

strategy and object feature extraction network by applying

them for a Multi-Object Tracking problem. Then, we analyze

the performance improvement in MOT by the proposed track-

ing framework in detail.

A. Experiment Setup

Implementation details. To evaluate the performance of the

proposed online tracking method, we conduct extensive exper-

iment on the MOT16 dataset [23]. We employ Faster R-CNN

[24] to generate the object bounding boxes, and use RAZNet

[25] to estimate object head point position information. We

set Tcon=0.5 to generate the tracking object set Btrack and set

TIoUa=0.7 for data association. For trajectory management, we

set threshold Tinit=3 and Tterm=10 for trajectory initialization

and trajectory termination, respectively.

Evaluation metrics. In order to measure the accuracy

of tracking results, we adopt multiple metrics used in the

MOT benchmark to evaluate the proposed tracking method,

including Multiple Object Tracking Accuracy (MOTA), the

ratio of correct detections over the average number of ground-

truth and computed detections (IDF1 score), the ratio of

Mostly Tracked objects (MT), the ratio of Mostly Lost Objects

(ML), the number of False Negatives (FN), the number of

False Positives (FP), the number of ID Switches (IDs), the

number of fragments (Frag). Table III and Table IV present

the tracking performance on the MOT 16 and MOT 17 dataset.

B. Ablation Studies

In order to verify the effectiveness of the proposed detection

strategy and evaluate its contribution, we conduct ablation

experiments on MOT16. The results are shown in Table I.

We compare our detection strategy with SDP [26], Faster R-

CNN [24] and Mask R-CNN [27]. In addition, to exclude the

disturbance of other factors, we use PCB [28] to extract object

feature and DeepSORT [14] to generate object trajectory.

TABLE I
EVALUATION RESULTS ON MOT16 WITH DIFFERENT DETECTION

METHOD.THE ARROW EACH METRIC INDICATES THAT THE HIGHER (↑) OR

LOWER (↓) VALUE IS BETTER

Detector MOTA↑ IDF1↑ FP↓ FN↓
Mask R-CNN + PCB 40.2 52.6 14426 51234
Faster R-CNN + PCB 60.6 63.0 14801 56143

SDP + PCB 58.6 58.0 8461 66295
Ours +PCB 63.1 64.2 12516 50423

The experiment results as shown in Table I. The comparison

between our detection strategy and object detection methods

confirms that our detection strategy performs best. Compare

with the Faster R-CNN, our detection strategy improves 2.5

in MOTA, 1.2 in IDF1 and effectively reduced FN, which

demonstrates the merits of our detection strategy in locating

objects. By locating object bounding boxes with head point

guidance, the detection strategy reduces unreliable detection

and improves the MOTA, as shown in Fig.4(a).

TABLE II
EVALUATION RESULTS ON MOT16 WITH DIFFERENT FEATURE

REPRESENTATIONS.

Method MOTA↑ IDF1↑ IDs↓
SDP + ResNet50 62.2 63.7 850

SDP + PCB 62.1 58.9 1061
SDP + StrongBaseline 63.3 64.9 757
SDP + Ours(SCSAN) 64.6 65.3 711

To demonstrate the contribution of the proposed SCSAN

network in our method, we compare representations learned

by SCSAN with ResNet50, PCB and StrongBaseline. More-

over, we use SDP [26] detection result, provide by MOT16

officially, and DeepSORT for tracking. The experiment results

are shown in Table II. It can be seen that the MOTA, IDF1

and IDs of SCSAN are better than other methods. Our tracker

upgrades MOTA to 64.6, IDF1 to 65.3 and reduces IDs to 711,

which demonstrates the effectiveness of our feature extraction

network. The higher IDF1 value indicates that the proposed

SCSAN network focuses on more explicitly object regions and

channels which enhance the power of extracting discriminative

feature.



TABLE III
TRACKING PERFORMANCE ON MOT16 DATASET. THE ARROW EACH

METRIC INDICATES THAT THE HIGHER (↑) OR LOWER (↓) VALUE IS

BETTER.

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓

B
at

ch

QuadMOT [29] 44.1 38.3 14.6% 44.9% 6388 86245 745 1096
EDMT [30] 45.3 47.9 17.0% 39.9% 11122 87899 639 946
LMP [15] 48.8 51.3 18.2% 40.1% 6654 86245 481 595

O
n

li
n

e

Tracktor++ [31] 56.2 54.9 20.7% 35.8% 2394 76844 617 1068
MPNTrack [32] 58.6 61.7 27.3% 34.0% 4949 70252 354 684
DeepSortv2 [14] 61.4 52.2 32.8% 18.2% 5119 63352 781 2008

TMOH [33] 63.2 63.5 27.0% 31.0% 3122 63376 635 1486
Tube TK [34] 64.0 59.4 33.5% 19.4% 10962 53626 1117 1366
CNNMTT [35] 65.2 62.2 32.4% 21.3% 6578 55896 946 2283

POI [29] 66.1 65.1 34.0% 20.8% 5061 55914 805 3093
CTracker [36] 67.6 57.2 32.9% 19.0% 8934 48305 1897 3112
FairMOT [37] 67.7 68.4 37.5% 19.0% 13501 49653 953 2399

Ours 67.9 69.0 28.7% 17.9% 12455 47931 597 2406

TABLE IV
TRACKING PERFORMANCE ON MOT17 DATASET.

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓

B
at

ch

EDMT [30] 50.0 51.3 21.6% 36.3% 32279 247297 2264 3260
MHT DAN [38] 50.7 47.2 20.8% 36.9% 22875 252889 2314 2865

NOTA [39] 51.3 54.7 17.1% 35.4% 20148 252531 2285 4080

O
n

li
n

e

Tracktor++ [31] 56.3 55.1 20.1% 35.3% 8866 235449 1987 3763
TMOH [33] 62.1 62.8 26.9% 31.4% 10951 201195 1897 4622

POI [29] 63.0 58.6 31.2% 19.9% 27060 177483 4137 5727
CTracker [36] 66.6 57.4 32.2% 24.2% 22284 160491 5529 9114

CTTrack17 [40] 67.8 64.7 34.6% 24.6% 18498 160332 3039 6102
Ours 66.9 68.3 35.7% 21.5% 23587 193286 1868 2683

Fig.4(b) shows the visualization results of the self-attention

feature map form SCSAN. In Fig.4(b), the top row shows

images from the object detection or trajectory, while the

bottom row presents corresponding self-attention feature maps.

It can be seen that our self-attention feature map focus more

explicitly on object regions and suppress noise and occlusion,

which enhances the power of extracting discriminative feature.
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Fig. 4. Visualization results. (a) shows the visualization of object locating
results. (b) shows the object image and object feature map.

C. Performance on MOT Benchmark Datasets

We report evaluation on the test set of MOT16 and compare

our tracker with other offline and online trackers in Table

III. As shown in Table III, our tracking method achieves a

comparable MT, FP, IDs, Frag score and performs favourably

against the state-of-the-art methods in terms of MOTA, IDF1,

ML and FN on the MOT16 dataset. Our tracker upgrades

MOTA to 67.9, IDF1 to 69.0 and reduces ML to 17.9, FN

to 47931. Meanwhile, our tracker achieves the competitive

performance in IDs and best performance in IDF1 among

online and batch methods, demonstrating the merits of our

tracker in object identity matching and the stability of multi-

object tracking. MOTA and FN correspond to the object de-

tection capability. Therefore, the improvement of MOTA and

FN demonstrates the merits of our Soft-Head-NMS detection

strategy in object locating for MOT. In addition, IDF1 and

IDs can reflect the quality of the object feature extracted

by the tracker. The improved performance of IDF1 and IDs

demonstrates the merits of the Spatial-Channel Self-Attention

network in feature extraction for MOT. Similarly, Table IV

shows that our tracker outperforms existing online trackers on

half of the metrics and achieves the best performance in terms

of IDF1, MT, IDs and Frag on the MOT17 dataset. In addition,

we achieve the best IDF1 score among all the online and batch

trackers on both the MOT16 and MOT17 datasets.

However, as shown in Table III and Table IV, our tracker

has a high FP. This is because the Soft-Head-NMS detection

strategy not only can effectively alleviate unreliable detections

but also complement missing detections. Therefore, our tracker

can detect and track these pedestrians who are not recorded as

tracking objects. Therefore, our detection strategy will cause

the phenomenon of high FP, and the similar situation exists in

work [4], [30] too. Additionally, this phenomenon also reflects

the effectiveness of the detection strategy proposed in this

paper.

V. CONCLUSION

We present a novel framework that improves two main

components of most online trackers, detection and feature

extraction. The tracker combines the advantage of object

detection and head point positioning. Then generating opti-

mal object bounding boxes by the proposed Soft-Head-NMS

detection strategy, which also helps alleviate typical difficulties

in tracking such as occlusion handling and track drifting.

In this work, for calculating more accurate similarity scores,

the tracker learns the discriminative feature map from object

image with Spatial-Channel Self-Attention module. We have

proved that the proposed tracking framework leads to competi-

tive performance improvement through extensive experiments.
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