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Abstract—Pan-tilt-zoom (PTZ) cameras are pervasive in Mod-
ern Society. However, research on the mixed reality system of
PTZ Cameras is scarce due to the flexibility of PTZ cameras
relying on visual information without sensors feedback and the
complexity of the real world, such as lighting changes, occlusion,
and lack of texture. To solve this problem, we propose a motion
estimation model for PTZ cameras obtained from real PTZ
camera motion observation. We show how the motion estimation
model real-time estimates the pose of the camera in moving.
Next, we propose a state-of-art PTZ calibration algorithm based
on key-rays collection. We first extract SIFT features from the
scene of the PTZ camera to build a key-rays collection. Then we
obtain a group of the parameters of the current image against
the collection using the two-point method and find best the
parameters by the idea of RANSAC. In different real scenes,
we evaluate the motion estimation model and calibration method
on different cameras, demonstrating the accuracy of the motion
estimation model and the effectiveness of the calibration.

Index Terms—mixed reality, PTZ camera, camera calibration,
PTZ model, key-rays collection

I. INTRODUCTION

Nowadays, the large-scale mixed reality system play a
critical role in surveillance, security, criminal investigation,
sports analysis and epidemic prevention. Most of previous
researches focused on the calibration of a fixed or handheld
camera [1], [2]. It is difficult for the user to fully comprehend
the movement of dispersed objects in different screens. Tracing
the target from camera to another is challenging because the
spatial relation between different camera views is not easy to
perceive. Besides, the quality of photos and 3D models will
influence the result of the camera calibration. The Pan-Tilt-
Zoom (PTZ) camera is a better choice, which changes its view
to observe a wider perspective and to easy tracking targets
by users. Moreover, PTZ cameras have become increasingly
popular in many scenes, such as hotels, schools, universities,
companies, sport games, etc. Many companies like SPORT-
LOGiQ [3] try to integrate PTZ cameras with 3D scenes to
extract players statistics.

Most previous approaches of PTZ cameras calibration in
mixed reality systems focus on sports analysis [4]. In Sports
analysis systems, the camera of the new image is calibrated
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Fig. 1. Real-time PTZ Camera Calibration in virtual scene. Our Method sets
up a bridge between PTZ cameras in real scene and PTZ cameras in virtual
scene. t1 and to represent the last moment and the current moment. The
PTZ camera in real scene translates the current image to our method, and our
method obtain the pose and send it to the PTZ camera in virtual scene. The
PTZ camera in virtual scene use the pose to instead of the last pose.

by matching keypoints (e.g. SIFT [5]) from the new image
against reference images. On the one hand, many real scenes is
more complex than sport fields, and these calibration methods
cannot achieve good results. More robust PTZ calibration
method for any scene needs to be proposed. On the other
hand, most of the ways mainly solve the camera calibration
of single image, but solving the real-time calibration of the
PTZ camera is intractable. Although camera tracking in mixed
reality systems of mobile handhold cameras [2], [6] can solve
this problem, it depends on gyroscopes, acceleration sensors,
global position system (GPS) or other sensor data, which are
not found on general PTZ cameras.

In this paper, we present a new framework for solving the
PTZ camera calibration in mixed reality systems. Instead of
conventional methods, we propose a motion estimation model
for the PTZ camera. The model calibrates the camera of im-
ages from the PTZ camera in moving. Also, we present a novel
PTZ camera calibration based on key-rays collection, which
use the two-point method [7] and the idea of RANSAC [8].
First, we extract SIFT features from images in the real scene,
and then we store the features with spherical coordinates,
which are treated as rays, into the key-rays collection. Third,
we estimate a group of initial guesses for the camera of the
frame from the video using the two-point method and find the
best estimate by the idea of RANSAC. This method requires
no information from the virtual scene and directly estimates
all parameters of the model without homography decompose.
Fig. 1 illustrates the idea of our method. The camera in the real



world streams video to the PTZ camera real-time calibration
module. The module is responsible for the real-time camera
calibration and translates videos and camera poses to virtual
scenes, such as half-sphere models, 3d models, and point
clouds. In addition to this, our method requires a preliminary
stage for acquisition of the key-rays collection and the camera
motion estimation model. In summary, our paper has three
main contributions:

o An effective motion estimation model for PTZ cameras
is presented. This model establish the functional relation-
ship between time and PTZ camera parameters during
rotation and zooming.

o A new PTZ camera calibration algorithm based on key-
rays collection is developed to calibrate a fixed location
PTZ camera, which use the two-point method and the
idea of RANSAC.

o A mixed reality framework of the PTZ camera is pro-
posed to achieve the projection of moving images from
the PTZ camera to virtual scenes.

II. RELATED WORK
A. PTZ camera calibration

PTZ camera calibration algorithms estimate the parameters
of the camera model by finding correspondences between
points in images (or points from images and points from 3D
models). Most of them focus on sports analysis. Homayounfar
et al. [9] formulate this problem as a branch and bound
inference in a Markov random field, which is fully automatic
and depends only on a single image from the broadcast video;
Liu et al. [10] present a novel homography computational
algorithm which can improve the homography computational
accuracy and reduce the processing time; Chen et al. [11]
use a siamese network to learn compact deep features and
use a novel two-GAN model to detect field marking in real
images. Citraro et al. [12] propose a novel framework that
use a fully-convolutional deep network to combine localization
and robust identification of keypoints in the image. Sha et al.
[13] design an end-to-end deep framework for single moving
camera calibration. Those methods depend on remarkable lines
and intersections in courts, but they would fail when they are
applied to other scenes.

Few works attempt to find such a relationship between
control points and the parameters of the PTZ camera. Wu
et al. [14] present a dynamic calibration algorithm based on
matching the current image against a stored feature collection
created at the time the PTZ camera is mounted. This method
directly obtains the PTZ camera’s intrinsics and extrinsics
by feature point pairs. But this method is suitable for small
angle and focal length offset. Chen et al. [10] propose a two-
point method which requires only two point correspondences
to calibrate the PTZ camera, and they also propose a fast
random forest method to predict pan-tilt angles without image-
to-image feature matching. The random forest need control
point pairs for training, and the more point pairs trained,
the better the result predicted. Chen et al. [15] have further

extended the Two-point method into long sequences in the next
year, and improve offline random forest algorithm to online
random forest algorithm to meet real-time needs; An et al.
[16] propose a novel two-point calibration method (TPCM)
that can estimate the focal length and 3-DoF rotation matrix
with only two control points from one image, which considers
the effect of the radial distortion.

B. Fixed camera and handhold camera calibration in mixed
reality systems

Mixed reality truly reflects the real scene through images
captured from cameras and reduces the workload of 3D scene
modelling and rendering. Sawhney et al. [17] first present a
video flashlight system that illuminates a static 3D graphics
model with live video textures from stationary and moving
cameras. Chen et al. [18] propose a novel visualization frame-
work for surveillance systems, which project the large-scale
display area using the fixed projector and project a fovea area
with the high-resolution image of a selected camera. Zhou et
al. [19] propose a novel virtual-real video fusion system based
on a video Model which uses the single-image modelling
technology. Pece et al. [6] present a Panolnserts system that
uses a combination of marker- and image-based tracking to
position the video inserts within the panorama. Tompkin et al.
[20] create a video-collections+context interface by embedding
videos into a panorama. In this paper, they build a spatio-
temporal index and tools for fast exploration of space and
time of the video collection. Young et al. [21] present a system
that provides immersive telepresence and remote collaboration
on mobile and wearable devices. They build a live spherical
panoramic representation of a user’s environment that can be
viewed in real-time by a remote user who can independently
choose the viewing direction.

III. A MOTION ESTIMATION MODEL FOR PTZ CAMERA

The PTZ camera model used in most researches is usually
the common pinhole camera model with rotation matrixes,
representing the static state of a PTZ camera. This model
could not describe changes of PTZ camera parameters in
moving. Our propose a novel motion estimation model that
is continuous as a function of time. We can accurately obtain
the model with a series of simple initialization steps.

In this section, we first introduce the pinhole camera model
with rotation matrixes, treated as the static PTZ camera model.
Then we describe the motion estimation model we proposed
in detail.

A. Pinhole camera model with rotation matrixes

Most researchers [7], [10] use the pinhole model to describe
a PTZ camera

P=KQsQo S| —C] (1)
PTZ prior

Where C is the camera’s position. The group of Q,QsS
represents rotations from world to camera coordinates. The
S indicates the initial PT'Z camera position and orientation.



Then the camera can reach new orientation by Qs and Q4. K
is the intrinsic matrix. We Assume square pixels and principal
point at the image center (u,v), the focal length f is the only
unknown variable in K.

P can be separated into two parts. The right part S[I| —
C] is time invariant for a fixed PTZ camera. Various PTZ
configurations [22] can estimate this part by images. The left
part K (Q)»Qy is time variant, which needs a motion estimation
model to characterize.

Fig. 2. The average relationships of the pan 0, the tilt ¢, and the focal length f
with time. (A): pan/tilt angle as a function of time; (B): pan/tilt angle velocity
as a function of time; (C) focal length as a function of time; (D) focal length
velocity as a function of time.

B. Motion estimation model of PTZ camera

In order to require the motion estimation model, we conduct
a simplified experiment. We let a PTZ camera be directed to
purely pan (or tilt) for 1s and stop, wait for s, and then
return to original position. And the results of the pan (or
tilt) angle change are shown in fig. 2(A). For the zoom of
a PTZ camera, we control the camera be directed to zoom
purely for 0.5s, 1s, 1.5s, return to the original position after
waiting for the same time. The result of the focal length change
is displayed in fig. 2(C). To get the accurate result of each
frame, A series of images are acquired before and after each
motion. And cameras of these images can be calibrated by the
camera calibration method mentioned in Sec. 5. The average
relationships of the pan 6, the tilt ¢, and the focal length f
with time are illustrated in Fig. 2.

As evident from the graph of the first row, purely rotating
the PTZ camera progress through three phases of acceleration,
linearity and deceleration. In the second row, there is a one-to-
one correspondence between focal length and time in purely
zooming of the camera. Therefore, we devise a novel PTZ
motion estimation model
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Up, Vg, vy are constants of the motion estimation model and
are different for each PTZ camera. ¢; and 5 represent acceler-
ation time and the sum of acceleration time and constant speed
time determined by users. fy and f; describe focal length in
Zoom = 1 and before zooming respectively.

IV. PTZ CALIBARATION ALGORITHM BASED ON
KEY-RAYS COLLECTION

The motion estimation model can real-time calibrate the
moving PTZ camera. However, it’s unreasonable to expect
results of the model to be accurate. We desire a dynamic
correction method that ensures the camera calibration accu-
rately. Our approach is to build a key-rays collection of the
camera’s environment, and calibrate online images using two-
point methods.

A. Building key-rays collection of the scene

[15] proposes the idea using rays as landmarks for tracking
and mapping, and we extend this idea as key-rays collection
of the camera’s scene.

We first build a full PTZ panoramic image, which consists
of four stages. Stage 1 generates background images from
the set of single view images [23]. Stage 2 calculates the
camera parameters to determine the 3D coordinate for each
single view image [23]. Meanwhile, three parameters (6, ¢, f)
of each single view image are estimated. Stage 3 transforms
the background images from all views into the panoramic
image using spherical projection. Stage 4 fuses and blends the
overlapping regions among background images from different
perspectives on panorama [24].

The image location p = (z,y) is projected by a ray r =
(6p, &p), so the label is given by:

r = |6 + arctan xf;u7 ¢ + arctan y (6)
Where (6, ¢, f) represents the pan, the tilt and focal length of
each single view image. (u,v) is the image center.

We extract all the SIFT features from each background
image and transform image coordinates of features to rays.
Then features from different images that highly overlap in
both descriptor and ray position are merged, so that each
feature appears only once in the collection. Finally, we store all



features in a collection as the key-rays collection of the scene.
Figure 3 shows the pipeline of building key-rays collection of
the scene.
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Fig. 3. Pipeline of building the key-rays collection. (A): a set of background
images that are used to stitch the panorama and provide SIFT features; (B):
the panorama image that provide the (0, ¢, f) of background images; (C)
the correspondence between key-points and key-rays. We translate the image
coordinates of features to the sphere coordinates.
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B. PTZ calibration using two-point method

We capture a current image from the real-time video stream
and get the (fy,do) of the current image by the motion
estimation model. And we obtain the key-rays near the (éo, ng)
from the key-rays collection as a sub-collection L. We extract
the set of SIFT features, called as S, acquired from the current
image. And we try to match each feature in the S to the
L, resulting in a set of putative matches M: {(x;,y;)
(0i,0i),i = 1,...,N}. The feature matches are computed
using Brush-Force matching between SIFT descriptors.

We can obtain a extract guess for (6(), ¢(, f') by removing
the outliers with three-parameter RANSAC [8], which com-
putes (6}, ¢(, f') for randomly selected feature pairs with two-
point method and evaluates the fit with

Ti—u ;—v
0 + arctan ——— — 0; + ¢ + arctan vi

fo fo

This can effectively remove the mismatched feature pairs.

—¢;<e (1)

V. EXPERIMENTS

We conducted experiments to evaluate the proposed model
and algorithm. And all cameras used are Hikvision PTZ
cameras. Our approach is implemented with C++ on an Inter
® core ™ 17-975H CPU, NVIDIA GeForce GTX 2070M
graphics card, 16GB memory Windows system.

A. Motion estimation model error

We obtain moving images and motion estimation models of
different cameras using the method mentioned in Sec. 3. And
the ground truth camera parameters are manually calibrated.
We first obtain background images of the camera’s scene and
the parameters using the method in Sec. 4. Then we obtain at
least two correspondences between images and background
images from human annotation, and transform background
images’ position to rays position. Third, we get cameras
parameters using the two-point method as the ground truth.
Table I shows errors between the motion estimation model
and the ground truth of different cameras.

In Table I, we present the mean value standard errors of
motion estimation models from different scenes. The rotational

TABLE I
THE MOTION MODEL ERRORS

PTZ Camera Model Errors
Type Pan(°) Tilt(°) Focal length
DS-2DC42231W-D | 0.00£0.35 | —0.14£0.32 | 0.52+ 167.85
DS-2DE7172-A —0.30+£0.47 | 0.08£0.33 —0.05 £ 67.54
DS-2DC5220IW-A | 0.28 £ 0.35 0.07+£0.22 | 0.5240.162.45

error of pan angle is about 0.6° and the rotate error of tilt angle
is about 0.3°. Considering the view of the camera is generally
50° and the average rotation angle in rotating is 30°, the pan
error and the tilt error are 2% and 1% respectively, which
can be ignored in rotating highly. The focal length error of
model is about 150 and the range of the focal length tested
is [1200, 12000]. The range of error percent is [1%, 10%)] and
the percent decreases with focal length. The average velocity
of focal length is 5000/s, since the focal length error can be
ignore in zooming. Table I demonstrates the accuracy of the
motion estimation model.

[ ®,

it Evror

Fig. 4. Results of several PTZ calibration methods. (A) The error in the pan
angle 6. (B) The error in The Tilt angle ¢. (C) The error in the focal length

B. Results on PTZ calibration based on key-rays collection

We test our approach at the scene indoorl in Table II. We
collect 50 images from different values of pan, tilt and zoom as
the test dataset. The reference images are from the background
dataset in Sec. 4.

Baselines: We compare our approach against several PTZ
camera calibration methods which can directly compute the
parameters of the PTZ camera by feature point pairs: the
dynamic calibration [14], two-point method [7], and the TPCM
method [16]. Because these three methods depend on accurate
feature correspondence, we first remove the obviously wrong
mismatched point pairs with RANSAC.

Fig. 4 shows the errors between those methods and the
ground-truth established by manual checking. The reported
error for each estimated parameter is computed as |parames;—
paramgmund,tmth\. From the results, we see that our PTZ
calibration method outperforms for all the parameters and has



(0, 10, 1287)

uoneaqIpey
jurod-omJ, snmeniq

ND4L

sIngQ

(0, 15, 1287)

(20, 10, 1287)

Fig. 5. Qualitative results of several PTZ calibration methods. (0,10,1287) means that the pan angle of test image is 0 degree, the tilt angle of test image is

10 degree, and the focal length of test image is 1287.

perpendicular errors. The two-point method has a large error,
which is because the random forest depends on images trained.
The more images trained, the better the predict result of the
random forest. We only use the background dataset to train the
random forest, so the predict result has a high error. Because
the TPCM method is implemented via many additions and
multiplications which enlarge the errors, leading to results of
the TPCM have great fluctuations.

We also provide qualitative comparison on these 50 images
with their background images, as shown in Fig. 5. We use
poses estimated by four methods to remove the mismatched
pairs. In pose (0,10,1287), the test image shift is small relative
to the background image and four methods obtain relatively
good performance. In pose (0,15,1287) and (20,10,1287), the
test image shift is larger.From the results, our method always
outperformed the other methods. The two-point method get a
wrong result in pose (0,15,1287), which show that the predict
result from the random forest is wrong. This conclusion is
consistent with the result of quantification above.

Fig. 6. The half-sphere model and the video projection. Red box indicates
the video projection and the circle is the view that users watch the model
from above. The blue part indicates the virtual space.

TABLE II
THE INFORMATION OF REAL SCENES
PTZ Camera Type Scene Scene Size (I X w X h)
DS-2DC4223IW-D Indoorl 8m X 6m X 3m
DS-2DE7172-A Indoor2 12m X 8m X 3m
DS-2DC5220IW-A | Outdoor 50m x 50m x 50m

C. Experimental validation of real scenes

For the experimental validation of the proposed method,
we set up three real scenes with a PTZ camera mounted (see
Table II). The first scene Indoorl is a 8m x 6m x 3m laboratory
with a DS-2DC4223IW-D PTZ camera, which has chairs and
tables. The second scene Indoor2 is a 12m x 8m x 3m meeting
room with a DS-2DE7172-A PTZ camera, which has less
features. The third scene Outdoor is an 50m x 50m x 50m
outdoor scene which has pedestrians and vehicles, mounting
a DS-2DC4223IW-D PTZ camera. In different virtual scene
models which is a half-sphere model built by panorama images
mentioned in Section 4, we test our PTZ calibration method
and the motion estimation model at different zoom values. The
half-sphere model is shown in Fig. 6. All results are shown in
Fig. 7.

In Fig. 7, we present the result of the proposed method in
three real scenes. We observe that our approach still remains
well on less texture region from the first row. In Outdoor, more
features mean more distractors. However, our method obtains
a good outcome which demonstrates the applicability of our
method both indoors and outdoors. In the third row, we try to
prove the robustness for movable objects such as chairs and
tables.

VI. CONCLUSION

We proposed a motion estimation model for PTZ camera
and PTZ calibration method based on key-rays collection.
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Fig. 7. The result of the proposed PTZ calibration method in real scenes. Red box indicates the real-time video stream from the PTZ camera in real scene.

The part outside the red box is from the part view of the half-sphere model.

Firstly, we observed the moving result of the PTZ camera
and designed a novel motion estimation model. Furthermore,
we presented a robust PTZ calibration based on key-rays col-
lection, using the two-point method. Experiments in different
cameras and scenes show that the PTZ calibration method is
effective and accurate. The motion estimation model can real-
time estimate the poses of a PTZ camera in moving.

Howeyver, there are several limitations of this work. We have
not considered the lens distortion which carries some level of
impact when calibrating with accurate 3D models. Also, we
suppose that the principal point coincides with the projection
center and zooming center. However, this may not be the truth
for cameras in zooming. Finally, while we assumed that the
optical center of the PTZ camera is fixed, in practice it will
change when the camera rotate. Those factors need to be taken
into account if we obtain a more accurate result.
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