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Abstract— Existing crowd counting designs usually exploit
multi-branch structures to address the scale diversity problem.
However, branches in these structures work in a competitive
rather than collaborative way. In this paper, we focus on pro-
moting collaboration between branches. Specifically, we propose
an attention-guided collaborative counting module (AGCCM)
comprising an attention-guided module (AGM) and a collabora-
tive counting module (CCM). The CCM promotes collaboration
among branches by recombining each branch’s output into an
independent count and joint counts with other branches. The
AGM capturing the global attention map through a transformer
structure with a pair of foreground-background related loss func-
tions can distinguish the advantages of different branches. The
loss functions do not require additional labels and crowd division.
In addition, we design two kinds of bidirectional transformers
(Bi-Transformers) to decouple the global attention to row atten-
tion and column attention. The proposed Bi-Transformers are
able to reduce the computational complexity and handle images
in any resolution without cropping the image into small patches.
Extensive experiments on several public datasets demonstrate
that the proposed algorithm performs favorably against the state-
of-the-art crowd counting methods.

Index Terms— Crowd counting, attention-guided collaborative
counting model, bi-directional transformer.

I. INTRODUCTION

CROWD counting, a task aiming at computing the total
number of people in the image, has recently become a

focus in computer vision. However, due to the random crowd
distribution and perspective distortion, human heads shown in
the picture have different scales, making it more challenging
to count people in the image.

It is well known that convolutions in different layers or
with various kernel sizes are critical for capturing different
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Fig. 1. The mean absolution error (MAE) of CSRNet [8] with different
convolutions and multi-branch module with and without AGCCM on the SHA
dataset [1]. SHA is divided into three subsets according to density. The density
is the ratio of the people number in the image to the image resolution. DF1,
DF2, and DF4, in turn, represent the dilated convolution with dilation rates
of 1, 2, and 4. “w/o” and “w” means the dilated convolution without or with
the deformable convolution.

scales. Many methods [1], [2], [3], [4], [5], [6], [7] capitalized
on this common-sense have been proposed to deal with the
scale variation problem. Zhang et al. [1] and Sam et al. [2]
have contemporary works that first introduce a multi-branch
structure with different receptive fields (large, medium, and
small) to provide robustness counting for the large variation
in crowd scales. Nevertheless, as demonstrated by [8] and [9],
branches in the multi-branch structure work in a compet-
itive rather than collaborative way, inhibiting each branch
from achieving its best performances. Another line of works
[3], [4], [5], explicitly divide the crowd into parts to narrow
the large gap of head size variation. For example, Xu et al. [3]
partition the crowd into groups in near- and far- view accord-
ing to a depth map estimated by a multi-scale deep neural
network. Then they utilize a detection-based approach to count
people in the near-view group and estimate the density map in
the far-view group. However, experiment results in [5] show
that this kind of crowd division method is sensitive to the
division results. Moreover, they need additional labels, for
example, head size, which are hard to obtain.

This paper dedicates to promoting collaboration among
branches in a multi-branch style network structures. We illus-
trate the MAE of CSRNet with different convolutions on
the SHA dataset partitioned into different crowd densities in
Figure 1. As the gray lines are shown in Figure 1, the model
with different convolutions has advantages in different crowd
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densities. However, the gap between each branch’s MAE on
different crowd densities is not large enough to make the
multi-branch module distinguish expert area for each branch
itself, which may lead to the competitive mechanism, as the
green line shown in Figure 1. As a remedy, in the work
of [10], Liu et al. try to promote collaborative representation of
different information to facilitate multimodal crowd counting.
Different from [10], we reach the collaborative counting from
two aspects. The first one is to allocate an expert area for
each branch, and the second strategy decouples the count of
each branch into independent count and cooperative count with
other branches. The red line in Figure 1 demonstrates that the
multi-branch module combined with the proposed AGCCM
achieves better performance in different crowd densities than
each single branch.

Our main contributions are as follows:
• We creatively propose a collaborative counting mecha-

nism (CCM) by recombining each branch’s count into
independent and joint counts with other branches. The
CCM, with negligible computation, inspirits each branch
to focus on its expert spatial area and share with other
branches the count of its sub-optimal domain.

• We design an attention-guided model (AGM) to assist the
independent and joint count area from a global view in
an implicit way. Two novel bidirectional (row direction
and column direction) transformers (Bi-Transformers) are
proposed to achieve the global view. The Bi-Transformer
can save computation and deal with input of various
resolutions without splitting the image into small patches.
Besides, we design a pair of loss functions related to
foreground and background to implicitly guide the model
to distinguish each branch’s count, which does not neces-
sitate additional annotations.

The proposed approach outperforms contemporary methods
and demonstrates new state-of-the-art performances on several
widely used benchmarks.

II. RELATED WORKS

This section briefly reviews the most related works, includ-
ing multi-branch models and attention mechanism.

A. Multi-Branch Models

Due to the perspective deformation, the scale variation
exists in many computer vision tasks, such as object detection
[11], [12], semantic image segmentation [13], [14], and crowd
counting [8], [15]. The multi-branch model design proves
an effective strategy to solve the scale variation problem.
We regard the multi-branch model as an ensemble learner,
and each branch can be considered an individual learner.
According to the combination object, we divide the multi-
branch models into crowd ensembling models [1], [2], [3],
[4], [5], feature ensembling models [15], [16], [17], [18], [19],
[20], [21], and task ensembling models [9], [22], [23], [24].

The crowd ensembling models work in a ‘divide and con-
quer’ manner [25] to bridge the gap of various crowd density
distribution. Zhang et al. [1] and Sam et al. [2] crop the image

into nine patches without overlap to count them with different
branches independently. References [3], [4], [5] divide the
crowd into parts according to depth or head size. Then the
divided crowd can be counted by branches which are excel
on. However, these methods heavily rely on crowd division,
while dividing the crowd based on a rigid number violates the
arbitrariness of crowd distribution.

Feature ensembling models refer to fusing features between
branches [15], [16], [17] or layers [18], [19], [20] to enhance
the image representation ability for multi-size objects. Sindagi
and Patel [16] and Liu et al. [15] concatenate the context
information from different branches to extract informative
feature maps. Sindagi and Patel [16] classify the crowd
density into five classes to offer the global and local context
information. Liu et al. [15] obtain contextual-aware features
through spatial pyramid pooling the feature maps, then fuse
them with scale-aware features gained by a local scale encoded
perspective map. In [17], Cao et al. enhance the feature
maps’ representation ability and scale diversity by stacking
a inception-like [26] scale aggregation module and generate
a high-quality density map through transposed convolution
and a local pattern consistency loss. There exist some other
works [18], [19], [20] that integrate features from different
layers. However, those works often require complex networks
to extract multi-scale feature maps of the input.

The task ensembling models utilize the auxiliary rela-
tion between tasks to improve the counting accuracy.
Idress et al. [22] observe that counting, density map estima-
tion, and people localization in a dense crowd image are inher-
ently related, making the loss function for optimizing a deep
CNN decomposable. Sindagi and Patel [23] incorporate a high-
level prior population into density estimation through coarsely
estimating the count. Shen et al. [9] utilize a GAN [27] to
identity the sum-up count from local patches and count of the
whole image. However, multi-task assist approaches usually
need extra annotations, such as head bounding boxes, depth
map and crowd density level.

In addition, all these above multi-branch structures are
limited by the number of branches and lacks collabora-
tion between branches as pointed by Li et al. [8] and
Shen et al. [9]. As a complementary, this paper provide a
collaboration counting method to fully play the strengths of
each branch to achieve better performance.

B. Attention Mechanism

The basic idea of attention mechanism in computer vision
is to make the system focus on the critical area rather than
treat all pixels equally [28], [29], [30], [31]. Self-attention
is a variant of the attention mechanism, which is the key
structure of the transformer [32]. The transformer proposed
by Vaswani et al. [32] for machine translation, is famous for
its significant parallel capabilities and long term dependency.
The self-attention in the transformer can capture the relations
of each pair of words/pixels to form a global attention dis-
tribution. It has since become the state-of-the-art method in
many natural language processing tasks [33], [34], [35], [36].
For example, Fan et al. [35] noticed the multi-branch module’s
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Fig. 2. The illustration of the framework. The framework contains three parts: feature extractor, attention-guided module (AGM), and collaborative counting
module (CCM). The feature extractor is used to learn images feature representation. Then the global attention distributions (I 1

A , I 2
A , I 3

A) are generated by
AGM and are used to divide expert area for each branch. Finally, feature maps multiply with three global attention distributions are respectively fed into
each branch of the multi-branch module in CCM. The CCM recombines three outputs of the multi-branch module and generates the final predicted density
map. The dashed box under CCM flag shows an example of recombination. A1, A12(A13), and A123 represent the independent counting area of one branch,
and collaboration counting area of two branches, and the cooperation area of three branches, respectively. ×3 indicates repeating the block three times. The
number on top of each block is its channel. Conv, DF2, and DDF4 are means conventional convolution, dilated convolution with a dilation factor of 2, and
dilated convolution with a dilation factor of 4 based on deformable convolution, respectively.

good performance in computer vision tasks. They introduced
a multi-branch attentive transformer structure into kinds of
neural language processing tasks and achieved significant
performance improvement.

Computer vision tasks can be considered as a long sequence
for their millions of pixels, bringing in huge computa-
tion and memory complexity of the self-attention module.
References [37], [38], [39], [40] light weight attention to
release the press from computation and memory complexity.
Dosovitskiy et al. [39] overcame the high computation prob-
lem by splitting the image into a sequence of tokens with
a fixed length. While the high computational cost and high
complexity of self-attention are still unignorable when dealing
with high-resolution images. In the work of [40], Liu et al.
designed the Swin-Transformer, which realized linear compu-
tational complexity concerning input image size by utilizing a
shifted window. However, the attention in Swin-Transformer
is locally only related pixels in the same window. Besides,
inspired by resnet [41], He et al. [42] introduced a dense
connected transformer to deal with the vanishing gradient
problem.

Moreover, the transformer has been used in many kinds of
computer vision tasks and achieved significant improvement,
such as image generation [37], image classification [39], [43],
hyperspectral image classification [42], semantic segmenta-
tion [44], etc. Tian et al. [45] and Sajid et al. [46] also uti-
lized transformer structures to capture global attention for
more accurate crowd counting. However, they need to crop
the image into small patches, which may cause apparent
seams. Considering that the difference of reality head size is
negligible, head size in the image is high related to its position.
Therefore, we decompose the self-attention into a row- and
column- attention to catch the global relation distributions.

This kind of decomposition obviously reduces the computation
complexity of the transformer.

III. METHODS

The architecture of the framework is shown in Figure 2.
It includes a feature extractor, an attention-guided module
(AGM), and a collaborative counting module (CCM). The
AGM generates attention maps to allocate an expert area
for each branch from a global view. The CCM recombines
multi-branch module outputs to promote collaboration among
branches.

A. Feature Extractor

The input image is first fed into a feature extractor to obtain
image representation. Considering that VGG16 is widely used
in the network structure of the crowd counting task, we also
adopt the top 13 layers of VGG16 as the image feature
extractor to reduce unnecessary variables when compared with
other methods. Additionally, only the first three pooling layers
are saved to ensure the output is in a relatively high resolution.
Taking H and W as the input image’s height and width, the
feature maps are in a resolution of 1

8 H ×
1
8 W.

B. Attention-Guided Module

As mentioned before, the AGM can provide attention dis-
tributions from a global view. We realize the global view by
introducing a transformer variant – bidirectional transformer
(Bi-Transformer). The AGM includes a Bi-Transformer fol-
lowed by a multi-branch module. Besides, we utilize a pair of
loss functions related to background and foreground to force
the model to implicitly distinguish each branch’s expert area.
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Fig. 3. The framework of the two kinds of Bi-Transformers: (a) Spatial-Transformer and (b) channel-transformer. Spatial-transformer keeps the spatial
structure and converts self-attention into asynchronously channel attention and spatial attention. Channel-transformer reforms the self-attention into two
parallel transformers by sacrificing the individual differences in intra-column and intra-row of the input.

⊕
and

⊙
mean element-wise operation. Max &

Avg represents the concatenated maximum and mean of vectors in the same column or row.

1) Bi-Transformers: Multi-head attention is a core structure
of transformer. Multi-head attention uses multiple queries
Q = [q1, · · · , qN] to compute the selection of multiple inputs
in parallel. Each attention focuses on a different part of the
input. When queries comes from inputs, it is called self-
attention. To an input image/features I ∈ R

H×W×C, the number
of query is N = H×W. C is the channel number of the
input. Three weight matrices are learned to achieve the linear
representation of query vector (Q), the key vector (K), and the
value vector (V) as follows,

Q = I × WQ,

K = I × WK,

V = I × WV. (1)

The WQ, WK, WV ∈ RC×d . Then, the output of the attention
can be calculated as,

Attention(Q, K, V) = Softmax(
QKT
√

d
)V. (2)

Therefore, the complexity and parameters of the attention
module are O(N2

×d) and O(4d2), respectively. The attention
weights are divided by

√
d to stabilize gradients during train-

ing. At present, the mainstream visual task processing images
are mostly megapixels or above. This makes the computation
of the attention mechanism not negligible, which should be
first considered when introducing transformer into visual tasks.
For example, the swin-transformer [40] cropped the input
into small patches. To reduce the computational complexity,
swin-transformer only computes self-attention within local
windows. The windows are composed of a predefined number

of patches. However, self-attention within local windows can
not provide long range dependencies.

Supposing the similarity between vectors calculated through
dot product, then the similarity between adjacent pixels can be
blurred into the similarity between rows and columns. Based
on this kind of similarity, we decompose the self-attention into
the sum of the row- and column- attention and design two
types of bidirectional transformers called Bi-Transformer. The
row- and column- attention can be calculated through matrix
multiply. This kind of variation keeping spatial relation to a
degree is named spatial transformer. On the other hand, we fur-
ther simplify the bidirectional transformer structure. Assuming
that the population distribution of each row (column) follows
a Gaussian distribution, we can represent it by the mean and
maximum value of each row or column. Then the relation
between each row (column) is more related to the channel.
We called this simplified version is channel transformer. The
detail the two transformer variants are displayed in Figure 3.

Spatial-transformer contains a SE block [29] and two
parallel transformers, as displayed in Figure 3(a). We use
the SE block to generate channel-wise feature maps. The
channel-wise feature maps and their transpose are fed into
the two parallel transformers separately to attain row attention
and column attention. Symmetrical transposition operation is
performed after one of the transformers, so that the output
of two parallel transformers can be added. In the channel-
transformer, we concatenate the mean and maximum value of
each row/column to represent each row/column. Then, each
row/column goes through a fully connected layer to linearly
transform into the same dimension as the original input. The
channel-transformer also contains two parallel transformers.
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TABLE I
DETAILS OF TWO KINDS OF TRANSFORMERS IN SPATIAL-TRANSFORMER

AND CHANNEL-TRANSFORMER

TABLE II
COMPARISON OF COMPUTATION COMPLEXITY AND PARAMETERS

OF ATTENTION MODULE IN DIFFERENT TRANSFORMERS

Figure 3(c) shows the two kinds of transformer in the proposed
channel-transformer and spatial-transformer. The transformer
structure of the channel-transformer is the same as the standard
transformer, which is realized by full connection and layer
normalization. In the spatial-transformer, a convolution oper-
ation is used to preserve the spatial continuity of pixels in the
image. The dimensions of attention (Q, K, V) in row-direction
and column-direction in the spatial-transformer is W2 and H2,
respectively, and in the channel-transformer is equal to the
channel number C.

Detailed parameters in format of (kernel size × kernel
size × channel) are shown in Table I in the order from input to
output. Row and column attention in AGM based on spatial-
transformer is achieved by transpose operation and matrix
multiplication. In channel-transformer, the representation of
each vector is only related to the number of channels in the
input feature maps, and operation in spatial-transformer has no
relation to resolution. Thus, our Bi-Transformers can process
images of any resolution without cropping the input into small
pathces.

We present the computation complexity and number of
parameters of the attention mechanism in the three kinds of
transformers in Table II. Let dot product function f (a, b) =

<a, b> to calculate the similarity of a and b. Suppose
a, b ∈ R

d , then the dot product of a and b consists of d
multiplications and d − 1 addition. For conventional trans-
former, it contains H2

×W2 pixel pairs to be calculated. Thus,
the computation complexity of self-attention in conventional
transformer is O((H2

× W2) × d). The attention of spatial
and channel transformer can be respectively calculated accord-
ing to

f (x t
i, j , x t

m,n) = f (X t
i,:, X t

m,:)︸ ︷︷ ︸
Row attention

+ f (X t
:, j , X t

:,n)︸ ︷︷ ︸
Column attention

, (3)

and

f (xi, j , xm,n) = f (X̂ i,:, X̂m,:)︸ ︷︷ ︸
Row attention

+ f (X̂ :, j , X̂ :,n)︸ ︷︷ ︸
Column attention

. (4)

The f (X t
i,:) ∈ R

W and the f (X t
:,m) ∈ R

H represent the
i-th row and the m-th column vector at the t-th dimension,

where t ∈ [1, 2, . . . , d]. Spatial transformer includes H×W
f (xi, j , xm,n) calculations, and computation complexity of
each f (xi, j , xm,n) is O((H + W) × d). In Eq. 4, X̂ i,: ∈ R

d

indicates the embedding of the i-th row information. Channel
transformer computes each pair of rows and each pair of
columns attention. The computation complexity of a conven-
tional transformer is a quartic function of image size. The
spatial transformer and channel transformer reduce complexity
to cubic and quadratic functions of image size, respectively.
Moreover, we note that the number of parameters in the chan-
nel transformer is double that of the standard transformer. This
is because the channel transformer essentially contains two
parallel conventional transformers. The number of arguments
in the spatial-transformer is reduced to a linear function of the
channel number 4k2

× d , where k is the kernel size.
2) Loss Function of AGM: A pair of loss functions about

foreground and background are proposed to supervise the
attention-guided module (AGM) to learn each branch’s inde-
pendent and collaboration areas. The loss consists of two parts,
the first one makes the three attention maps consistent with the
foreground, and the second constrains the intersection region
of the three attention maps to 0.

We first estimate the foreground density map PF and back-
ground density map PB by,

PF = I 1
A + I 2

A + I 3
A, (5)

and

PB = (1 − I 1
A) × (1 − I 2

A) × (1 − I 3
A). (6)

Due to the large difference in the ratio of foreground and
background, we design two image adaptive focal loss [47],

FL(PF, GF) = −α1 × Pγ
F × (1 − GF) × log(1 − PF)

− (1 − α1) × (1 − PF)γ × GF × log PF, (7)

and

FL(PB, GB) = −α2 × Pγ
B × (1 − GB) × log(1 − PB)

− (1 − α2) × (1 − PB)γ × GB × log PB, (8)

where GF and GB represent the ground truth of foreground
density map and background density map, respectively. It is
worth noting that in the actual experimental operation, to avoid
the overflow of the foreground loss function, the exact expres-
sion of PF is the sigmoid activation of the sum of each branch’s
output of the multi-branch module. We fixed γ as 2 and set
the weight α1/α2 of the niche category to 0.75. For example,
when the background area is larger than the foreground area,
we set α2 to 0.25 to decrease the contribution of background
loss; otherwise, α2 is set to 0.75 to increase the background
loss. The sum of the α1 and α2 is one (α1 + α2 = 1) because
the foreground and background are complementary. Finally,
the total loss of the AGM is,

ℓmask = FL(PF, GF) + FL(PB, GB), (9)

where λ is an external parameter.
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C. Collaborative Counting Module

The collaborative counting module contains a multi-branch
module and recombination. The structure of multi-branch
module in both AGM and CCM is absolutely the same.

1) Multi-Branch Module: We compose the multi-branch
model relying on the performance of each solo branch at
different crowd densities. As a result, we select three kinds
of convolution that can perform optimally when working inde-
pendently and achieve complementary performance at different
densities. The selected convolutions for three branches are
conventional convolution (Conv), dilated convolution with a
dilation factor of 2 (DF2), dilated convolution with a dila-
tion factor of 4 based on deformable convolution (DDF4),
respectively. The first and second branches have superior per-
formance at small crowd scale belongs to (1×10−4, 5×10−4)
and (5×10−4, 1×10−3), respectively. The third branch works
best at the dense crowd with a high density ranges from
1 × 10−3 to 5 × 10−3. Kernel size in each convolution is
fixed at 3 × 3 and channels are displayed in Figure 2 above
each block in the multi-branch module. All these convolu-
tions are followed by a ReLU activation function and Batch
Normalization. At last, we use convolution with kernel size
1×1 and channel 1 to generate density maps. The multi-branch
module inside the AGM takes the feature maps with global
attention distribution as input and outputs three attention maps
(I 1

A, I 2
A, I 3

A) after a sigmoid activation. In CCM, the multi-
branch module takes three feature maps with three differ-
ent attention (I 1

A, I 2
A, I 3

A) as input and outputs three density
maps (I 1, I 2, I 3).

2) Recombination: Since the division of each branch’s dom-
inant area is not obvious, we propose a recombination step to
aggregate density information of the three outputs (I 1, I 2, I 3)

from the second multi-branch module. The relationship of the
three density maps can be described by a Wenn diagram in
the blue dotted box in Figure 2. Each branch’s count can
be classified into three forms: independent count, cooperation
count with another branch, and cooperation count with all
these three branches. We treat the counting of all branches
involved in the collaborative area evenly.

O1 = (A1 − A12 − A13 + A123) × I 1︸ ︷︷ ︸
Count Independently

+ (A12 − A123) ×
I 1

2︸ ︷︷ ︸
Count Collaboratively with DF2

+ (A13 − A123) ×
I 1

2︸ ︷︷ ︸
Count Collaboratively with DDF4

+ A123 ×
I 1

3︸ ︷︷ ︸
Count Collaboratively with DF2 and DDF4

(10)

Taking the first branch (Conv) as an example, its count can
be calculated according to Equation 10. We use A1, A12, A13,
A123 to denote counting areas. Such as, A12 = σ(I 1)× σ(I 2)

represents the cooperation area of branch Conv and DF2. The
final prediction can be represented as (O1 + O2 + O3).

IV. EXPERIMENTAL RESULTS & DATASET

In this section, we first give the description of the
implementation details, and then present the comparison
between state-of-the-arts and our model on three datasets,
namely ShanghaiTech [1], ShanghaiTechRGBD [48], and
JHU-Crowd++ [49]. Extensive ablation study is then con-
ducted to clarify the contribution of each component in our
model. The code will be avilable tho the public.

A. Evaluation Metric and Labels

We use Mean Absolute Error (MAE)

MAE =
1
T

T∑
|

∑
PD −

∑
GD|, (11)

and Root Mean Square Error (RMSE)

RMSE =
1
T

T∑
|

∑
PD −

∑
GD|

2, (12)

as the evaluation metrics like in [2], [8],and [50]. We use PD
and GD to represent the predicted and ground truth density
maps, respectively. Symbol T denotes the number of the
examples.

This works refers to three labels, the ground truth of
density maps GD, foreground GF, and background GB. The
GD is a blurring head distribution achieved through a bivariate
gaussian function, as displayed in the following equation.

GD =

∑
i=1

δ(x − xi , y − yi ) × G(σx =5,σy=5) (13)

G(σx =5,σy=5) is a binary Gaussian centered at the annotated
head position (xi , yi ) with a variance of (5, 5). The ground
truth of foreground,

GF : IGD(x, y) =

{
1 if GD(x, y) > 0
0 otherwise,

(14)

and background,

GB : IGD(x, y) =

{
1 if GD(x, y) = 0
0 otherwise,

(15)

are two indication functions on GD.

B. Datasets

1) ShanghaiTech [1]: SHA and SHB are two parts of
the ShanghaiTech dataset. Images in SHA are in arbitrary
resolution, which is randomly crawled from the Internet.
It contains 482 pictures and a total of 241,677 points near
head center annotations. SHB is collected on the busy streets of
Shanghai with a resolution fixed at 1024×768. SHB includes
716 images with 88,488 annotations. Relative to SHB, most
images in SHA have a large number of people.

2) JHU-Crowd++ [49]: It is one of the largest crowd
counting datasets with rich annotations at both image-level and
head-level. JHU-Crowd++ contains 4,372 images in average
resolution of 910 × 1430 and 1,515,005 annotations. It pro-
vides annotations, including heads locations and corresponding
occlusion level, blur level and size level, bounding boxes,
scene labels (such as marathon, mall, railway station, stadium,
etc.), and the weather labels (rain, snow, and fog).
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Fig. 4. Crowd scale statistics on three public datasets. The number next to
the dataset name is its average density, the ratio of average count to average
resolution.

3) RGBD [48]: Images’ resolution of RGBD is fixed at
1080 × 1920. It contains 2,193 images and 144,512 head
annotation. Besides, it provide depth map.

In addition, we show the statistical distribution of crowd
density in each data set in Figure 4. The crowd density ranges
from 0 to 1 and is divided into ten levels as [0, 1 × 10−5),
[1×10−5, 5×10−5), · · · , [0.1, 1). Figure 4 shows the average
density of part A is the largest, and its image distribution under
each density is relatively uniform. RGBD has the smallest
average density. The density involved in JHU-Crowd++ is
the most extensive. Moreover, the crowd density of images in
SHB and JHU-Crowd++ favors being between 5 × 10−4 and
1 × 10−3.

C. Implementation Details

We use a squared L2 norm loss,

ℓdensity =
1
N

∑
(PD − GD)2, (16)

and ℓmask, displayed in Equation 9, to constraint the density
map and the attention map, respectively. The total loss is

ℓ = ℓdensity + λ × ℓmask. (17)

The pre-assigned parameter λ is applied to adjust the propor-
tion of the attention map in the training process. We optimize
the loss by Adam [51] with a learning rate fixed at 0.0001.
The parameters of the feature extractor are initialized with
well-trained top 13 layers of VGG-16 [52] and others are
initialized by Gaussian distribution with a 0.01 standard devi-
ation. We train all the proposed models on all datasets with
fixed batch size 16 and epoch 1000. To abundant the dataset,
we first randomly scale the source image by a factor between
0.5 and 2. If the short side of the zoomed image is less than
512, we re-scale it to 512. Then we randomly flipped the image
horizontally and cropped 512 × 512 patches. In the test stage,
we take the source image as the input.

TABLE III
COMPARISON WITH STATE-OF-THE-ART CROWD COUNTING METHODS

ON SHANGHAITECH DATASET. AGCCMS AND AGCCMC INDICATE
MODELS COMBINED WITH ATTENTION-GUIDED COLLABORATIVE

COUNTING MODULES BASED ON SPATIAL-TRANSFORMER AND
CHANNEL-TRANSFORMER, RESPECTIVELY

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON JHU-CROWD++

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON RGBD

D. Comparisons With State-of-the-Arts

In Table III ∼ V, we compare our results to those of
the method that returns the best results for each one of the
4 public datasets, as currently reported in the literature. They
are those of [65], [65], [68], and [4], respectively. In each
case, we reprint the results as given in these papers and add
those of models based on multi-branch module combined with
recombination and attention-guided module realized according
to spatial-transformer and channel-transformer, respectively,
as described in Section III. On SHA, our methods are slightly
inferior to [65], ranking second and third. On the second
and third dataset, the two models consistently and clearly
outperform all other methods. As shown in Tabel V, mod-
els with AGCCM based on spatial-transformer and channel-
transformer improve 7.4% and 13.2% in terms of the RMSE
metric, respectively.
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Fig. 5. Some examples of AGCCMS and AGCCMC on RGBD and JHU-Crowd++. The top and bottom three samples are from RGBD and JHU-Crowd++,
respectively. From left to right are the input image, the ground truth of density map, the predicted density map of AGCCMS and AGCCMC, in order.

Tables III∼V also show that AGCCM based on spatial-
transformer performs better than based on channel-transformer
except for the RGBD dataset. As displayed in Figure 4, the
RGBD dataset is leaner to sparse density when compared
to the other three datasets. Sparsity may lead to large spa-
tial variations. On the other hand, the channel transformer
neglect the difference intra rows or columns, which may
release this kind of spatial variation. Therefore, the channel
transformer performs better than the spatial transformer on
RGBD. Another abnormal phenomenon is that our methods
slightly performed worse on SHA compared to P2PNet while
achieving better results in SHB. As is known to all, SHA has a
more dense density than SHB, and the contextual information
of the crowd correlated well in a dense area, but the correlation

TABLE VI
RESULTS OF MODEL COMBINED WITH AGM OR CCM

might be poorer for the low-density areas of the crowd. Our
transformer-based framework is adaptive for this situation with
its long-term dependencies. Thus, our model performs better
on the SHB dataset than P2PNet.
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Fig. 6. Some samples’ outputs of the multi-branch model without and with our AGCCM on ShanghaiTech dataset. Each sample shows the output of
multi-branch module without AGCCMS in the first row, and with AGCCM in the second row. From left to right, columns (b)∼(e) exhibits the output of PD,
and outputs of branch Conv, DF2, and DDF4. The top and bottom three samples are from part_A and part_B, respectively.

E. Visualization
Figure 5 shows the predict density maps of the AGCCMS

and AGCCMC on RGBD and JHU-Crowd++. The top and
bottom three samples are from RGBD and JHU-Crowd++,
respectively. The three chosen pictures have small to large
densities from top to down. The comparison among the outputs
and the ground truth demonstrates the reliability of our model.
Moreover, we compare each branch’s output of multi-branch
model with and without AGCCMS in Figure 6. Density maps,

including the final prediction and each branch’s output of
the model with AGCCM, show stronger anti-noise ability in
contradistinction to without. We regard this background noise
filtering as additional welfare of assigning feature maps with
different attention regions for each branch, the same as the
phenomenon in [50] and [5]. Another remarkable phenomenon
is that each branch’s output of the model without AGCCM
count the crowd in obviously different areas, while it is almost
the same in the model with AGCCM but with another counting
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TABLE VII
MAE OF MULTI-BRANCH MODULE COMBINED WITH AGM OR CCM ON IMAGES WITH DIFFERENT CROWD DENSITY

contribution degree in other areas. Taking the first sample as
an example, branch DF2 in the two models is more inclined
to count people far from the camera. The difference is that
branch DF2 of the model combined with the collaboration
mechanism has a more definite collaborative counting with
other branches. Therefore, we believe that our collaboration
mechanism guides each branch to play its advantages in its
expert area and promotes the teamwork of each branch in the
collaboration area.

V. ABLATION STUDY

This paper proposes an attention-guided collaborative count-
ing model to promote the collaborative counting of branches
in a multi-branch structure. It contains an AGM, a CCM, and
a pair of loss functions. We utilize the model composed of
VGG16 and our multi-branch module as the base framework
and verify the performance of each module by adding them
into the framework.

A. Effectiveness of AGM

The proposed AGM has two forms, one is based on spatial
transformer, and the other is based on channel transformer.
To exhibit the role of AGM, we show the results of a multi-
branch model with or without CCM to combined with the
two kinds of transformers in Table VI. It is obvious that the
performance of the multi-branch model is improved when
combined with AGM. For example, the MAE of the multi-
branch module without and with CCM are reduced by 7.37%
and 7.31%, respectively, when combining with AGMS.

B. Effectiveness of CCM

Table VI shows that the CCM can obviously improve
the performance of the multi-branch module. For example,
combining with CCM, the MAE of a multi-branch module
without and with AGMS are reduced by 2.75% and 2.69%,
respectively.

Besides, we show the performance of the multi-branch
model with or without CCM on crowds with different densities
in Table VII. The top three rows show models with only one
branch’s results on different crowd densities, and the following
row exhibits the average of the three one-branch models.
It shows the multi-branch model without any other strategies
on different crowd densities is almost equal to the three

TABLE VIII
RESULTS OF AGCCM WITH DIFFERENT λ

branches’ average. Moreover, combined with only attention-
guided module or collaborative counting module cannot reach
each branch’s best performance simultaneously, but combined
with both can.

C. Robustness of λ

In Equation 17, an external parameter λ is introduced
to balance the loss of attention maps and density maps.
We exhibit MAE of models with spatial-transformer and
channel-transformer under different λ in Table VIII. The two
models are robust to λ range between 0.1 and 1. Besides, the
model related to spatial-transformer and channel-transformer
act best at λ be 0.1 and 1, respectively, and We fixed them to
train other datasets. Noticeably, when the λ is very small, the
performance of both models drops sharply. In order to further
describe the impact of λ, we show the training process of the
model with AGM based on spatial-transformer under different
λ in Figure 7. When λ = 0.001, the counting error on the
test dataset, the training loss of density map, and total training
loss consistently first decrease and then rise abnormally, while
foreground loss fluctuates within a certain range inside about
200 epochs then rises significantly. Obviously, the significantly
rising of the density loss and the counting error is caused
by the surge of foreground error. We believe that this is
because the attention map not only acts as a background
filter (as analyzed in Section V) but also plays vital role in
distinguishing expert areas for each branch.

D. Bi-Transformers vs. Other Transformer Variants

To verify the effectiveness of Bi-Transformers, we pro-
vide an algorithmic comparison with ViT [39] and Swin
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Fig. 7. Train process of AGCCMS with different λ on SHA. The x-axis is the number of iterations. The y-axis on Eval shows MAE and RMSE, respectively.

TABLE IX
RESULTS OF AGCCM BASED ON DIFFERENT TRANSFORMER VARIANTS

Fig. 8. Illustration of FPS on different resolution images of the model based
on different transformer variants.

Transformer [40]. We set the following parameters in ViT
and Swin to ensure a fair comparison. The dimension of
embedding and MLP is 512 and 1024, respectively. The
head number is 1. Besides, we set patch size in ViT as
2 × 2 and window size in Swin as 7 × 7. The ViT and
Swin Transformer block code is respectively based on [39]1

and [40].2 In addition, we learn from [44] converting ViT to a
dense prediction model by reshaping the patch encoding to a
2D feature map and a bilinear upsampling of the feature map to
the original input size. Table IX exhibits the results of AGCCM
based on different transformer variants. When changing the
bi-transformer to ViT or Swin, the MAE increased. We think

1https://github.com/lucidrains/vit-pytorch
2https://github.com/microsoft/Swin-Transformer

Fig. 9. Some failure cases of AGCCMC on part_A and part_B.

that is mainly because the attention in ViT and Swin lacks
distribution within patches and between windows, respectively.
Another phenomenon worth noting is that when increasing the
patch size to 4 × 4, the training process of AGCCM based on
ViT does not converge. It may be caused by the absence of
attention distribution within the patch and a high upsample
rate.

Besides, we compare the frame per second (FPS) of our
framework based on different transformer variants. The results
illustrated in Figure 8 show that the FPS of the channel
transformer and the spatial transformer is higher than ViT and
almost equal to Swin.

E. Failure Cases
Figure 9 displays some examples having higher MAE than

the average on the whole dataset. We show the ground truths
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and the estimated numbers of individuals under each block in
(b) and (c), respectively. It can be found that a block containing
more objects tends to have more counts error. We can see
people in these blocks with high error in the original image
that tends to occupy a small area in the picture, even too tiny
to distinguish by a human. The low quality of the input image
appears as a more straightforward problem than the various
head scales. Still, it turns out to be even more challenging
because of the reconstruction errors [66] when the middle
representation of the ground truth density map is based on
fixed kernel size.

VI. CONCLUSION

This paper proposes a collaborative mechanism including
an attention-guided module (AGM) and collaborative counting
module (CCM). The proposed AGM assists in allocating each
branch’s expert area by assigning weight maps from a global
view. Specially, we design two bidirectional transformers
(i.e., spatial-transformer and channel-transformer) to achieve
global attention distributions, which enable any resolution
input without patch cropping. The CCM encourages each
branch to focus on its expertise area and sharing counts on
its sub-optimal area. In addition, our loss implicitly guides
the model to distinguish the advantageous areas of each
branch without additional label or crowd division. Experiments
show that the proposed collaborative mechanism effectively
promotes collaboration between branches. Moreover, AGCCM
based on the proposed Bi-Transformer has a comparable speed
to based Swin and superior performance.
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