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FSRDD: An Efficient Few-Shot Detector for
Rare City Road Damage Detection

Binyi Su™, Hua Zhang"™, Zhaohui Wu™, and Zhong Zhou

Abstract— Road damage detection (RDD) is indispensable for
safe autonomous driving. Existing RDD models focus on design-
ing feature representations following expert knowledge. However,
collecting and labeling all types of samples is time-consuming
and leads to insufficient training data. To alleviate the adverse
effect of few training samples, a novel few-shot road damage
detector (FSRDD) is proposed in this paper to detect rare road
damages. The proposed FSRDD includes three stages. First,
fully annotated abundant base classes are leveraged to train a
base detector, where ghost attention (GA) and proposal feature
metric (PFM) modules are developed to eliminate the redundant
information and measure the proposal features, respectively.
Second, the recognition branch of the detector is fine-tuned using
a few samples of all classes. Finally, the test set is inferred with
the help of an offline scale-aware prototypical calibration block
(SPCB). Extensive experiments show that our FSRDD achieves
10-shot rare road damage detection with 33.4% and 12.9%
mAP50 on RDD and CNRDD datasets, respectively, significantly
outperforming state-of-the-art methods.

Index Terms— Road damage, deep learning, few-shot detection,
fine-tuning.

I. INTRODUCTION

OOR city road conditions would have a significant nega-
tive impact on traffic safety, driving efficiency, and vehicle
quality. Therefore, road condition estimation has become an
important research direction in the field of intelligent trans-
portation. However, it is a challenging task owing to various
types of disturbance factors, such as different road conditions

and difficulty in collecting data on rare road damages.
Current common methods of road condition estimation
depend primarily on the visual inspection of experienced work-
ers, which is inefficient and time-consuming [1]. Meanwhile,
many researchers [1], [2], [3], [4] have developed vision-based
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Fig. 1. The prototype in previous methods [20], [26], [27], [28] is single-
scale. We propose a scale-aware prototype to calibrate the classification of
few-shot object detection (FSOD). C;, C3, Cy4, and C5 are multi-scale layers
of the feature-extraction network. Py, P>, and P3 represent prototypes.

approaches for road surface inspection using image filters or
hand-crafted features. In detail, Subirats et al. [1] presented a
traditional wavelet-based method to detect pavement cracks.
Medina et al. [2] adopted the Gabor filter and AdaBoost clas-
sifier to detect road crack damage. Moreover, Kapela et al. [3]
applied the histograms of oriented gradients (HOG) as a
feature representation technology to recognize three types of
cracks in asphalt surfaced pavements. Hu et al. [4] developed
a novel local binary pattern method to locate the road cracks
under complex background disturbances. However, conven-
tional road damage detection methods have several limitations:
first, the feature representation of road damage in these meth-
ods mainly relies on manually designed descriptors, which
require expert knowledge and complex parameter adjustment.
Second, each method solves a specific issue in a real scenario
and has poor generalization ability. Third, previous studies [1],
[2], [3], [4] have only considered a limited number of road
damage types.

Deep learning (DL)-based methods have been used in road
damage detection to solve these problems. Maeda et al. [5]
releases a road damage detection (RDD) dataset in VOC
format and employs an improved single shot multi-box detec-
tor (SSD) to inspect eight road damage types. To augment the
training dataset, Maeda et al. [6] applies a generative adver-
sarial network to generate pseudo-road damages. Furthermore,
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Yang et al. [7] proposes a feature pyramid and hierarchical
boosting network for road crack detection. Subsequently,
Tang et al. [8] uses a patch label distillation strategy to auto-
matically detect various pavement distresses. Although exist-
ing DL-based models have achieved impressive performance
in detecting road damages, they require a large number of
annotated samples to train an excellent convolutional neural
network (CNN)-based model. However, there exist multiple
types of road damages only having few samples, such as
crosswalk blur and longitudinal, and lateral crack construction
joint part. These damages rarely appear on the road surface
and are typically quickly repaired. Thus, traditional data-driven
models would fail to detect them with few training samples.

Interestingly, few-shot object detection (FSOD) based on
meta learning [9] or transfer learning [10] has attracted sig-
nificant attentions. FSOD aims to train the model on base
classes with abundant examples and novel classes with a small
amount of training data. For meta-learning [9], the model first
learns meta features from base classes that are generalizable
to detect different object classes. It calculates the centroid of
each support class, known as class prototype, from the support
data, and classifies a query by measuring its similarity to all
prototypes. While for transfer learning [10], a learning model
employs the balanced samples of all classes to fine-tune the
weights of existing detectors trained on abundant samples to
develop a few-shot detector. Compared to meta learning-based
methods, transfer learning-based methods [10], [27] present
the advantages of easy training and a good effect. Therefore,
the transfer learning-based method is employed in this paper
to detect the infrequent road damage.

The most popular and effective solution for transfer
learning-based methods is to introduce an offline prototyp-
ical calibration block (PCB) [28], which does not need to
be trained. The PCB establishes prototypes and calibrates
the class of a query by measuring its similarity with these
prototypes. However, existing prototypes [20], [26], [27], [28]
are single-scale representations of a support class, resulting in
a scarcity of the scale robustness problem in class calibration.
To tackle this issue, a scale-aware prototype is proposed to cal-
ibrate the classification, which represents a support class with
the centroids of different scale layers in a feature-extraction
network, as shown in Fig. 1. A scale-aware prototypical
calibration block (SPCB) is proposed based on the scale-
aware prototype. The SPCB leverages multi-scale hierarchical
calibration to effectively narrow such a gap between the
multi-scale distributions of objects. In addition, the real-world
road damage is hampered by complex background distur-
bances. To address this problem, an attention-based module
is proposed to suppress negative features yielded by the noise
background.

Specifically, our few-shot road damage detector (FSRDD)
adopts a three-stage transfer-learning scheme to detect the rare
categories of the road damage. The road damage detector, such
as Faster RCNN [11], is first trained on data-abundant base
classes, and then fine-tune only the last layers of the detector
with a small balanced training set consisting of both base and
novel classes. Finally, a test set is inferred with the assistance
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of an offline SPCB. To obtain high-quality classification
results, the SPCB aggregates multiple scale-aware calibration
results to rectify the classification score of the predicted box.
Simultaneously, a novel Ghost Attention (GA) module is
introduced into the region proposal network (RPN) of the
Faster RCNN to reveal the information underlying intrinsic
feature maps and eliminate redundant information. Further-
more, a proposal feature metric (PFM) module is designed,
which leverages scaled cosine similarity to measure the pro-
posal features and further boosts the few-shot road damage
detection performance. The main contributions of this paper
are summarized as follows.

1) A few-shot road damage detector (FSRDD) is proposed
to detect rare road damages, which presents the advan-
tage of high efficiency.

2) GA and PFM modules are proposed to eliminate redun-
dant information and construct a discriminative repre-
sentation space, respectively.

3) A SPCB is proposed by aggregating multi-scale hierar-
chical calibration results to revise the classification of
the predicted box.

4) Extensive experiments on RDD dataset and CNRDD
dataset demonstrate that our method significantly out-
performs state-of-the-art methods.

This paper is organized as follows: Section II presents
an overview of the related works. Section III describes the
proposed method. Section IV shows the extensive experiments.
Finally, Section V concludes the paper.

II. RELATED WORK
A. Conventional Object Detection

Conventional DL-based object detectors can be roughly
divided into two categories: one and two-stage detectors. One-
stage object detectors such as YOLO [12] and SSD [13] do
not depend on the proposal and directly predict the class and
bounding box. Gan ef al. [14] proposes a one-stage detec-
tor based on M2det to detect road damage. This method
can extract shallow and deep features hidden in an image,
improving the performance of small road damage detection.
Mao et al. [15] introduces YOLOvV3 with an improved aspect
ratio sensitive loss to boost the performance of road damage
detection. Recently, YOLO-MF [16] modified by an acceler-
ation algorithm and a median flow algorithm is developed to
count the number of road cracks.

The second category is RCNN [11] and its series [17].
These methods first employ a RPN to extract many proposals
of potential objects. These proposals are then further refined
and classified by a subsequent fully connected network, which
outputs the final detection results: category and position.
Malini et al. [18] proposes a modified VGG architecture in
Faster RCNN to detect the pavement damages. Xu et al. [19]
adopts a two-stage Mask R-CNN to inspect road cracks,
achieving an excellent detection performance. However, the
above conventional approaches require a large number of
annotated samples for training, which are expensive to obtain.
Thus, exploring FSOD methods is extremely necessary.
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B. Few-Shot Object Detection

1) Meta-Learning: Meta-learning expects to learn the
task-level meta knowledge, which allows a detector to
rapidly detect novel classes using a few training samples.
Kang er al. [20] designs a novel meta-YOLO detector that
extracts general meta-features and reweights these features
with query embedding. Meta RCNN [21] transforms Faster
RCNN into a meta-learner, which uses a soft-attention mech-
anism to re-weight region of interest (Rol) features and
detect few-shot objects. Based on Meta RCNN, FSIW [22]
aggregates more complex features learned from abundant
base classes, achieving better detection performance in novel
categories. To fully exploit the features of novel objects,
Hu et al. [23] designs a dense relation distillation with
context-aware aggregation (DCNet) to tackle the few-shot
detection problem. Built on meta-YOLO [20], CME [24] first
converts the few-shot detection problem to a few-shot clas-
sification problem, and achieves better novel class detection
performance.

2) Metric-Learning: Metric learning is also commonly
referred to as similarity learning. The purpose of metric
learning is to measure the similarity between two input images
or features. It can be generalized to novel categories with
few training samples. Commonly used metric approaches
include cosine similarity, dot-product similarity, and euclid-
ean distance. Dong ef al. [25] introduces a simple metric
learning-based method for few-shot road damage classifica-
tion. This method employs a novel metric loss to minimize the
distance between the same class and maximize the distance
between different classes. In this paper, a Proposal Feature
Metric module is designed based on the scaled cosine similar-
ity, which achieves impressive performance in measuring the
representation space of proposal features.

3) Transfer-Learning: There are several transfer learning-
based detectors for FSOD. Wang et al. [10] proposes a two-
stage fine-tuning approach (TFA) for novel instance detection.
This method fine-tunes the last layers of the existing detec-
tor while freezing other parameters to enable the detector
to adapt to novel categories. Subsequently, several works
(FSCE [27] and DeFRCN [28]) established on TFA are
proposed. FSCE [27] introduces the supervised contrastive
learning to acquire robust feature representations for novel
objects. DeFRCN [28] proposes an offline single-scale PCB
to calibrate the misclassified box of novel classes. However,
this existing method [28] focuses on single-scale calibration,
which neglects useful information from different scales. Thus,
an SPCB is proposed to rectify the classification results,
which fills the representation gap between the multi-scale
distributions of objects.

C. Ghost Operation and Attention Mechanism

The ghost module [29] is a variant of convolution opera-
tion, which can produce more informative features with less
computational cost. The attention mechanism [30] is used to
imitate the human visual processing mechanism, which can
suppress irrelevant information and focus on objects. In recent
years, attention mechanism has been widely used in damage

detection. Su et al. [32] proposes a complementary attention
block to suppress the noise background in photovoltaic anom-
aly detection [33], [34], [35], [36]. Dong et al. [25] introduces
a channel-spatial attention module to extract robust features
in road damage detection. Inspired by the aforementioned
studies, we design a novel Ghost Attention (GA) module to
eliminate the redundant information in road images.

III. METHOD

In this section, the preliminary knowledge of FSOD is
first briefly introduced. The base detector with two additional
modules: GA and PFM is then described. Finally, our three-
stage fine-tuning approach (FSRDD)are presented.

A. Few-Shot Detection Setting

There are a number of samples for base classes Cj and a few
samples for novel classes C,. We expect to train an efficient
detector based on the unbalanced dataset D = {(x*, y*), x* €
X*, y* € Y*}, where x* denotes the input image and y* =
{(clsi, box;), i =1,. ..,1\7[} denotes the classes cls € Cp U
C, and the ground-truth bounding-box coordinates box of M
object instances in the image x*. However, because of the
few annotated samples for novel class C,, the detection model
cannot be trained efficiently. Therefore, we firstly use abundant
samples of the base classes to train a detector and transfer the
general knowledge learned from the base classes to the novel
categories.

B. Base Detector

As shown in Fig. 2, Faster RCNN with a feature pyramid
network (FPN) [17] is used as the base detector, which can be
divided into four parts: feature extraction (backbone and FPN),
region proposal (RPN), Rol feature extraction (Rol pooling
and Rol feature extractor), and prediction (box regressor
and classifier). Specifically, a pre-trained ResNet101 [37] is
adopted as the backbone to extract deep features of road
images and FPN is applied to aggregate the multi-level fea-
tures of different scales. These multi-level features are then
transmitted to Ghost Attention RPN (GARPN), which employs
two sub-networks to predict the proposals: objectness and
box position. These proposals are aligned to the multi-level
features to obtain the proposal features by Rol pooling. After
being refined by the Rol feature extractor that consists of two
fully connected layers, these proposal features are further mea-
sured by PFM module for the final class and box prediction.

1) Ghost Attention Module: The GA module is composed
of a ghost module [29] and a soft-attention module [30]
with a residual connection. These two modules are connected
in series, and hard-swish and hard-sigmoid activation func-
tions [31] are incorporated to boost the GA module to fit the
data distribution of road images. As shown in Fig. 2, feature
Y’ is supposed as “ghost” of the intrinsic feature X’ with linear
transformation, where the linear transformation represents the
convolution operation without bias item (conv™-b145). The
input X € Rexwxh gre the multi-level features from FPN,
where ¢, w, and h denote the channel number, width, and
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Fig. 2. The first stage: base training of our FSRDD. Base classes with abundant samples are used to train the detector and general knowledge is learned

from the base classes. X, X', Y/, Y, and Z represent the feature maps. G represents the linear operation used to generate the ghost feature map. N and d

denote the number and dimension of proposal features, respectively.

height of feature maps. The intrinsic feature X’ € R2*®*" g
produced through the convolution operation with a small filter

size of 1 x 1. Specifically,
X = hard_swish(BN(convq’f(—lbiaS (X)), (D)

where BN denotes batch normalization. hard_swish is the
activation function, which is defined as:

0, ifx <=3
hard_swish(x) = {x, ifx >3 2)
@, otherwise

To obtain the desired ghost feature Y’ € R3*©wxh 4 Jinear
transformation is applied to process each intrinsic feature
in X"

yi = Gi(x}) = hard_swish(BN(convg’igbiaS (),
i=1,...,k, k=c/2, 3)

where x!

i represents the i-th feature map in the intrinsic
feature X’. G; represents the i-th linear transformation that
is used to produce the i-th ghost feature map y; in Y’. The
ghost feature Y’ concatenates with the identity intrinsic feature

X' to generate the output ¥ € R*®*" of the ghost module:
Y = concat(X',Y"), 4)

where concat represents the concatenation operation. Since
the output feature Y builds on the identity mapping and
linear transformation of the intrinsic feature, the ghost module
aggregates more informative features than the traditional con-
volution operation. These informative features will be further
processed by the following soft-attention module.

Specifically, given an input ¥ € RE*®*" 4 global average
pooling (GAP) is employed to squeeze the input feature into
a channel descriptor U € RE*!x1,

1 w h

DD NG. k. I=1,....c 5)

j=1k=1

U =

w*xh

The global spatial information is effectively aggregated
by the GAP operation. Two convolution operations with a

hard-swish activation function (conv — hard_swish — conv)
are then used to fully exploit the spatial information.

V = convix1(hard_swish(convi«1(U))). 6)

After the hard-sigmoid activation, the activated channel
descriptor V e R*!*! is multiplied with the input ¥. And
then the output Z’ of the soft-attention module is gained:

Z' =Y xhard_sigmoid(V), 7
0, if x<-25
hard_sigmoid(x) = {1, ifx=225 . (8
0.2x + 0.5, otherwise

The final output Z € R**®*" of the GA module is defined
as:

Z=X+7, 9)

As shown in Fig. 2, the GA module is directly embedded
into the RPN for the proposal prediction. Due to the inhibitory
effect of the GA module on the complex background, the novel
GARPN can aggregate more informative features and extract
more refined proposals than the traditional RPN. A detailed
ablation study is conduct in Section IV to demonstrate its
effectiveness.

2) Proposal Feature Metric Module: The flowchart of the
proposed PFM module is presented in Fig. 2. The PFM is
employed to measure similarities between the proposal fea-
tures extracted by Rol feature extractor. This module is based
on the multiplication of the scaled cosine similarity matrix
with the original input feature to obtain a small intra-class
variance and larger inter-class difference of proposal features.
In detail, the proposal feature P € RV*? is multiplied with
its transposition to calculate the similarity matrix between
different proposal features, where N denotes the number of
proposals and d represents the dimension of a proposal feature.
The cosine similarity with a learnable factor J is innova-
tively employed to calculate the proposal-similarity matrix
A € RVXN:

P.- Pl

A(r,s) = 00—p—,
1P (1] Ps ]l

(10)
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Stage I1: Few-shot fine-tuning
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Fig. 3. The second stage: the few-shot fine-tuning stage of our FSRDD.
The feature extraction modules are frozen and only the last layers of the base
detector are fine-tuned with a balanced few-shot dataset from base and novel
classes.
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Fig. 4. The third stage is the inference stage of our FSRDD. The support
set represents the few training shots in stage II, and scale-aware prototypes
(S-prototypes) are the representative vectors for each class. The query set is
the test data.

where 0 denotes the learnable scale factor and || - || represents
the L2 norm. The r € {1,...,N} and s € {1,...,N}
denotes the index of a proposal-feature vector, and A(r,s)
denotes the similarity between the r-th proposal feature P,
and the s-th proposal feature P;. The matrix operation symbol
- represents the dot product. The similarity matrix A(r,s) is
normalized by the following softmax transformation. It is
performed on each row of the similarity matrix and defined as:

exp(A(r, s))
Zﬁvzl exp(A(r, s)) ’

where f,.; measures the class-aware similarity between the
' proposal and s proposal. The normalized similarity map
is multiplied with the proposal features P, followed by an
element-wise summation with P to obtain the final output
Q0 € RV*4 of the PFM:

fr,s = (11)

Q=f*xP+P. (12)

The metric-proposal feature Q will be applied to predict
the final category and position of road damage. The PFM
focuses on instance-level similarity measurement rather than
image level, which can be generalized to novel classes with
few training instances.

C. Few-Shot Road Damage Detector

Our FSRDD includes three stages: base-training, fine-
tuning, and inference stages.

1) Base Model Training Stage: In the base training stage,
the feature extractor and the box predictor are trained on base

classes Cp with abundant samples. The loss function L used
to optimize the base detector is referred from [17]:

rpn

L=Lyl +Lige + L™ +Lig" (13)
where LZ’;’ and L;gcn are used to divide the foreground

and background of the extracted proposal by RPN. For the
R-CNN branch, L7 represents the cross-entropy loss for the
instance-level classification, and Llr(ff” denotes the smooth-L1
loss for bounding box prediction. Moreover, the parameters of
the proposed GA module are also optimized during the training
process, which does not require an additional loss function for
optimization.

2) Few-Shot Fine-Tuning Stage: In the few-shot fine-tuning
stage, a small balanced training set including base and novel
classes is adopted to fine-tune the pre-trained base model of
the first stage. As shown in Fig. 3, a novel-class weighting
parameter for the prediction network is randomly initialized.
Then, we fine-tune the last layers of the detection model, while
the other parameters are frozen. The loss function is similar
to Eq. 13, and the learning rate is less than the pre-defined
value in the first stage. In addition, following [10], a cosine
classifier is adopted to predict the classes in last layer of the
detector, which is expressed as:

. or - wy
[1Qcll llwall’

where logit. 4 denotes the similarity value between the
c-th proposal feature Q. and the d-th weight vector wy of
the class d. Following [10], the parameter ¢ is set to 20 in all
experiments.

3) Inference Stage With Class Calibration: Based on the
fine-tuned model obtained in the second stage, an offline
SPCB is proposed in the inference stage to calibrate the
class of predicted box. The existing method [28] limits to
a single-scale calibration, resulting in the scarcity of scale
robustness problem for the few-shot detector. Furthermore,
due to insufficient training data, this problem is magnified in
FSOD. To tackle this issue, an SPCB is proposed to rectify
the classification, which can effectively narrow such a gap
between the multi-scale distributions of objects.

As shown in Fig. 4, SPCB encompasses a ImageNet pre-
trained ResnetlOl model and a RolPooling layer. Specifi-
cally, given an M-category E-shot support set S with the
ground-truth boxes {{b,fl,e}i:lzl le, the SPCB first employs
the ImageNet pre-trained Resnetl101 to extract feature maps,
and then applies RolPooling with the ground truths to the
multiple scale-aware layers C», C3, C4, Cs5 to generate
the instance-level representations r,s,ze, r,gfe, r,gf‘e, and r,gfe,
respectively.

After averaging according to the category label m, the

logit. q = (14)

scale-aware prototype {{P,S’}I:Z}nf‘le is obtained, which is a
multi-scale representation for each class:
E

1
Prsl = rr(ri,e’
|Sm| ’
e=1

15)

where C; represents the [-th scale layer and S,, denotes a
subset containing samples with the same label m in S. SPCB

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 02,2022 at 03:03:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 1 Scale-Aware Prototypical Calibration Block

#Step 1l: Build scale-aware prototypes.
1 Input: Support set S, ground-truth (gt) boxes

M
(s "
. Cr \5 M E
2 Extract multi-level Rol features {{{rye};_,},,_;}o—; of

all gt boxes bS.
3 Average Rol features by category label m to obtain

Y M :
scale-aware prototypes {{ Py };—;},,—; using
Equation 15.

4 Output: Scale-aware prototypes {{P,S’ }lszz}n"le.
#Step 2: Execute calibration.

s Input: a query image x;, a Rol y; = (m;, b;,s;) for x;.

6 Extract multi-level Rol features { f; Cz}ls 5

7 Calculate auxiliary calibration score 57
Equation 16.

8 Weighted aggregation between the original softmax score
5; and 57°° to obtain the calibrated score s; using
Equation 17.

9 Output: Calibrated score s;

using

first performs RolPooling on the predicted box b; to generate
the multi-scale Rol feature f; = [ fl.Cz; fic3; fl.C“; fics], when
an object proposal y; (m;, b;,s;) of a query image x;
is input into the offline SPCB, where m; is the predicted
category, b; is the boundary of the predicted box, and §; is
the classification score. The cosine similarity score is then
computed between f; and P, = [PC2 PC3 PC4 PCS] on
different scales. After averaging, the auxiliary cahbratlon score
579 is obtained:

Z e,”” /(L= 1),

where L denotes the number of scale layers. Finally, the
weighted aggregation is performed between the 57%° from
the SPCB and 5; from the few-shot detector to output the
calibrated classification score s;:

(16)

st = 5 + (1= A%, (17)

where 1 represents the balance factor. Our SPCB is summa-
rized in Algorithm 1. The SPCB loads ImageNet pre-training
weights for class-aware inference and does not participate
in training. The difference between SPCB and PCB [28]
is that our SPCB is a multi-scale calibration method that
aggregates the scale-aware features from the multi-scale layers
to calculate the calibration scores. It enhances the robust-
ness of the network to scale variation. Using SPCB for the
category-auxiliary prediction can greatly improve the accuracy
of rare road damage detection.

IV. EXPERIMENTS

In this section, extensive experiments are conducted on the
RDD dataset [5] and our CNRDD dataset. For a fair compar-
ison, we run 10 trials and report the average performance.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

RDD Damage type Annotation Number
Linear crack, longitudinal,
wheel-marked part RO 22
Linear crE}ck, lateral, equal D10 4446
interval
Base classes Alligator crack, partial D20 8381
c pavement, overall pavement
b
Pothole D40 5627
White line blur D44 5057
Utility hole D50 3581
Linear craclf, lqnglmdlnal, Dol 179
construction joint part
Novel classes Linear crack, lateral, DIl 45
(o8 construction joint part
Cross walk blur D43 793

Fig. 5. The data distribution of the RDD dataset. The base classes include
six categories: D00, D10, D20, D40, D44, D50. The novel classes include
three categories: DO1, D11, D43.

Camera

Road image

Car

Fig. 6. The designed vehicle-mounted city road image acquisition system.

China-RDD Damage type Annotation Number
Crack sickness 1 2566
Longitudinal Crack sickness_3 3185
Base classes Lateral Crack sickness 4 2970
Gy Subsidence sickness_5 1396
Rutting sickness_6 4841
Strengthening sickness 11 5294
Novel classes Pothole sickness_8 471
C, Looseness sickness_9 716
Uncertain sickness_-1 114

Fig. 7. The data distribution of the our CNRDD dataset. The base classes
include six categories: sickness_1,3,4,5,6,11. The novel classes include three
categories: sickness_8,9,-1.

A. Experimental Setup

1) Dataset: The RDD dataset [5] contains 14.5k RGB
images with nine categories. The weather is sunny and overcast
during the day. The number of lanes is one or two, and the
road colors are black, gray, or dark gray. As shown in Fig. 5,
the base classes include six categories, and the few-shot novel
classes include three categories. E shots mean E instances
used for training. As presented in Fig 6, our CNRDD dataset!
is constructed using a designed vehicle-mounted city road
image acquisition system, which consists of a car and a
camera. CNRDD includes 4319 RGB images with a resolution
of 1600 x 1200 pixels. The weather is sunny during the day,
and the number of the lanes is two. The road colors are black,

1 https://transport.ckcest.cn/CatsCategory/asphaltRoadDiseases/1
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TABLE I

FEW-SHOT ROAD DAMAGE DETECTION PERFORMANCE FOR
NOVEL/BASE CLASSES ON RDD DATASET

TABLE I

FEW-SHOT ROAD DAMAGE DETECTION PERFORMANCE FOR NOVEL/BASE
CLASSES ON CNRDD DATASET

Novel set (mAP50) Base set (mAP50)

Method (RDD)

1 3 5 10 1 3 5 10
Meta YOLO [20] 3.1 8.6 114 12,6 | 402 422 433 441
CME [24] 42 103 11.8 132 | 415 422 435 441
TFA w/fc [10] 55 154 182 198 | 463 46.6 484 510
TFA wicos [10] 6.6 156 183 19.7 | 445 452 468 489
DeFRCN [28] 10.6 199 239 282 | 450 453 463 500
Our FSRDD 141 246 278 334 | 458 465 485 517

gray, or dark gray. As shown in Fig. 7, the base classes include
six categories, and the few-shot novel classes include three
categories. The above two datasets are divided into train and
test sets in a ratio of 2:1. A validation set is not needed.
Furthermore, 1, 3, 5, and 10 shots are selected from each
novel class for training, and the rest is used for testing.

2) Evaluation Metric: As evaluation metrics, average pre-
cision (AP) and average recall (AR) are chosen to evaluate
the detection performance of different algorithms. A Py, APr,
ARy, and ARy are selected to evaluate the performance
of scale-variation damages, where M and L denote medium
(322 <area< 96%) and large (area> 962) damages. Note that
there are no small damages (Area< 322) for the novel classes
of the RDD dataset. mAP50 is the mean AP50 value of all
classes, where the intersection of union (IoU) between the
groundtruth and the predicted box > 50% is regarded as a
true-positive (TP) box. Please see COCO metric? for better
understanding.

3) Parameter Setting: Following [10], all the models are
trained using a stochastic gradient descent optimizer with a
mini-batch size, momentum, and weight decay of 8, 0.9, and
0.0001, respectively. Learning rate of 0.02 and 0.01 are used
during base training and few-shot fine-tuning, respectively. The
base training stage involves 15,000 steps. Moreover, 1-shot,
3-shot, 5-shot, and 10-shot fine-tuning stages involve 800,
1600, 2000, and 4000 steps, respectively.

B. Quantitative Evaluation

1) Results on RDD: Extensive experiments on the base
and novel classes of the RDD dataset are presented in
Table I. Our FSRDD is compared with Meta YOLO [20],
CME [24], TFA [10], and DeFRCN [28] to explain its supe-
riority in few-shot road damage detection. In detail, FSRDD
outperforms DeFRCN in extremely low shot cases such as
1 shot and 3 shots. It demonstrates that our FSRDD exhibits
high performance when the number of training samples is
extremely small. Among all compared methods, the proposed
FSRDD obtains the best few-shot road damage detection
results (14.1%, 24.6%, 26.4%, and 30.9% for 1 shot, 3 shots,
5 shots, and 10 shots respectively). This highlights the effec-
tiveness of our proposed extra blocks: GA, PFM, and SPCB.
Regarding previous approaches [10], [20], [24], [28], the
proposed FSRDD outperforms them by a large margin, which
proves that the proposed FSRDD is effective to detect the

2https://cocodataset.org/#lfdetections—eval

Base set (mAP50)

Method (CNRDD) | | NOV%] set (mAP50)

5 10 1 3 5 10
Meta YOLO [20] 1.9 27 36 42 1262 269 272 274
CME [24] 22 28 39 45 | 261 270 275 276
TFA wi/fc [10] 29 32 43 5.1 304 338 339 345
TFA w/cos [10] 28 33 43 52 | 302 335 338 344
DeFRCN [28] 52 79 84 9.3 303 329 330 333
Our FSRDD 77 94 113 129 | 308 330 333 346

rare road damages using a few training samples. Furthermore,
as presented in Table I, our FSRDD can maintain the detection
results of the base classes as high as possible, demonstrating
that our method insists on the less forgetting attributes for the
base classes.

2) Results on CNRDD: The results obtained on our
CNRDD dataset are shown in Table II. Due to insufficient
training data (~2.9k), the detector cannot learn excellent
transferred knowledge from the CNRDD dataset in the base
training stage. However, although CNRDD is a challenging
dataset, compared to the best method (DeFRCN), our FSRDD
still achieves 2.5%, 1.5%, 2.9%, and 3.6% improvements on 1,
3, 5, and 10-shot respectively, verifying its effectiveness again.
Comparing to these baselines, the proposed method surpasses
them and thus is of merit, the absolute mAP values indicate
that much room for improvement is still needed for the future
works.

C. Ablation Study and Visual Analysis

Ablation studies are conducted on the RDD dataset to
evaluate the effectiveness of the proposed modules.

1) Impact of Ghost Attention Module: Several ablation
experiments are conduct to evaluate the effectiveness of the
proposed GA module. As illustrated in Table III, FSRDD
with a GA module outperforms the previous baseline (TFA
w/cos) and FSRDD with only an attention (A) or a ghost
(G) module. This demonstrates the effectiveness of the GA
module to improve the detection performance of the base and
novel classes. Fig. 8 depicts the deep features and proposals
generated using PRN and GARPN. Comparing to the previous
RPN, GARPN not only accurately focuses on the novel-class
features (the third column of Fig. 8), but also extracts more
refined proposals of the few-shot categories (the fifth column).
This verifies that GARPN is substantially better at recom-
mending object proposals.

2) Impact of Proposal Feature Metric Module: The PFM
module is employed to measure the proposal features in
the base detector. As presented in Table III, the detection
model performs better than the baseline when a PFM is
incorporated into FSRDD. For 1-shot novel set, FSRDD with
a PFM achieves 7.5% mAPS50 and has a 0.9% higher rate of
accuracy than the baseline. A larger gap of 2.0% is obtained
in 10-shot rare road damage detection. This proves that PFM
promotes our FSRDD with a more discriminative feature
representations. Furthermore, Fig. 9 shows the influence of
scale factor J on the detection performance of novel classes
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GARPN

Visualizations of features and proposals generated by PRN and GARPN. Ground truths of novel and base classes are shown in white and green

dashed lines, respectively. The last two columns show the top 100 proposals of RPN and GARPN.

TABLE III

ABLATION STUDY ON NOVEL/BASE SET OF RDD TO EVALUATE THE
PERFORMANCE OF DIFFERENT MODULES IN THE PROPOSED FSRDD

TABLE IV
THE PERFORMANCE OF FSRDD IN DISTINCT LAYERS

S-shot (novel set) 10-shot(novel set)

Method (RDD)

APy APL ARy ARy | APy AP, ARy ARp
Novel set (mAP50) Base set (mAP50) C5 (PCB [28]) 4.0 123 59 28.5 6.0 15.7 8.2 29.7
G A GA PEM PCB[28] SPCB | 70 0 | 1 s 10 Cs. Cs 47 131 70 294 | 68 165 91 309
- Ca, Ca, Cs 58 147 86 302 | 75 173 102 321
TFA w/cos (Baseline) 6.6 183 197 | 445 468 489
y P O ol I A C5,C3,Cs,Cs | 62 151 94 319 | 84 185 119 334
v 68 186 198 | 449 470 493
v 69 189 200 | 452 472 500
v 75 190 217 | 451 468 492
v 98 221 264 | 457 463 490 .
v/ 129 250 30.1 | 458 464 492 a PCB (Cs) by +2.2, +2.8, +3.5, and +3.4 in terms of A Py,
g_J g M 2 e | H IS Eb APr, ARy, and ARy, respectively. This demonstrates that
our scale-aware calibration approach performs well with scale-
30 variation objects. Fig. 10 explicitly shows the scale-aware
#— 1l-shot . . . . . . . e
A 3shot embedding distribution of 10-shot support images in distinct
254 Learnable 6=18.9 4 sshot : 7 i
A 10shot layers. For the novel class id-6, the embedding space in layer
o] A — A a3 Cs is discrete, but it is compact in layer C3. The multi-scale
E N A N embedding space can compensate for the discrete embedding
EU space of the single-scale caused by the lack of scale infor-
101 mation. This proves that the multi-scale calibration (SPCB)
, = . outperforms the single-scale (PCB).
* More visual analysis is shown in Fig. 11. Missing cases
ol ‘ ‘ ‘ ‘ caused by the single-scale PCB are rescued by our scale-
1 10 20 30 40 . .
Scale factor 6 balance SPCB. Specifically, as shown in the green box of
Fig. 11, the medium damages (D01 and D11) are discarded
Fig. 9. Influence of Scale factor & for novel classes of RDD. by the PCB [28]. However, our SPCB balances the decision

in the RDD dataset. Obviously, PFM with a learnable ¢
outperforms other manual settings for any shot case, which
verifies the significance of the learnable parameter.

3) Impact of Scale-Aware Prototypical Calibration Block:
As illustrated in Table III, SPCB has greatly promoted the
detection performance of rare road damages. Furthermore,
as illustrated in Table IV, aggregating distinct scales (Ca, C3,
C4, Cs) achieves a large improvement than using only the
single-scale C5 (PCB [28]) in the recognition of medium and
large objects, respectively. Specifically, for 5-shot, our FSRDD
with an SPCB (C», C3, C4, and Cs) outperforms FSRDD with

information from different layers and obtains a fairer and better
calibration effect than the single-scale PCB. This verifies the
superiority of our scale-aware calibration approach. Simulta-
neously, as shown in the red boxes of Fig. 11, this judgment
can also be obtained for the large-scale damages.

D. Failure Analysis

Fig. 12 depicts a confusion matrix of the 10-shot RDD
set. The red boxes in Fig. 12 show that the novel classes
DO1, D11, and D43 can easily be mistaken as D00, D10, and
D44, respectively. Referring to the damage type in Fig. 5, the
attributes of DO1, D11, and D43 are similar to D00, D10,
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Fig. 10. T-SNE visualization of scale-aware embedding at distinct layers (Ca, C3, C4, Cs) on the 10-shot support images of RDD dataset. The dim denotes

the dimension of the embedding. ID-6,7,8 are the novel classes.

PCB [31]

m
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n
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Fig. 11. Visualization of the detection results for the 10-shot RDD dataset. DO1, D11, and D43 are novel classes, and we set the score threshold to 0.5.

Green box is the medium object (322 <area< 962), and red box is the large object (area> 962).
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Fig. 12.  Confusion matrices of the 10-shot setting in RDD and CNRDD
datasets. Bg: background.

and D44, respectively, causing the failure cases. However,
the similarity between the attributes is a minor reason for
the detection errors. The main failure is the missed detection
that damages are erroneously identified as background by our
FSRDD, which is a common issue in RDD and CNRDD
datasets. This is due to the insufficient training data for the
new classes, which leads to a serious over-fitting problem.

E. Time Efficiency

The evaluation of the time efficiency is listed in Table V.
The experimental environment is a server with an i7-10700
CPU and an RTX3090 GPU. Our FSRDD has a speed of
60.9 ms/img, which is moderate compared with other methods.
The parameter number of our FSRDD is comparable to that
of the baseline TFA [10], which presents that the proposed
modules such as GA and PFM are lightweight.

TABLE V
EVALUATION OF TIME EFFICIENCY

Time efficiency | Meta YOLO [20] CME [24] TFA [10] DeFRCN [28] ~FSRDD
Speed (ms/img) 70.9 754 59.8 54.5 60.9
Parameter number (M) 64.7 66.8 60.3 52.0 60.4

V. CONCLUSION

In this paper, we have presented a few-shot road damage
detector (FSRDD) to solve the rare road damage detection
problem. First, GA module is designed to fully exploit the
valuable information extracted by the network. Furthermore,
a PFM module is proposed to adaptively measure the proposal
features. During inference, an SPCB is proposed to boost the
performance for rare road damage detection. The effectiveness
of each component is verified through ablation studies. To the
best of our knowledge, this is the first work to introduce a
few-shot detection approach to detect rare road damages, and
achieves impressive performance on the RDD and CNRDD
datasets. Our future work will continue to focus on how to
improve the detection performance of the model based on a
few training samples.
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