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FSRDD: An Efficient Few-Shot Detector for
Rare City Road Damage Detection
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Abstract— Road damage detection (RDD) is indispensable for1

safe autonomous driving. Existing RDD models focus on design-2

ing feature representations following expert knowledge. However,3

collecting and labeling all types of samples is time-consuming4

and leads to insufficient training data. To alleviate the adverse5

effect of few training samples, a novel few-shot road damage6

detector (FSRDD) is proposed in this paper to detect rare road7

damages. The proposed FSRDD includes three stages. First,8

fully annotated abundant base classes are leveraged to train a9

base detector, where ghost attention (GA) and proposal feature10

metric (PFM) modules are developed to eliminate the redundant11

information and measure the proposal features, respectively.12

Second, the recognition branch of the detector is fine-tuned using13

a few samples of all classes. Finally, the test set is inferred with14

the help of an offline scale-aware prototypical calibration block15

(SPCB). Extensive experiments show that our FSRDD achieves16

10-shot rare road damage detection with 33.4% and 12.9%17

mAP50 on RDD and CNRDD datasets, respectively, significantly18

outperforming state-of-the-art methods.19

Index Terms— Road damage, deep learning, few-shot detection,20

fine-tuning.21

I. INTRODUCTION22

POOR city road conditions would have a significant nega-23

tive impact on traffic safety, driving efficiency, and vehicle24

quality. Therefore, road condition estimation has become an25

important research direction in the field of intelligent trans-26

portation. However, it is a challenging task owing to various27

types of disturbance factors, such as different road conditions28

and difficulty in collecting data on rare road damages.29

Current common methods of road condition estimation30

depend primarily on the visual inspection of experienced work-31

ers, which is inefficient and time-consuming [1]. Meanwhile,32

many researchers [1], [2], [3], [4] have developed vision-based33
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Fig. 1. The prototype in previous methods [20], [26], [27], [28] is single-
scale. We propose a scale-aware prototype to calibrate the classification of
few-shot object detection (FSOD). C2, C3, C4, and C5 are multi-scale layers
of the feature-extraction network. P1, P2, and P3 represent prototypes.

approaches for road surface inspection using image filters or 34

hand-crafted features. In detail, Subirats et al. [1] presented a 35

traditional wavelet-based method to detect pavement cracks. 36

Medina et al. [2] adopted the Gabor filter and AdaBoost clas- 37

sifier to detect road crack damage. Moreover, Kapela et al. [3] 38

applied the histograms of oriented gradients (HOG) as a 39

feature representation technology to recognize three types of 40

cracks in asphalt surfaced pavements. Hu et al. [4] developed 41

a novel local binary pattern method to locate the road cracks 42

under complex background disturbances. However, conven- 43

tional road damage detection methods have several limitations: 44

first, the feature representation of road damage in these meth- 45

ods mainly relies on manually designed descriptors, which 46

require expert knowledge and complex parameter adjustment. 47

Second, each method solves a specific issue in a real scenario 48

and has poor generalization ability. Third, previous studies [1], 49

[2], [3], [4] have only considered a limited number of road 50

damage types. 51

Deep learning (DL)-based methods have been used in road 52

damage detection to solve these problems. Maeda et al. [5] 53

releases a road damage detection (RDD) dataset in VOC 54

format and employs an improved single shot multi-box detec- 55

tor (SSD) to inspect eight road damage types. To augment the 56

training dataset, Maeda et al. [6] applies a generative adver- 57

sarial network to generate pseudo-road damages. Furthermore, 58
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Yang et al. [7] proposes a feature pyramid and hierarchical59

boosting network for road crack detection. Subsequently,60

Tang et al. [8] uses a patch label distillation strategy to auto-61

matically detect various pavement distresses. Although exist-62

ing DL-based models have achieved impressive performance63

in detecting road damages, they require a large number of64

annotated samples to train an excellent convolutional neural65

network (CNN)-based model. However, there exist multiple66

types of road damages only having few samples, such as67

crosswalk blur and longitudinal, and lateral crack construction68

joint part. These damages rarely appear on the road surface69

and are typically quickly repaired. Thus, traditional data-driven70

models would fail to detect them with few training samples.71

Interestingly, few-shot object detection (FSOD) based on72

meta learning [9] or transfer learning [10] has attracted sig-73

nificant attentions. FSOD aims to train the model on base74

classes with abundant examples and novel classes with a small75

amount of training data. For meta-learning [9], the model first76

learns meta features from base classes that are generalizable77

to detect different object classes. It calculates the centroid of78

each support class, known as class prototype, from the support79

data, and classifies a query by measuring its similarity to all80

prototypes. While for transfer learning [10], a learning model81

employs the balanced samples of all classes to fine-tune the82

weights of existing detectors trained on abundant samples to83

develop a few-shot detector. Compared to meta learning-based84

methods, transfer learning-based methods [10], [27] present85

the advantages of easy training and a good effect. Therefore,86

the transfer learning-based method is employed in this paper87

to detect the infrequent road damage.88

The most popular and effective solution for transfer89

learning-based methods is to introduce an offline prototyp-90

ical calibration block (PCB) [28], which does not need to91

be trained. The PCB establishes prototypes and calibrates92

the class of a query by measuring its similarity with these93

prototypes. However, existing prototypes [20], [26], [27], [28]94

are single-scale representations of a support class, resulting in95

a scarcity of the scale robustness problem in class calibration.96

To tackle this issue, a scale-aware prototype is proposed to cal-97

ibrate the classification, which represents a support class with98

the centroids of different scale layers in a feature-extraction99

network, as shown in Fig. 1. A scale-aware prototypical100

calibration block (SPCB) is proposed based on the scale-101

aware prototype. The SPCB leverages multi-scale hierarchical102

calibration to effectively narrow such a gap between the103

multi-scale distributions of objects. In addition, the real-world104

road damage is hampered by complex background distur-105

bances. To address this problem, an attention-based module106

is proposed to suppress negative features yielded by the noise107

background.108

Specifically, our few-shot road damage detector (FSRDD)109

adopts a three-stage transfer-learning scheme to detect the rare110

categories of the road damage. The road damage detector, such111

as Faster RCNN [11], is first trained on data-abundant base112

classes, and then fine-tune only the last layers of the detector113

with a small balanced training set consisting of both base and114

novel classes. Finally, a test set is inferred with the assistance115

of an offline SPCB. To obtain high-quality classification 116

results, the SPCB aggregates multiple scale-aware calibration 117

results to rectify the classification score of the predicted box. 118

Simultaneously, a novel Ghost Attention (GA) module is 119

introduced into the region proposal network (RPN) of the 120

Faster RCNN to reveal the information underlying intrinsic 121

feature maps and eliminate redundant information. Further- 122

more, a proposal feature metric (PFM) module is designed, 123

which leverages scaled cosine similarity to measure the pro- 124

posal features and further boosts the few-shot road damage 125

detection performance. The main contributions of this paper 126

are summarized as follows. 127

1) A few-shot road damage detector (FSRDD) is proposed 128

to detect rare road damages, which presents the advan- 129

tage of high efficiency. 130

2) GA and PFM modules are proposed to eliminate redun- 131

dant information and construct a discriminative repre- 132

sentation space, respectively. 133

3) A SPCB is proposed by aggregating multi-scale hierar- 134

chical calibration results to revise the classification of 135

the predicted box. 136

4) Extensive experiments on RDD dataset and CNRDD 137

dataset demonstrate that our method significantly out- 138

performs state-of-the-art methods. 139

This paper is organized as follows: Section II presents 140

an overview of the related works. Section III describes the 141

proposed method. Section IV shows the extensive experiments. 142

Finally, Section V concludes the paper. 143

II. RELATED WORK 144

A. Conventional Object Detection 145

Conventional DL-based object detectors can be roughly 146

divided into two categories: one and two-stage detectors. One- 147

stage object detectors such as YOLO [12] and SSD [13] do 148

not depend on the proposal and directly predict the class and 149

bounding box. Gan et al. [14] proposes a one-stage detec- 150

tor based on M2det to detect road damage. This method 151

can extract shallow and deep features hidden in an image, 152

improving the performance of small road damage detection. 153

Mao et al. [15] introduces YOLOv3 with an improved aspect 154

ratio sensitive loss to boost the performance of road damage 155

detection. Recently, YOLO-MF [16] modified by an acceler- 156

ation algorithm and a median flow algorithm is developed to 157

count the number of road cracks. 158

The second category is RCNN [11] and its series [17]. 159

These methods first employ a RPN to extract many proposals 160

of potential objects. These proposals are then further refined 161

and classified by a subsequent fully connected network, which 162

outputs the final detection results: category and position. 163

Malini et al. [18] proposes a modified VGG architecture in 164

Faster RCNN to detect the pavement damages. Xu et al. [19] 165

adopts a two-stage Mask R-CNN to inspect road cracks, 166

achieving an excellent detection performance. However, the 167

above conventional approaches require a large number of 168

annotated samples for training, which are expensive to obtain. 169

Thus, exploring FSOD methods is extremely necessary. 170
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B. Few-Shot Object Detection171

1) Meta-Learning: Meta-learning expects to learn the172

task-level meta knowledge, which allows a detector to173

rapidly detect novel classes using a few training samples.174

Kang et al. [20] designs a novel meta-YOLO detector that175

extracts general meta-features and reweights these features176

with query embedding. Meta RCNN [21] transforms Faster177

RCNN into a meta-learner, which uses a soft-attention mech-178

anism to re-weight region of interest (RoI) features and179

detect few-shot objects. Based on Meta RCNN, FSIW [22]180

aggregates more complex features learned from abundant181

base classes, achieving better detection performance in novel182

categories. To fully exploit the features of novel objects,183

Hu et al. [23] designs a dense relation distillation with184

context-aware aggregation (DCNet) to tackle the few-shot185

detection problem. Built on meta-YOLO [20], CME [24] first186

converts the few-shot detection problem to a few-shot clas-187

sification problem, and achieves better novel class detection188

performance.189

2) Metric-Learning: Metric learning is also commonly190

referred to as similarity learning. The purpose of metric191

learning is to measure the similarity between two input images192

or features. It can be generalized to novel categories with193

few training samples. Commonly used metric approaches194

include cosine similarity, dot-product similarity, and euclid-195

ean distance. Dong et al. [25] introduces a simple metric196

learning-based method for few-shot road damage classifica-197

tion. This method employs a novel metric loss to minimize the198

distance between the same class and maximize the distance199

between different classes. In this paper, a Proposal Feature200

Metric module is designed based on the scaled cosine similar-201

ity, which achieves impressive performance in measuring the202

representation space of proposal features.203

3) Transfer-Learning: There are several transfer learning-204

based detectors for FSOD. Wang et al. [10] proposes a two-205

stage fine-tuning approach (TFA) for novel instance detection.206

This method fine-tunes the last layers of the existing detec-207

tor while freezing other parameters to enable the detector208

to adapt to novel categories. Subsequently, several works209

(FSCE [27] and DeFRCN [28]) established on TFA are210

proposed. FSCE [27] introduces the supervised contrastive211

learning to acquire robust feature representations for novel212

objects. DeFRCN [28] proposes an offline single-scale PCB213

to calibrate the misclassified box of novel classes. However,214

this existing method [28] focuses on single-scale calibration,215

which neglects useful information from different scales. Thus,216

an SPCB is proposed to rectify the classification results,217

which fills the representation gap between the multi-scale218

distributions of objects.219

C. Ghost Operation and Attention Mechanism220

The ghost module [29] is a variant of convolution opera-221

tion, which can produce more informative features with less222

computational cost. The attention mechanism [30] is used to223

imitate the human visual processing mechanism, which can224

suppress irrelevant information and focus on objects. In recent225

years, attention mechanism has been widely used in damage226

detection. Su et al. [32] proposes a complementary attention 227

block to suppress the noise background in photovoltaic anom- 228

aly detection [33], [34], [35], [36]. Dong et al. [25] introduces 229

a channel-spatial attention module to extract robust features 230

in road damage detection. Inspired by the aforementioned 231

studies, we design a novel Ghost Attention (GA) module to 232

eliminate the redundant information in road images. 233

III. METHOD 234

In this section, the preliminary knowledge of FSOD is 235

first briefly introduced. The base detector with two additional 236

modules: GA and PFM is then described. Finally, our three- 237

stage fine-tuning approach (FSRDD)are presented. 238

A. Few-Shot Detection Setting 239

There are a number of samples for base classes Cb and a few 240

samples for novel classes Cn . We expect to train an efficient 241

detector based on the unbalanced dataset D = {(x∗, y∗), x∗ ∈ 242

X∗, y∗ ∈ Y ∗}, where x∗ denotes the input image and y∗ = 243

{(clsi , boxi), i = 1, . . . , �M} denotes the classes cls ∈ Cb ∪ 244

Cn and the ground-truth bounding-box coordinates box of �M 245

object instances in the image x∗. However, because of the 246

few annotated samples for novel class Cn , the detection model 247

cannot be trained efficiently. Therefore, we firstly use abundant 248

samples of the base classes to train a detector and transfer the 249

general knowledge learned from the base classes to the novel 250

categories. 251

B. Base Detector 252

As shown in Fig. 2, Faster RCNN with a feature pyramid 253

network (FPN) [17] is used as the base detector, which can be 254

divided into four parts: feature extraction (backbone and FPN), 255

region proposal (RPN), RoI feature extraction (RoI pooling 256

and RoI feature extractor), and prediction (box regressor 257

and classifier). Specifically, a pre-trained ResNet101 [37] is 258

adopted as the backbone to extract deep features of road 259

images and FPN is applied to aggregate the multi-level fea- 260

tures of different scales. These multi-level features are then 261

transmitted to Ghost Attention RPN (GARPN), which employs 262

two sub-networks to predict the proposals: objectness and 263

box position. These proposals are aligned to the multi-level 264

features to obtain the proposal features by RoI pooling. After 265

being refined by the RoI feature extractor that consists of two 266

fully connected layers, these proposal features are further mea- 267

sured by PFM module for the final class and box prediction. 268

1) Ghost Attention Module: The GA module is composed 269

of a ghost module [29] and a soft-attention module [30] 270

with a residual connection. These two modules are connected 271

in series, and hard-swish and hard-sigmoid activation func- 272

tions [31] are incorporated to boost the GA module to fit the 273

data distribution of road images. As shown in Fig. 2, feature 274

Y � is supposed as “ghost” of the intrinsic feature X � with linear 275

transformation, where the linear transformation represents the 276

convolution operation without bias item (convno_bias ). The 277

input X ∈ R
c×w×h are the multi-level features from FPN, 278

where c, w, and h denote the channel number, width, and 279
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Fig. 2. The first stage: base training of our FSRDD. Base classes with abundant samples are used to train the detector and general knowledge is learned
from the base classes. X , X �, Y �, Y , and Z represent the feature maps. G represents the linear operation used to generate the ghost feature map. N and d
denote the number and dimension of proposal features, respectively.

height of feature maps. The intrinsic feature X � ∈ R
c
2 ×w×h is280

produced through the convolution operation with a small filter281

size of 1 × 1. Specifically,282

X � = hard_swi sh(B N(convno_bias
1×1 (X))), (1)283

where B N denotes batch normalization. hard_swi sh is the284

activation function, which is defined as:285

hard_swi sh(x) =

⎧⎪⎨
⎪⎩

0, i f x � −3

x, i f x � 3
x(x+3)

6 , otherwi se

(2)286

To obtain the desired ghost feature Y � ∈ R
c
2 ×w×h , a linear287

transformation is applied to process each intrinsic feature288

in X �:289

y �
i = Gi (x �

i ) = hard_swi sh(B N(convno_bias
3×3 (x �

i ))),290

i = 1, . . . , k, k = c/2, (3)291

where x �
i represents the i -th feature map in the intrinsic292

feature X �. Gi represents the i -th linear transformation that293

is used to produce the i -th ghost feature map y �
i in Y �. The294

ghost feature Y � concatenates with the identity intrinsic feature295

X � to generate the output Y ∈ R
c×w×h of the ghost module:296

Y = concat (X �, Y �), (4)297

where concat represents the concatenation operation. Since298

the output feature Y builds on the identity mapping and299

linear transformation of the intrinsic feature, the ghost module300

aggregates more informative features than the traditional con-301

volution operation. These informative features will be further302

processed by the following soft-attention module.303

Specifically, given an input Y ∈ R
c×w×h , a global average304

pooling (GAP) is employed to squeeze the input feature into305

a channel descriptor U ∈ R
c×1×1.306

Ul = 1

w ∗ h

w�
j=1

h�
k=1

Yl ( j, k), l = 1, . . . , c. (5)307

The global spatial information is effectively aggregated308

by the GAP operation. Two convolution operations with a309

hard-swish activation function (conv − hard_swi sh − conv) 310

are then used to fully exploit the spatial information. 311

V = conv1×1(hard_swi sh(conv1×1(U))). (6) 312

After the hard-sigmoid activation, the activated channel 313

descriptor V ∈ R
c×1×1 is multiplied with the input Y . And 314

then the output Z � of the soft-attention module is gained: 315

Z � = Y ∗ hard_sigmoid(V ), (7) 316

hard_sigmoid(x) =

⎧⎪⎨
⎪⎩

0, i f x � −2.5

1, i f x � 2.5

0.2x + 0.5, otherwi se

. (8) 317

The final output Z ∈ R
c×w×h of the GA module is defined 318

as: 319

Z = X + Z �, (9) 320

As shown in Fig. 2, the GA module is directly embedded 321

into the RPN for the proposal prediction. Due to the inhibitory 322

effect of the GA module on the complex background, the novel 323

GARPN can aggregate more informative features and extract 324

more refined proposals than the traditional RPN. A detailed 325

ablation study is conduct in Section IV to demonstrate its 326

effectiveness. 327

2) Proposal Feature Metric Module: The flowchart of the 328

proposed PFM module is presented in Fig. 2. The PFM is 329

employed to measure similarities between the proposal fea- 330

tures extracted by RoI feature extractor. This module is based 331

on the multiplication of the scaled cosine similarity matrix 332

with the original input feature to obtain a small intra-class 333

variance and larger inter-class difference of proposal features. 334

In detail, the proposal feature P ∈ R
N×d is multiplied with 335

its transposition to calculate the similarity matrix between 336

different proposal features, where N denotes the number of 337

proposals and d represents the dimension of a proposal feature. 338

The cosine similarity with a learnable factor δ is innova- 339

tively employed to calculate the proposal-similarity matrix 340

A ∈ R
N×N : 341

A(r, s) = δ
Pr • PT

s

||Pr ||||Ps || , (10) 342
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Fig. 3. The second stage: the few-shot fine-tuning stage of our FSRDD.
The feature extraction modules are frozen and only the last layers of the base
detector are fine-tuned with a balanced few-shot dataset from base and novel
classes.

Fig. 4. The third stage is the inference stage of our FSRDD. The support
set represents the few training shots in stage II, and scale-aware prototypes
(S-prototypes) are the representative vectors for each class. The query set is
the test data.

where δ denotes the learnable scale factor and || · || represents343

the L2 norm. The r ∈ {1, . . . , N} and s ∈ {1, . . . , N}344

denotes the index of a proposal-feature vector, and A(r, s)345

denotes the similarity between the r -th proposal feature Pr346

and the s-th proposal feature Ps . The matrix operation symbol347

• represents the dot product. The similarity matrix A(r, s) is348

normalized by the following so f tmax transformation. It is349

performed on each row of the similarity matrix and defined as:350

fr,s = ex p(A(r, s))�N
r=1 ex p(A(r, s))

, (11)351

where fr,s measures the class-aware similarity between the352

r th proposal and sth proposal. The normalized similarity map353

is multiplied with the proposal features P , followed by an354

element-wise summation with P to obtain the final output355

Q ∈ R
N×d of the PFM:356

Q = f ∗ P + P. (12)357

The metric-proposal feature Q will be applied to predict358

the final category and position of road damage. The PFM359

focuses on instance-level similarity measurement rather than360

image level, which can be generalized to novel classes with361

few training instances.362

C. Few-Shot Road Damage Detector363

Our FSRDD includes three stages: base-training, fine-364

tuning, and inference stages.365

1) Base Model Training Stage: In the base training stage,366

the feature extractor and the box predictor are trained on base367

classes Cb with abundant samples. The loss function L used 368

to optimize the base detector is referred from [17]: 369

L = Lrpn
cls + Lrpn

loc + Lrcnn
cls + Lrcnn

loc , (13) 370

where Lrpn
cls and Lrpn

loc are used to divide the foreground 371

and background of the extracted proposal by RPN. For the 372

R-CNN branch, Lrcnn
cls represents the cross-entropy loss for the 373

instance-level classification, and Lrcnn
loc denotes the smooth-L1 374

loss for bounding box prediction. Moreover, the parameters of 375

the proposed GA module are also optimized during the training 376

process, which does not require an additional loss function for 377

optimization. 378

2) Few-Shot Fine-Tuning Stage: In the few-shot fine-tuning 379

stage, a small balanced training set including base and novel 380

classes is adopted to fine-tune the pre-trained base model of 381

the first stage. As shown in Fig. 3, a novel-class weighting 382

parameter for the prediction network is randomly initialized. 383

Then, we fine-tune the last layers of the detection model, while 384

the other parameters are frozen. The loss function is similar 385

to Eq. 13, and the learning rate is less than the pre-defined 386

value in the first stage. In addition, following [10], a cosine 387

classifier is adopted to predict the classes in last layer of the 388

detector, which is expressed as: 389

logi tc,d = ε
QT

c • wd

||Qc|| ||wd || , (14) 390

where logi tc,d denotes the similarity value between the 391

c-th proposal feature Qc and the d-th weight vector wd of 392

the class d . Following [10], the parameter ε is set to 20 in all 393

experiments. 394

3) Inference Stage With Class Calibration: Based on the 395

fine-tuned model obtained in the second stage, an offline 396

SPCB is proposed in the inference stage to calibrate the 397

class of predicted box. The existing method [28] limits to 398

a single-scale calibration, resulting in the scarcity of scale 399

robustness problem for the few-shot detector. Furthermore, 400

due to insufficient training data, this problem is magnified in 401

FSOD. To tackle this issue, an SPCB is proposed to rectify 402

the classification, which can effectively narrow such a gap 403

between the multi-scale distributions of objects. 404

As shown in Fig. 4, SPCB encompasses a ImageNet pre- 405

trained Resnet101 model and a RoIPooling layer. Specifi- 406

cally, given an M-category E-shot support set S with the 407

ground-truth boxes {{bS
m,e}M

m=1}E
e=1, the SPCB first employs 408

the ImageNet pre-trained Resnet101 to extract feature maps, 409

and then applies RoIPooling with the ground truths to the 410

multiple scale-aware layers C2, C3, C4, C5 to generate 411

the instance-level representations rC2
m,e, rC3

m,e, rC4
m,e, and rC5

m,e, 412

respectively. 413

After averaging according to the category label m, the 414

scale-aware prototype {{PCl
m }5

l=2}M
m=1 is obtained, which is a 415

multi-scale representation for each class: 416

PCl
m = 1

|Sm |
E�

e=1

rCl
m,e, (15) 417

where Cl represents the l-th scale layer and Sm denotes a 418

subset containing samples with the same label m in S. SPCB 419
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Algorithm 1 Scale-Aware Prototypical Calibration Block

#Step 1: Build scale-aware prototypes.
1 Input: Support set S, ground-truth (gt) boxes

{{bS
m,e}M

m=1}E
e=1.

2 Extract multi-level RoI features {{{rCl
m,e}5

l=2}
M

m=1}E
e=1 of

all gt boxes bS.
3 Average RoI features by category label m to obtain

scale-aware prototypes {{PCl
m }5

l=2}M
m=1 using

Equation 15.

4 Output: Scale-aware prototypes {{PCl
m }5

l=2}M
m=1.

#Step 2: Execute calibration.
5 Input: a query image xi , a RoI yi = (mi , bi ,	si ) for xi .
6 Extract multi-level RoI features { f Cl

i }5
l=2.

7 Calculate auxiliary calibration score 	scos
i using

Equation 16.
8 Weighted aggregation between the original softmax score	si and 	scos

i to obtain the calibrated score si using
Equation 17.

9 Output: Calibrated score si

first performs RoIPooling on the predicted box bi to generate420

the multi-scale RoI feature fi = [ f C2
i ; f C3

i ; f C4
i ; f C5

i ], when421

an object proposal yi = (mi , bi ,	si ) of a query image xi422

is input into the offline SPCB, where mi is the predicted423

category, bi is the boundary of the predicted box, and 	si is424

the classification score. The cosine similarity score is then425

computed between fi and Pmi = [PC2
mi ; PC3

mi ; PC4
mi ; PC5

mi ] on426

different scales. After averaging, the auxiliary calibration score427 	scos
i is obtained:428

	scos
i =

L=5�
l=2

f
Cl
i ·PCl

mi

|| f
Cl
i ��P

Cl
mi �/(L − 1), (16)429

where L denotes the number of scale layers. Finally, the430

weighted aggregation is performed between the 	scos
i from431

the SPCB and 	si from the few-shot detector to output the432

calibrated classification score si :433

si = λ	si + (1 − λ)	scos
i , (17)434

where λ represents the balance factor. Our SPCB is summa-435

rized in Algorithm 1. The SPCB loads ImageNet pre-training436

weights for class-aware inference and does not participate437

in training. The difference between SPCB and PCB [28]438

is that our SPCB is a multi-scale calibration method that439

aggregates the scale-aware features from the multi-scale layers440

to calculate the calibration scores. It enhances the robust-441

ness of the network to scale variation. Using SPCB for the442

category-auxiliary prediction can greatly improve the accuracy443

of rare road damage detection.444

IV. EXPERIMENTS445

In this section, extensive experiments are conducted on the446

RDD dataset [5] and our CNRDD dataset. For a fair compar-447

ison, we run 10 trials and report the average performance.448

Fig. 5. The data distribution of the RDD dataset. The base classes include
six categories: D00, D10, D20, D40, D44, D50. The novel classes include
three categories: D01, D11, D43.

Fig. 6. The designed vehicle-mounted city road image acquisition system.

Fig. 7. The data distribution of the our CNRDD dataset. The base classes
include six categories: sickness_1,3,4,5,6,11. The novel classes include three
categories: sickness_8,9,-1.

A. Experimental Setup 449

1) Dataset: The RDD dataset [5] contains 14.5k RGB 450

images with nine categories. The weather is sunny and overcast 451

during the day. The number of lanes is one or two, and the 452

road colors are black, gray, or dark gray. As shown in Fig. 5, 453

the base classes include six categories, and the few-shot novel 454

classes include three categories. E shots mean E instances 455

used for training. As presented in Fig 6, our CNRDD dataset1 456

is constructed using a designed vehicle-mounted city road 457

image acquisition system, which consists of a car and a 458

camera. CNRDD includes 4319 RGB images with a resolution 459

of 1600 × 1200 pixels. The weather is sunny during the day, 460

and the number of the lanes is two. The road colors are black, 461

1https://transport.ckcest.cn/CatsCategory/asphaltRoadDiseases/1
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TABLE I

FEW-SHOT ROAD DAMAGE DETECTION PERFORMANCE FOR
NOVEL/BASE CLASSES ON RDD DATASET

gray, or dark gray. As shown in Fig. 7, the base classes include462

six categories, and the few-shot novel classes include three463

categories. The above two datasets are divided into train and464

test sets in a ratio of 2:1. A validation set is not needed.465

Furthermore, 1, 3, 5, and 10 shots are selected from each466

novel class for training, and the rest is used for testing.467

2) Evaluation Metric: As evaluation metrics, average pre-468

cision (AP) and average recall (AR) are chosen to evaluate469

the detection performance of different algorithms. APM , APL ,470

ARM , and ARL are selected to evaluate the performance471

of scale-variation damages, where M and L denote medium472

(322 <area< 962) and large (area> 962) damages. Note that473

there are no small damages (Area< 322) for the novel classes474

of the RDD dataset. mAP50 is the mean AP50 value of all475

classes, where the intersection of union (IoU) between the476

groundtruth and the predicted box > 50% is regarded as a477

true-positive (TP) box. Please see COCO metric2 for better478

understanding.479

3) Parameter Setting: Following [10], all the models are480

trained using a stochastic gradient descent optimizer with a481

mini-batch size, momentum, and weight decay of 8, 0.9, and482

0.0001, respectively. Learning rate of 0.02 and 0.01 are used483

during base training and few-shot fine-tuning, respectively. The484

base training stage involves 15,000 steps. Moreover, 1-shot,485

3-shot, 5-shot, and 10-shot fine-tuning stages involve 800,486

1600, 2000, and 4000 steps, respectively.487

B. Quantitative Evaluation488

1) Results on RDD: Extensive experiments on the base489

and novel classes of the RDD dataset are presented in490

Table I. Our FSRDD is compared with Meta YOLO [20],491

CME [24], TFA [10], and DeFRCN [28] to explain its supe-492

riority in few-shot road damage detection. In detail, FSRDD493

outperforms DeFRCN in extremely low shot cases such as494

1 shot and 3 shots. It demonstrates that our FSRDD exhibits495

high performance when the number of training samples is496

extremely small. Among all compared methods, the proposed497

FSRDD obtains the best few-shot road damage detection498

results (14.1%, 24.6%, 26.4%, and 30.9% for 1 shot, 3 shots,499

5 shots, and 10 shots respectively). This highlights the effec-500

tiveness of our proposed extra blocks: GA, PFM, and SPCB.501

Regarding previous approaches [10], [20], [24], [28], the502

proposed FSRDD outperforms them by a large margin, which503

proves that the proposed FSRDD is effective to detect the504

2https://cocodataset.org/#detections-eval

TABLE II

FEW-SHOT ROAD DAMAGE DETECTION PERFORMANCE FOR NOVEL/BASE
CLASSES ON CNRDD DATASET

rare road damages using a few training samples. Furthermore, 505

as presented in Table I, our FSRDD can maintain the detection 506

results of the base classes as high as possible, demonstrating 507

that our method insists on the less forgetting attributes for the 508

base classes. 509

2) Results on CNRDD: The results obtained on our 510

CNRDD dataset are shown in Table II. Due to insufficient 511

training data (≈2.9k), the detector cannot learn excellent 512

transferred knowledge from the CNRDD dataset in the base 513

training stage. However, although CNRDD is a challenging 514

dataset, compared to the best method (DeFRCN), our FSRDD 515

still achieves 2.5%, 1.5%, 2.9%, and 3.6% improvements on 1, 516

3, 5, and 10-shot respectively, verifying its effectiveness again. 517

Comparing to these baselines, the proposed method surpasses 518

them and thus is of merit, the absolute mAP values indicate 519

that much room for improvement is still needed for the future 520

works. 521

C. Ablation Study and Visual Analysis 522

Ablation studies are conducted on the RDD dataset to 523

evaluate the effectiveness of the proposed modules. 524

1) Impact of Ghost Attention Module: Several ablation 525

experiments are conduct to evaluate the effectiveness of the 526

proposed GA module. As illustrated in Table III, FSRDD 527

with a GA module outperforms the previous baseline (TFA 528

w/cos) and FSRDD with only an attention (A) or a ghost 529

(G) module. This demonstrates the effectiveness of the GA 530

module to improve the detection performance of the base and 531

novel classes. Fig. 8 depicts the deep features and proposals 532

generated using PRN and GARPN. Comparing to the previous 533

RPN, GARPN not only accurately focuses on the novel-class 534

features (the third column of Fig. 8), but also extracts more 535

refined proposals of the few-shot categories (the fifth column). 536

This verifies that GARPN is substantially better at recom- 537

mending object proposals. 538

2) Impact of Proposal Feature Metric Module: The PFM 539

module is employed to measure the proposal features in 540

the base detector. As presented in Table III, the detection 541

model performs better than the baseline when a PFM is 542

incorporated into FSRDD. For 1-shot novel set, FSRDD with 543

a PFM achieves 7.5% mAP50 and has a 0.9% higher rate of 544

accuracy than the baseline. A larger gap of 2.0% is obtained 545

in 10-shot rare road damage detection. This proves that PFM 546

promotes our FSRDD with a more discriminative feature 547

representations. Furthermore, Fig. 9 shows the influence of 548

scale factor δ on the detection performance of novel classes 549
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Fig. 8. Visualizations of features and proposals generated by PRN and GARPN. Ground truths of novel and base classes are shown in white and green
dashed lines, respectively. The last two columns show the top 100 proposals of RPN and GARPN.

TABLE III

ABLATION STUDY ON NOVEL/BASE SET OF RDD TO EVALUATE THE
PERFORMANCE OF DIFFERENT MODULES IN THE PROPOSED FSRDD

Fig. 9. Influence of Scale factor δ for novel classes of RDD.

in the RDD dataset. Obviously, PFM with a learnable δ550

outperforms other manual settings for any shot case, which551

verifies the significance of the learnable parameter.552

3) Impact of Scale-Aware Prototypical Calibration Block:553

As illustrated in Table III, SPCB has greatly promoted the554

detection performance of rare road damages. Furthermore,555

as illustrated in Table IV, aggregating distinct scales (C2, C3,556

C4, C5) achieves a large improvement than using only the557

single-scale C5 (PCB [28]) in the recognition of medium and558

large objects, respectively. Specifically, for 5-shot, our FSRDD559

with an SPCB (C2, C3, C4, and C5) outperforms FSRDD with560

TABLE IV

THE PERFORMANCE OF FSRDD IN DISTINCT LAYERS

a PCB (C5) by +2.2, +2.8, +3.5, and +3.4 in terms of APM , 561

APL , ARM , and ARL , respectively. This demonstrates that 562

our scale-aware calibration approach performs well with scale- 563

variation objects. Fig. 10 explicitly shows the scale-aware 564

embedding distribution of 10-shot support images in distinct 565

layers. For the novel class id-6, the embedding space in layer 566

C5 is discrete, but it is compact in layer C3. The multi-scale 567

embedding space can compensate for the discrete embedding 568

space of the single-scale caused by the lack of scale infor- 569

mation. This proves that the multi-scale calibration (SPCB) 570

outperforms the single-scale (PCB). 571

More visual analysis is shown in Fig. 11. Missing cases 572

caused by the single-scale PCB are rescued by our scale- 573

balance SPCB. Specifically, as shown in the green box of 574

Fig. 11, the medium damages (D01 and D11) are discarded 575

by the PCB [28]. However, our SPCB balances the decision 576

information from different layers and obtains a fairer and better 577

calibration effect than the single-scale PCB. This verifies the 578

superiority of our scale-aware calibration approach. Simulta- 579

neously, as shown in the red boxes of Fig. 11, this judgment 580

can also be obtained for the large-scale damages. 581

D. Failure Analysis 582

Fig. 12 depicts a confusion matrix of the 10-shot RDD 583

set. The red boxes in Fig. 12 show that the novel classes 584

D01, D11, and D43 can easily be mistaken as D00, D10, and 585

D44, respectively. Referring to the damage type in Fig. 5, the 586

attributes of D01, D11, and D43 are similar to D00, D10, 587
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Fig. 10. T-SNE visualization of scale-aware embedding at distinct layers (C2, C3, C4, C5) on the 10-shot support images of RDD dataset. The dim denotes
the dimension of the embedding. ID-6,7,8 are the novel classes.

Fig. 11. Visualization of the detection results for the 10-shot RDD dataset. D01, D11, and D43 are novel classes, and we set the score threshold to 0.5.
Green box is the medium object (322 <area< 962), and red box is the large object (area> 962).

Fig. 12. Confusion matrices of the 10-shot setting in RDD and CNRDD
datasets. Bg: background.

and D44, respectively, causing the failure cases. However,588

the similarity between the attributes is a minor reason for589

the detection errors. The main failure is the missed detection590

that damages are erroneously identified as background by our591

FSRDD, which is a common issue in RDD and CNRDD592

datasets. This is due to the insufficient training data for the593

new classes, which leads to a serious over-fitting problem.594

E. Time Efficiency595

The evaluation of the time efficiency is listed in Table V.596

The experimental environment is a server with an i7-10700597

CPU and an RTX3090 GPU. Our FSRDD has a speed of598

60.9 ms/img, which is moderate compared with other methods.599

The parameter number of our FSRDD is comparable to that600

of the baseline TFA [10], which presents that the proposed601

modules such as GA and PFM are lightweight.602

TABLE V

EVALUATION OF TIME EFFICIENCY

V. CONCLUSION 603

In this paper, we have presented a few-shot road damage 604

detector (FSRDD) to solve the rare road damage detection 605

problem. First, GA module is designed to fully exploit the 606

valuable information extracted by the network. Furthermore, 607

a PFM module is proposed to adaptively measure the proposal 608

features. During inference, an SPCB is proposed to boost the 609

performance for rare road damage detection. The effectiveness 610

of each component is verified through ablation studies. To the 611

best of our knowledge, this is the first work to introduce a 612

few-shot detection approach to detect rare road damages, and 613

achieves impressive performance on the RDD and CNRDD 614

datasets. Our future work will continue to focus on how to 615

improve the detection performance of the model based on a 616

few training samples. 617
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