l‘)

Check for
updates

Asymmetric Mutual Learning
for Unsupervised Cross-Domain Person
Re-identification

Danyang Huang, Lei Zhang, Qishuai Diao, Wei Wu, and Zhong Zhou(™

State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, Beijing, People’s Republic of China
zz@buaa.edu.cn

Abstract. Unsupervised domain adaptation in person re-identification
is a challenging task. The performance of models trained on a spe-
cific domain generally degrades significantly on other domains due to
the domain gaps. State-of-the-art clustering-based cross-domain meth-
ods inevitably introduce noisy labels. The negative effects of noisy labels
gradually accumulate during iterative training. Besides, optimizing with
conventional triplet loss could make the model stuck in local optima in
the late stage of domain adaptation. To mitigate the effects of noisy
labels, this paper proposes an asymmetric mutual learning framework
which cooperates two models with asymmetric labels. The learned asym-
metric information is helpful for the two models to complement with each
other. Specifically, we propose a merging clusters algorithm to generate
asymmetric labels. We also introduce a similarity weighted loss which
can further adapt the model to target domain. Extensive experiments
demonstrate that our approach outperforms the state-of-the-art meth-
ods on three popular person re-identification datasets.

Keywords: Person re-identification + Asymmetric mutual learning -
Unsupervised - Cross-domain

1 Introduction

Person re-identification (re-id) aims to find the matched person in a candidate
gallery given a query person image. Although existing supervised deep learning
methods of person re-id have made great achievements, most of them require
accurate labels which are time-consuming to annotate. Besides, these models per-
form poorly when the training dataset and the test dataset distribute in dif-
ferent domains. Unsupervised Domain Adaptation (UDA) approaches are pro-
posed to alleviate above issues. UDA aims to transfer the knowledge learned on a
source dataset with accurate identity labels to a target dataset without annotated
labels. State-of-the-art UDA methods [3,15] alternatively generate pseudo labels
on target domain with clustering algorithm and fine-tune the model with pseudo
labels. Nevertheless, noisy labels are introduced into the iterative training since
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clustering algorithm can not classify images accurately. The noise will accumu-
late continuously and then hinder the improvement of the model. To address
above issue, some recent works [4,5] adopt mutual learning framework to miti-
gate the negative effects of noise. Mutual learning framework can make remark-
able improvement in cross-domain person re-id.

Mutual learning generally utilizes two collaborative models to solve a task
together [4,5,14,17]. The two collaborative models usually start from different
initial conditions. Diverse knowledge learned by two models can be combined in
various ways to improve the discriminative capability of the whole network. For
example, [17] utilizes KL divergence based loss to match the probability estimate
of two peer networks. [5] makes the two models select the reliable samples from
each other. Both of them use identical labels for two models, which restricts
the diversity of information learned by the whole network and thus hinders the
models from further adapting to the target domain. To address this issue, we
propose an asymmetric mutual learning framework (AML) which uses asymmet-
ric pseudo labels for two collaborative models. As shown in Fig. 1, one model uses
original labels generated by clustering algorithm, the other uses the new labels
augmented by our proposed algorithm of processing the original labels. When
generating pseudo labels with clustering algorithm, images of the same person
could be divided into different classes, these images will be separated further
during iterative training. In light of this, we generate augmented pseudo labels
by merging clusters based on k-nearest neighbors relationship. The augmented
pseudo labels can make the model learn more generative information compared
to original labels, while the model trained with original labels learns relatively
discriminative information. Both augmented labels and original labels can be
regarded as information complement to each other.
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Fig. 1. The proposed asymmetric mutual learning framework (AML). Liotq: refers to
the normal loss. Lswiotar refers to the similarity weighted loss. The distance matrix
of two branches refers to the distance between features of all training images which is
computed with re-ranking in [21]. The average distance matrix is the average of two
distance matrix from two branches. Clustering algorithm takes the average distance
as the input and generates original clustering results. Our proposed merging clusters
algorithm merges part of the original clusters to get new labels.
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Triplet loss is commonly used in person re-identification. It focuses on the
difference between positive pairs and negative pairs. In the fully-supervised sce-
nario, since the identity labels are accurate, the expansion of the gap between the
distributions of positive pairs and negative pairs can enhance the discrimination
ability of the model. However, the pseudo labels are inaccurate in unsupervised
cross-domain scenario. The large gap between the inaccurate positive pairs and
negative pairs makes the model stuck in local optima and hinders the model
from further improving in the target domain. To address above issue, we utilize
the triplets which become invalid due to the large gap between positive pairs
and negative pairs. In this way, we propose a similarity weighted loss which can
further bring dissimilar positive pairs closer despite the large gap mentioned
above. We argue that similarity weighted loss allows the model to escape local
optima and continue adapting to target domain in late training stage. The main
contributions of our work are summarized as follows:

— We propose an asymmetric mutual learning framework (AML). AML utilizes
asymmetric pseudo labels to optimize models on the target domain, which
makes the whole network capable to learn more diverse information.

— We propose a similarity weighted loss which can further adapt the model to
the target domain in late training stage. It mines dissimilar positive samples
despite the difference between the distributions of positive pairs and negative
pairs.

— To evaluate our method, we conduct experiments on three large-scale
datasets. Experimental results show that our method outperforms state-of-
the-art methods for unsupervised cross-domain person re-identification.

2 Related Work

Unsupervised Domain Adaptation. Existing UDA methods can be gener-
ally classified into three categories. The first category of UDA methods aims
to improve the generalization ability of the model without training on target
domain [6,10]. EANet [6] introduces pose segmentation as auxiliary informa-
tion to enhance the generalization ability of the model. DIMN [10] improves the
generalization ability by mapping an image directly into an identity classifier.
The second category aims to reduce the domain gap between source domain and
target domain with GAN [1,8]. Deng et al. [1] propose a similarity preserving
generative adversarial network to transfer the image styles of source domain
to target domain. Liu et al. [8] propose a framework consisting of an ensemble
GAN and multiple factor GANs to do style transfer at image level and factor
level. In the third category, clustering algorithms are adopted to generate pseudo
labels on the target domain, and then pseudo labels are used to fine-tune the re-
identification models. SSG [3] obtains multiple pseudo labels by clustering global
and local features of persons respectively. Zhai et al. [15] present an augmented
discriminative clustering method to enforce the discrimination ability of models
in the target domain. Zhang et al. [16] propose a two-stage framework which
consists of conservative stage and promoting stage, the conservative stage aims
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to capture the local structure of target-domain data, while the promoting stage
aims to utilize of global information about the data distribution. The results of
the first and second kinds of methods are generally poor compared to the third
category. However, clustering-based algorithms are troubled by noisy labels and
the results are still unsatisfactory compared to supervised approaches.

Supervised Mutual Learning. Mutual learning generally refers to the idea
that two or more models learn from each other and stimulate each other.
DML [17] utilizes a pool of networks to solve the task collaboratively rather
than single network. Co-Teaching [5] makes two models select reliable samples
for each other. Both of them were originally designed for supervised tasks. Dif-
ferent from them, we mainly focus on the unsupervised cross-domain task.

Unsupervised Mutual Learning. MMT [4] introduces mutual learning into
cross-domain person re-identification and proposes an alternative training man-
ner that combines hard pseudo labels and soft refined labels. Zhao et al. [18]
propose a noise resistible mutual learning method which performs collaborative
clustering and mutual instance selection during training. Most of the existing
mutual learning works use symmetric structure, which makes the models learn
similar information. Yang et al. [14] propose an asymmetric co-teaching frame-
work (ACT) to make the models see hard examples.

We mainly focus on unsupervised mutual learning in this paper. Similar
but different from above works, our proposed AML aims to combine generative
information and discriminative information. Our work differs from ACT in the
following two aspects: (1) Our work does mutual learning without complicated
sample selection process, the two models interact in a simpler way. (2) While
ACT mainly focuses on effective usage of unreliable outliers, our work makes two
models learn more diverse information by utilizing reliable inliers effectively.

3 Proposed Method

3.1 Structure of Asymmetric Mutual Learning

Our proposed asymmetric mutual framework (AML) consists of two stages: (1)
Supervised training in the source domain. (2) Unsupervised clustering-based
adaptation to the target domain. In the supervised stage, we train two models
with same architecture on the source dataset. In the unsupervised adaptation
stage, we adapt the trained models to target domain with asymmetric pseudo
labels as shown in Fig. 1. To generate asymmetric labels, we propose a merging
clusters algorithm which will be discussed in Sect. 3.2. We train two models with
normal triplet loss and cross-entropy loss at first, and then utilize similarity
weighted loss in Sect. 3.3 to further adapt two models to target domain.

3.2 Merging Clusters Algorithm

Existing clustering algorithms generally need to set the number of clusters
except those based on density. Density-based clustering algorithms can generate
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Fig. 2. Our proposed merging clusters algorithm. (a) We consider a image x has a
KNC connection to cluster B if the union set of k1 normal nearest neighbors and k2
cross-camera nearest neighbors of x intersects with cluster B. (b) For two clusters A
and B, we compute KNC connection between two classes according to Eq. 2 and merge
then if both condition 3 and condition 4 satisfy.

the number of clusters by themselves. Since the number of clusters is usually
unknown in UDA tasks, we adopt a density-based clustering algorithm [2] to
cluster images. Density-based clustering algorithms generally consider points
from the same continuous high-density region as a cluster. However, in cross-
camera person re-identification scenario, the image distribution of the same per-
son may be sparse due to the difference of pose and camera view. Thus the
images belonging to the same person could be divided into different clusters. In
contrast, k-nearest neighbors are less affected by the density, sparse points can
also have k-nearest neighbors relationship. Accordingly, we propose a method to
merge clusters by calculating k-nearest connection (KNC) between two clusters.

Given a data point x, in cluster C,, we look for two kinds of k-nearest neigh-
bors of it. One kind is normal k-nearest neighbors knn,ormai(Za, k1) obtained
by sorting distance matrix computed with [21]. The other kind is cross-camera
k-nearest neighbors knn.crosscam (Za, k2) which contains the nearest ko neighbors
selected from samples of different cameras from x,. Note that knnerosscam (Za, k2)
is utilized to bridge the gap between images across cameras since the camera ID
is easy to obtain in real scenes and has effective supervised information. As shown
in Fig.2(a), we consider that z, is connected to cluster Cj if the union set of
k1 normal nearest neighbors and ko cross-camera nearest neighbors contains at
least one sample in cluster Cy, i.e.,

1 if |knnumon(aja, kl, kg) n Cb| >0
0 otherwise

KNC,, _>¢, = { : (1)

where knnynion(Za, k1, k2) denotes the union set mentioned above. Hence, as
shown in Fig. 2(b), we define the asymmetric k-nearest connection (KNC) from
cluster C, to cluster C} as:
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KNCe,-sc,= Y KNCi,_sc,, (2)
2a€Ca

which represents the number of samples that have k-nearest connection (KNC)
to cluster C, in cluster C,. Finally, we merge C, and C} if

7KNCC“_>CZ’ > thresh (3)
|Cal
and KNC
SO >Ca thresh, (4)
|Cy|

where thresh is a threshold that controls the proportion of KNC¢, ¢, to the
number of samples in cluster C,,.

Our merging clustering algorithm tends to merge small clusters which usu-
ally do not contain all the images belonging to the same person. Although our
algorithm merges some images belonging to different persons during the merg-
ing process, it should be noted that our purpose is not to improve the clustering
accuracy. The key point is that the merged clusters contain relatively generative
information compared to original clusters. Training with merged clusters can
prevent the model from further separating some images belonging to the same
person. Thus the two models can complement with each other, which is effective
in mutual learning.

¢ 0.2 0.4 . 0.8 1.0
d(a,p,) d(a,p,) d(an)  d(a,n,)

Fig. 3. A illustration of the motivation of similarity weighted loss. d(a, p1) and d(a, p2)
denote the distance between anchor a and its positive samples, while d(a,n1) and
d(a,n2) denote the distance between anchor a and its negative samples. When there is
a large gap between the distributions of the distance of negative pairs and the distance
of positive pairs, the triplet loss can not further narrow the distance between positive
pairs.



130 D. Huang et al.

3.3 Similarity Weighted Loss

Triplet loss and cross-entropy loss are two widely-used losses in person re-
identification. The purpose of triplet loss is to bring positive pairs closer and
push away the negative pairs. Typically, the triplet loss is defined as:

Lsi = [dy — dy + ol (5)

where d, represents the distance between the anchor z® and its positive
samples z¥, d,, represents the distance between the anchor z% and its negative
samples z]', a is the margin between d, and d,, [x]+ means max(z,0). The
triplet loss will expand the gap between d, and d,. When using triplet loss to
fine-tune re-id model, the triplet loss tends to be zero at the end of training
because d,, is much larger than d,. However, it doesn’t mean that d, is nearly
zero. As shown in Fig. 3, when d,, is too large, [d, — d,, + o]+ can still be zero
while d, is a large value as long as d,, < d,, — . When Ly,; is zero, the gradient
of Lyy; is zero, which makes the triplet invalid and the effect of d,, ignored. To
address this issue, we adapt triplet loss to focus more on dissimilar positive pairs,
which we call similarity weighted triplet loss. Our similarity weighted triplet loss
is computed as:

LSWTri = [dp - Spdn + Oé]+, (6)

where « is the margin between d, and s,d,, s, is the average cosine similarity
of the anchor and its positive samples in a mini-batch, i.e., for an anchor x¢, its
sp is computed as:

| XK
sp =7 > cos(f(a®), f(x})), (7)
i=1

where K is the number of positive samples of anchor % in a mini-batch, f(z?)
is the feature of anchor anchor z?, z¥ denotes the ith positive sample of z®.
For dissimilar positive samples, their s, are smaller compared to similar positive
samples. According to Eq. 6, dissimilar positive samples have lower weight of d,,,
which means that Lgw 7. is less likely to be zero while the positive pairs are not
similar. Thus we argue that our adapted triplet loss can avoid the problem that
the distance between the dissimilar positive samples can not be further narrowed
in the late training period. To cooperate with similarity weighted triplet loss, we
also design a similarity weighted cross-entropy loss:

1

mL1D7 (8)

Lswip =

where Lyp is the cross-entropy loss with label smoothing in [9], 8 is a factor con-
trolling the range of similarity weight. Lgw rp gives more weight to those samples
which have low average cosine similarity with positive samples in a mini-batch
compared to L;p. Since Lgwrr; could be larger for those dissimilar positive
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samples, Lgw rp ensures that the proportion of triplet loss and cross-entropy loss
will not change greatly. In summary, the normal total loss function is:

Liotar = Lrri + AL1D, 9)
while the total similarity weighted loss is:

Lswiotat = Lswtri + ALswip, (10)

where X is the balanced weight of cross-entropy loss.

4 Experiments

Market-1501 [19], DukeMTMC-reID [20] and MSMT17 [13] are three large-scale
person re-identification datasets. We evaluate our method on four domain adap-
tation tasks: Duke-to-Market, Market-to-Duke, Market-to-MSMT17, Duke-to-
MSMT17. We take Rank-1 accuracy and mean average precision (mAP) as eval-
uation metrics. As shown in Table 1, experimental results show that our method
outperforms most of existing methods.

4.1 Datasets

Market-1501 [19]. The training set of Market-1501 contains 12936 annotated
images of 751 person identities shot from 6 cameras in total. The testing set
contains 3368 query images of 750 identities and 15913 gallery images of 751
identities.

DukeMTMC-reID [20]. The training set of DukeMTMC-reID contains 12936
annotated images of 751 person identities shot from 6 cameras in total. The
testing set contains 3368 query images of 750 identities and 15913 gallery images
of 751 identities.

MSMT17 [13]. As the largest and most challenging person re-ID dataset,
MSMT17 contains 32621 images of 1041 person identities for training and 93820
images of 3060 identities for testing. In the testing set, 11659 images of 3060
identities are used for query and the gallery contains 82161 images of 3060
identities.

4.2 Implementation Details

Stage 1: Supervised Training in Source Domain. Previous works [3,6] have
proved that focusing on local features can improve the cross-domain capabilities
of the model. In view of this, we adopt PCB [12] to extract global features and
local features of images and a semantic segmentation network to extract the
masks of the upper and lower parts of the body. Hence, we apply the upper-part
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mask and lower-part mask to the global feature to get upper-part feature and
lower-part feature which are used as local features. Then the global feature is
used to calculate the triplet loss and all features are used to calculate the cross-
entropy loss. We take ResNet-50 as backbone of PCB [12] and adopt SCHP [7] as
our semantic segmentation network. SCHP is initialized with the weights trained
on LIP dataset and does not update parameters during training. We adopt the
Adam optimizer to optimize two re-id models separately. The learning rate is
initially set to 3 x 1074, and decreased by 0.1 at the 35th epoch, 55th epoch and
70th epoch respectively. In addition, we use same warmup strategy following
[9]. In the end of this stage, we get two feature extraction models with different
weights.

Stage 2: Unsupervised Clustering-Based Adaptation to Target
Domain. Given two models with different weights, we use them to extract fea-
tures of person images. As mentioned in Sect.3.2, we adopt DBSCAN [2] to
cluster extracted global features, setting density radius eps = 1.6 x 1073 and
minimum size of a cluster to 4. The distance matrix between features is cal-
culated separately using re-ranking in [21] and the average of them is given to
DBSCAN [2]. With pseudo labels Yorigin, generated by DBSCAN [2], we use the
method in Sect. 3.2 to get the new pseudo labels ;¢ With thresh = 0.5, k; = 3
and ko = 15. Then one of the two models is fine-tuned on target domain with
Yorigin and the other with ~,e,. Different from stage 1, the learning rate is ini-
tially set to 3 x 107° and decreased by 0.1 at the 10th epoch, and the warmup
strategy is not used at this stage. Note that our proposed similarity weighted
loss is not utilized until the training with Eq.9 converges, since the proposed
loss is to solve the problem that it is difficult to optimize the models in the
late training period. In practice, we set 5 to 0.7 and A to 0.01 when the model
is transferred between Market1501 [19] and DukeMTMC-reID [20]. When the
model is transferred to MSMT17 [13], we change 5 to 0.9 to get best result.

4.3 Comparison with State-of-the-Art Methods

In this section, we compare our proposed method with state-of-the-art unsuper-
vised cross-domain methods for person re-identification including: (1) EANet [6]
that uses auxiliary information (2) SPGAN [1], ATNet [8] and ECN [22] that use
GANSs (3) SSG [3], UDAP [11], PCB-R-PAST [16], ACT [14], AD-Cluster [15],
MMT [4], NRMT([18] that use pseudo labels. Among above methods, ACT, MMT
and NRMT adopt mutual learning for unsupervised cross-domain person re-
identification, which is highly relevant to our work. Specifically, our proposed
method combines asymmetric mutual learning with similarity weighted loss to
improve performance of cross-domain person re-id.
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Table 1. Comparisons with state-of-the-art unsupervised cross-domain person re-
id methods on Duke-to-Market, Market-to-Duke, Market-to-MSMT17, Duke-to-
MSMT17.

Methods Duke — Market Market — Duke
mAP | Rank-1 mAP | Rank-1
SPGAN [1] 22.8 |51.5 22.3 |41.1
ATNet [8] 25.6 |55.7 24.9 45.1
EANet [6] 35.8 66.1 36.0 | 56.1
ECN [22] 43.0 | 75.1 404 163.3
UDAP [11] 53.7 |75.8 49.0 68.4
SSG* [3] 68.7 | 86.2 60.3 | 76.0
PCB-R-PASTI[16] | 54.6 | 78.4 54.3 | 72.4
ACT [14] 60.6 | 80.5 54.5 |72.4
Co-Teaching [5] |65.1 |82.5 55.7 | 71.9
AD-Cluster [15] |68.3 |86.7 54.1 |72.6
MMT-500 [4] 71.2 | 87.7 63.1 |76.8
NRMT [18] 71.7 |87.8 62.2 | 77.8
Ours 75.5 | 88.7 64.5 78.6
Methods Market — MSMT17 | Duke — MSMT17
mAP | Rank-1 mAP | Rank-1

ECN [22] 8.5 253 10.2 |30.2
SSG*T [3] 16.6 |37.6 18.3 |41.6
MMT-500 [4] 16.6 |37.5 19.9 |41.3
Ours 19.4 | 46.8 22.2 |51.5

As shown in Table1, our method outperforms all compared methods. For
Duke — Market, our method outperforms state-of-the-art NRMT [18] by 3.8%
in mAP and 0.9% in rank-1 accuracy. For Market — Duke, our method outper-
forms NRMT [18] by 2.3% in mAP and 0.8% in rank-1 accuracy. For Market —
MSMT17, our method outperforms MMT-500 [4] by 2.8% in mAP and 9.3% in
rank-1 accuracy. For Duke — MSMT17, our method outperforms MMT-500 [4]
by 2.3% in mAP and 10.2% in rank-1 accuracy.

4.4 Ablation Study

In order to prove the effectiveness of our method, we create a baseline that
optimize two models with original labels and normal loss function. As shown in
Table 2, we perform ablation studies based on this baseline.
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Fig. 4. Visualization of some original clusters generated by DBSCAN and the corre-
sponding merged clusters generated by our proposed algorithm.

Effectiveness of Asymmetric Labels. For better clarity, we visualize some
original clusters and the corresponding merged clusters in Fig.4. As shown in
Fig. 4, small clusters are merged with their adjacent clusters. To show the effec-
tiveness of new augmented labels generated by our proposed merging clusters
algorithm, we train the two models with augmented labels, the result is denoted
as “Baseline+Merged Clusters” in Table 2. As shown in the table, we improve the
performance on Duke-to-Market by 9.7% in mAP and 6.6% in rank-1 accuracy
with augmented labels. When testing on Market-to-Duke, “Baseline+Merged
Clusters” surpass “Baseline” by 4.7% in mAP and 3.0% in rank-1 accuracy. To
investigate the necessity of using asymmetric labels generated by our proposed
merging clusters algorithm, we create mutual learning baseline models that only
use original pseudo labels generated by DBSCAN [2]. As shown in Table 2, with
asymmetric labels, we improve the performance by 11.3% in mAP and 6.8% in
rank-1 accuracy compared to baseline on Duke-to-Market. Similarly, when the
model is transferred from Market-1501 to DukeMTMC-relD, the performance
gain becomes 5.8% in mAP and 3.1% in rank-1 accuracy. Besides, “AML” beats
“Baseline+Merged Clusters” by 1.6% and 1.1% in mAP when testing on Duke-
to-Market and Market-to-Duke respectively, which shows asymmetric labels per-
forms better than symmetric augmented labels.

Effectiveness of Similarity Weighted Loss. To show the performance of
similarity weighted loss, we train the baseline with similarity weighted loss after
the training with normal loss converges, the result is denoted as “Baseline*” in
Table2. When testing on Duke-to-Market, “Baseline®™” surpass “Baseline” by
1.6% in mAP and 0.9% in rank-1 accuracy. When testing on Market-to-Duke,
“Baseline™” surpass “Baseline” by 2.3% in mAP and 1.3% in rank-1 accuracy. To
prove the similarity weighted loss can work on AML, we also train the model with
asymmetric labels by optimizing Eq. 10 after the training with Eq.9 converges.
As shown in Table2, the combination of similarity weighted triplet loss and
similarity weighted cross-entropy loss surpasses the combination of normal triplet
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Table 2. Ablation studies of our proposed methods on Duke-to-Market and Market-
to-Duke. “Direct Transfer” refers to directly applying the model trained on source
domain to the target domain, “Baseline” refers to symmetric mutual learning with
original labels and normal loss function Liotar, “Baseline™” refers to symmetric mutual
learning with similarity weighted loss function Lswtotar, “Baseline+Merged Clusters”
refers to symmetric mutual learning with augmented labels and Liotar, “AML” denotes
our proposed asymmetric mutual learning framework in Sect. 3 optimized with Liotai,
“AML*” stands for proposed AML enhanced by similarity weighted loss Lswtotai-

Methods Duke — Market | Market — Duke
mAP | rank-1 mAP | rank-1
Direct transfer 25.4 |55.6 24.6 429
Baseline 62.5 |81.5 56.8 | 74.1
Baseline* 64.1 | 82.4 59.1 | 754
Baseline+Merged Clusters | 72.2 | 88.1 61.5 |77.1
AML 73.8 | 88.3 62.6 |77.2
AML* 75.5 | 88.7 64.5 | 78.6

loss and cross-entropy loss by 1.7% in mAP and 0.4% in rank-1 accuracy on Duke-
to-Market. The performance testing on Market-to-Duke also boosts by 1.9% in
mAP and 1.4% in rank-1 accuracy.

5 Conclusion

In this paper, we propose a novel asymmetric mutual learning framework for
unsupervised cross-domain person re-identification. Our framework consists of
two models which utilize asymmetric labels. We propose a merging clusters algo-
rithm to generate new pseudo labels which contain different information from
original pseudo labels. Furthermore, a similarity weighted loss is proposed to
mine dissimilar positive samples so that the two models can continue adapt-
ing to target domain in late training stage. Comprehensive experimental results
demonstrate that the performance of our approach outperforms the most of
existing methods on three large-scale datasets. In the future, we will explore
how to integrate camera information into the network more reasonably.
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References

1. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain
adaptation with preserved self-similarity and domain-dissimilarity for person re-
identification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 994-1003 (2018)



136

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Huang et al.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings of the
Knowledge Discovery and Data Mining, pp. 226—231 (1996)

Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity group-
ing: a simple unsupervised cross domain adaptation approach for person re-
identification. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 6112-6121 (2019)

Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsuper-
vised domain adaptation on person re-identification. In: International Conference
on Learning Representations (2020)

Han, B., et al.: Co-teaching: Robust training of deep neural networks with
extremely noisy labels. In: Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 8536-8546 (2018)

. Huang, H., et al.. Eanet: enhancing alignment for cross-domain person re-

identification. arXiv preprint arXiv:1812.11369 (2018)
Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. arXiv preprint
arXiv:1910.09777 (2019)

. Liu, J., Zha, Z.J., Chen, D., Hong, R., Wang, M.: Adaptive transfer network for

cross-domain person re-identification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7202-7211 (2019)

Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for
deep person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 1487-1495 (2019)

Song, J., Yang, Y., Song, Y.Z., Xiang, T., Hospedales, T.M.: Generalizable per-
son re-identification by domain-invariant mapping network. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, June 2019

Song, L., et al.: Unsupervised domain adaptive re-identification: Theory and prac-
tice. Pattern Recognition 102, 107173 (2020)

Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person
retrieval with refined part pooling (and a strong convolutional baseline). In: Pro-
ceedings of the European Conference on Computer Vision, pp. 480-496 (2018)
Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap
for person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern recognition, pp. 79-88 (2018)

Yang, F., et al.: Asymmetric co-teaching for unsupervised cross-domain person re-
identification. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 12597-12604 (2020)

Zhai, Y., et al.: Ad-cluster: augmented discriminative clustering for domain adap-
tive person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9021-9030 (2020)

Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation
for unsupervised cross-domain person re-identification. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 8222-8231 (2019)

Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 43204328 (2018)

Zhao, F., Liao, S., Xie, G.-S., Zhao, J., Zhang, K., Shao, L.: Unsupervised domain
adaptation with noise resistible mutual-training for person re-identification. In:
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12356, pp. 526-544. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58621-8_31


http://arxiv.org/abs/1812.11369
http://arxiv.org/abs/1910.09777
https://doi.org/10.1007/978-3-030-58621-8_31
https://doi.org/10.1007/978-3-030-58621-8_31

19.

20.

21.

22.

Asymmetric Mutual Learning 137

Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: a benchmark. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1116-1124 (2015)

Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the
person re-identification baseline in vitro. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 3754-3762 (2017)

Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-
reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1318-1327 (2017)

Zhong, 7., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar mem-
ory for domain adaptive person re-identification. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern recognition, pp. 598-607 (2019)





