
Computational Visual Media

DOI 10.1007/s41095-xxx-xxxx-x Vol. x, No. x, month year, xx–xx

Research Article

Robust and Efficient Edge-based Visual Odometry

Feihu Yan1, Zhaoxin Li2, and Zhong Zhou1(�)

c© The Author(s) 2021.

Abstract Visual odometry, which aims to estimate

relative camera motion between sequential video

frames, has been widely used in the fields of

augmented reality, virtual reality, and autonomous

driving. However, it is still quite challenging for state-

of-the-art approaches to handle low-texture scenes. In

this paper, we propose a robust and efficient visual

odometry algorithm that directly utilizes edge pixels to

track camera pose. In contrast to direct methods, we

choose reprojection error to construct the optimization

energy, which can effectively cope with illumination

changes. The distance transform map built upon edge

detection for each frame is used to improve tracking

efficiency. A novel weighted edge alignment method

together with sliding window optimization is proposed

to further improve the accuracy. Experiments on public

datasets show that the method is comparable to state-

of-the-art methods in terms of tracking accuracy, while

being faster and more robust.

Keywords visual odometry, edge structure, distance

transform, low-texture.

1 Introduction

As one of the essential technologies in many emerging

applications, such as robot navigation [1], augmented

reality (AR) [26], and virtual reality (VR) [30],

simultaneous localization and mapping (SLAM) has

received widespread attention in recent years. With
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the help of various sensors, such as cameras, lidar,

etc., SLAM can build a 3D model of the surrounding

environment while tracking the position of the sensor.

Specifically, SLAM using only cameras is referred to

as visual SLAM [6, 8, 19, 27, 29]. Generally regarded

as a component or special case of visual SLAM, visual

odometry (VO) [5, 7, 10, 20, 45] mainly solves the

basic problem of how to track camera pose in unknown

environments.

Typical existing VO algorithms can be divided into

two categories. The first comprises feature-based

(indirect) methods [4, 28, 29], which extract corner

points or other distinguishable feature points from

images, and estimates camera motion by minimizing

the reprojection error of matched features. The second

category comprises direct methods [5, 6], which directly

use image pixels to estimate camera pose by optimizing

photometric error.

Benefitting from the invariance of feature descriptors,

the feature-based method is robust for a variety of

well-textured scenes, but the performance drops in

low-texture areas since it relies highly on extracting

sufficient features. Although the direct methods

deal better with this low-texture problem by using

more image information, the fundamental assumption

on photo consistency makes them quite sensitive to

illumination changes, which also affect their robustness

in real applications.

To make VO systems more robust, researchers began

to pay attention to high-level features, such as edge-

[23, 34–36, 40, 45] or line- [12–15, 18, 21, 25, 33, 37,

41, 43, 46] features which are widespread in man-made

scenes. Integration of edge information has been proven

to improve the robustness of VO systems, but also

brings extra computational overhead and has a negative

effect on real-time performance.

In this paper, we propose a robust and efficient

edge-based VO system, called distance transform visual

odometry (DTVO), to mitigate the above mentioned

problems. Based on the observation that edge
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information is abundant in man-made environments,

even in homogeneous areas like wall surfaces, our

method takes advantage of edge features to deal with

the low-texture problem. More specifically, edge

pixels are detected from each frame using the Canny

algorithm [2] and utilized throughout the tracking

process. In contrast to direct VO systems, we

employ the geometric reprojection error instead of the

photometric residual, which is more robust with respect

to illumination changes. To meet the demands of

real-time tracking, edges in the reference frame are

projected into the distance transform (DT) map of

the current frame to efficiently calculate the residuals.

Moreover, a novel dynamic weighted edge registration

method combined with a pyramid coarse-to-fine scheme

is proposed to improve tracking accuracy. A local

sliding window optimization step is also integrated to

refine the depth map as well as camera pose. The

proposed method is not only suitable for monocular

cameras but can also be extended to RGB-D sensors.

The proposed VO system is able to achieve 70 fps for

640 × 480 resolution images from public datasets on a

CPU.

Our contributions can be summarized as:

• a 3D-2D edge alignment method that effectively

tracks camera pose by leveraging local geometric

information in the edge-driven DT map,

• a sliding window optimization approach to refine

the propagated depth map, as well as all camera

poses, within the local window, and

• using the above two modules, a novel edge-

based VO system that efficiently integrates edge

information to more robustly extract camera pose.
To the best of our knowledge, this is the first real-

time VO pipeline for monocular cameras that utilizes

DT maps. Furthermore, it can be extended to RGB-D

sensors.

The remainder of this paper is organized as follows.

Section 1 introduces related work. Section 3 provides

the problem formulation. Tracking and local mapping

based on edges are presented in Sections 4 and 5

respectively. In Section 6, we provide experimental

comparisons with state-of-art algorithms. Finally,

conclusions and future work are discussed in Section 7.

2 Related work

In this section, we describe related work on visual

SLAM (including VO) which can be broadly divided

into feature-based methods, direct methods, and edge-

related approaches.

2.1 Feature-based SLAM

Feature-based methods have dominated the field of

visual SLAM in the past decades. Most of them are

inspired by the framework of PTAM (parallel tracking

and mapping) [22], one of the most groundbreaking

SLAM systems. PTAM divides the entire system

into two independent threads, a real-time camera

tracking front-end, and a mapping back-end based on

optimization. One of the most representative works

in recent years is ORB-SLAM [28, 29], which extracts

ORB features for tracking and mapping, and innovates

with a three-thread architecture by adding a loop

closing component. Due to its high tracking accuracy

and good scalability, ORB-SLAM has become one of

the most popular state-of-the-art SLAM frameworks.

However, this kind of method needs to detect reliable

feature points in images, preventing their application

in low-textured environments.

2.2 Direct Methods

In contrast to feature-based approaches, direct

methods directly use whole image alignment based on

photometric error to track camera pose. Omitting the

steps of feature extraction and descriptor calculation

makes the system more efficient. At the same time,

more image information also means a more dense map

can be recovered. These advantages have increased

the popularity of the direct method in recent years.

Newcombe et al. [31] presented dense tracking and

mapping (DTAM), which achieves dense and smooth

depth estimation by using a non-convex optimization

process. This system needs GPU acceleration to run

in real time. Engel et al. [6, 7] proposed the large

scale direct monocular SLAM (LSD-SLAM) system,

which performs tracking and mapping directly over

image pixel intensities. It is impressive that this

system is able to reconstruct a semi-dense map and

operate in real time without GPU acceleration. The

most influential direct method recently is direct sparse

odometry (DSO) [5], which provides state-of-the-art

performance in terms of both accuracy and robustness

for monocular camera tracking.

LSD-SLAM [6] and DSO [5] are quite popular

amongst direct methods, and there are many

extensions [3, 8, 11, 39] to these two methods. There

are also several semi-direct systems that combine the

complementary strengths of direct and feature-based

methods, such as SVO [10] and LCSD-SLAM [24].

The main problem of direct methods is that they rely

on photometric minimization, making them sensitive to

illumination changes.
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2.3 Edge-related SLAM

Researchers have tried to integrate edge information

into visual SLAM for a long time. Early works

like [12, 37] integrated straight lines into the filter-based

method, but many mismatches occur when the help of

descriptors is unavailable.

Intuitively, the feature-based method is based on

the extraction and matching of feature points and

descriptors, which can be easily extended to edge

features and descriptors. Albert et al. [33] proposed

PL-SLAM, an extension of ORB-SLAM [28], which

uses a line segment detector (LSD) [16] to extract

linear features and calculates a line band descriptor

(LBD) [44]. Zhang et al. [42] added line features

detected by LSD [16] to ORB-SLAM [28], which

provides long-term constraints using planes. Zuo

et al. [46] fully took into account the parametric

representation of spatial straight-lines, and introduced

the orthogonal representation method to solve the

problem of over-parameterization.

Incorporating line features into direct methods can

also improve robustness. On the basis of direct visual

odometry [7], Yang et al. [41] introduced LSD [16]

and LBD [44] into a direct SLAM framework that

can improve robustness, but the line segment detection

and descriptor calculation, as well as subsequent

feature matching, greatly increased computational

consumption. Li et al. [25] introduced a collinear

constraint into the DSO framework [5] through line

segments detected by LSD [16], and reduced the

computational cost by removing non-line pixels.

Ruben et al. [13] introduced LSD [16] into the

SVO [10] framework to obtain a more robust system

capable of dealing with untextured environments. They

subsequently combined ORB features and line features

to propose a VO method [14] and a visual SLAM

method [15] for stereo cameras, which can produce

rich geometrical maps, but their odometry method

requires reduced image resolution to achieve real-time

performance.

The above methods show that the introduction of

edge features can effectively improve robustness, but

extracting line features and matching corresponding

descriptors are time-consuming, which precludes real-

time application. Moreover, the over-parameterization

problem is also a hindrance for optimization.

Instead of line segment features, some researchers

try to estimate camera motion directly from the edge

pixels. Wang et al. [40] presented a real-time RGB-

D VO system that combines photometric error with

edge distance error provided by the DT map. Manohar

et al. [23] proposed a direct RGB-D VO system

which utilizes the sub-gradient method to handle non-

differentiable functions. Fabian et al. proposed DT-

based RGB-D VO systems [34, 35] combining Canny [2]

and machine-learned edges respectively, then later

presented RESLAM [36], which is a complete edge-

based SLAM pipeline for RGB-D sensors.

Although the efficient tracking brought by DT has

been demonstrated in the above methods, the depth

information seems to be indispensable. In this work,

we proposed a novel VO pipeline that can be used for

both monocular cameras and RGB-D sensors.

3 Overview

In this section, we introduce the formulation of

camera motion used in our paper and give a brief

overview of our edge-based VO framework.

3.1 Notation

Similar to direct methods [5, 6], we maintain a

reference keyframe Ir : Ω ⊂ R2 → R and an inverse

depth map Dr : Ω ⊂ R2 → R, where Ω represents the

image domain, at each timestamp. More specifically,

for each pixel position p = (x, y)T in Ir with valid

inverse depth dp, we can obtain the corresponding

projected position p′ given the 3D rigid motion:

T =

(
R t

0 1

)
(1)

p′ = Π
(
RΠ−1 (p, dp) + t

)
(2)

This transformation matrix comprises a rotation

described by an orthogonal matrix R ∈ SO(3) and

a translation described by a vector t ∈ R3. The

projection function Π and its inverse Π−1 convert

between the 2D pixel position p and the corresponding

3D point P = (X,Y, Z)T, which can be computed as:

p = Π(P ) =

(
X

Z
fx + cx,

Y

Z
fy + cy

)T

(3)

P = Π−1(p, dp) =

(
x− cx
fxdp

,
y − cy
fydp

,
1

dp

)T

(4)

where fx and fy are the focal lengths and cx and cy
are the image coordinates of the principal point that

compose the camera intrinsics c.

Typically, a minimal representation ξ ∈ se(3) is used

to represent the rigid motion, which is the Lie algebra

associated with the Lie group T ∈ SE(3).

3.2 System Architecture

Our system takes monocular image sequences as

input, with optional corresponding depth images, and
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Image Data

Depth Data
(optional)

Canny Edge 
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Distance 
Transform
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New 
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No YesSliding Window

Tracking
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Fig. 1 System overview. Our framework comprises two main threads: tracking and local mapping. The former effectively estimates

the camera pose of the current frame using 3D-2D edge alignment. The latter determines whether to add a new keyframe and

optimizes it with the sliding window.

estimates the relative camera motion from successive

frames based on the extracted edge information.

The general structure of the proposed VO system is

illustrated in Fig. 1; it comprises two main threads:

tracking and local mapping. In the tracking thread,

the main goal is to effectively calculate the 6-DoF

camera pose for the incoming frames while being

robust in challenging environments. To tackle this

issue, we extract edge pixels for each frame, which

is more robust than extracting point features in low-

texture scenes, and leverage 3D-2D edge alignment

to estimate the camera motion. In order to avoid

sensitivity to illumination changes like direct methods,

instead of using photometric residuals, we introduce the

DT method to efficiently obtain geometric reprojection

errors. In the local mapping thread, we focus on

optimizing the depth of each edge pixel and the camera

poses of selected keyframes within a sliding window.

When the current frame is tracked successfully, the

system determines whether the current frame is used to

update the local depth map or create a new keyframe by

propagating depth information from existing keyframes

in the sliding window.

4 Tracking

4.1 Edge Detection

For each incoming frame Ic, we aim to estimate

the relative camera motion ξcr between Ic and the

reference frame Ir based on edge information. We

first detect edge pixels using Canny edge detection [2],

which works well in challenging scenes. As shown in

the left two columns of Fig. 2, the Canny algorithm

is reliable when dealing with low-texture scenes, since

it locally finds the strongest edge pixels by non-

maximum suppression of high gradient regions. Its

further robustness to illumination changes is shown in

the right three columns of Fig. 2.

4.2 Edge-based Reprojection Error

Typically, given the corresponding depth estimate of

one edge pixel in the reference frame Ir, we can obtain

its projected position (see Eq. 2) in the current frame

Ic using the initial motion estimate ξ0
cr.

For computational efficiency, edge pixels are

directly used to formulate the error function without

extracting descriptors. Unlike direct methods

that employ photometric error to track camera

pose, we prefer to utilize geometric error to avoid
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Fig. 2 Edge maps of challenging scenes. Above: original RGB images. Below: edge pixels extracted by Canny edge detection [2].

Two left columns: examples of low-texture floor. Three right columns: examples of illumination change caused by camera motion.

(a) (b)

Fig. 3 Comparison of (a) photometric quantity and (b) DT

value changes along a scan line. (The DT value is scaled to

[0, 255] for visualization.)

sensitivity to illumination changes. However, without

the help of features and descriptors providing

place recognition capabilities, accurate projective

registration of nonparametric edges is quite challenging.

Following the iterative closest point (ICP) algorithm,

we utilize the distance between the projected position

and the nearest detected edge pixel in the current

frame to establish 3D-2D correspondence. To improve

matching efficiency, we precompute the DT map [9]

Dc : Ω ⊂ R2 → R for the current frame, which

calculates the Euclidean distance to the closest edge

at each pixel position. This map converts calculation

of the reprojection geometric error into a simple query,

and since the edge only needs to be detected once, it

can be reused in the subsequent iterative optimization

process without the need to repeatedly calculate the

distance.

Inspired by [23], there are two main motivations

for choosing geometric reprojection error instead of

photometric error in this work. On the one hand,

the reprojection error can alleviate sensitivity to

illumination changes, and on the other hand, the

non-differentiability of image intensity may have a

negative effect on optimization. As shown in Fig. 3,

non-differentiability of the photometric quantity is

significant at object boundaries, while the DT value

does not change so frequently and sharply.

More specifically, given an edge pixel eri in the

reference frame Ir and its inverse depth deri , the

reprojection residual is computed as

r(eri ) = Dc(e
′
i) (5)

where e′i denotes the reprojection position calculated

from Eq. 2.

Since Dc(e
′
i) = 0 if e′i is an edge pixel in Ic, we

can estimate the optimal relative camera motion ξ∗cr
by minimizing the total error function:

E(ξcr) =
∑
eri∈Er

‖r(eri )‖γ (6)

ξ∗cr = arg min
ξcr

E(ξcr) (7)

where ‖·‖γ is the Huber norm and Er is the set of all

detected edges in Ir.

During optimization of Eq. 7, it is intuitively

beneficial for the entire system if the initial motion

estimate ξ0
cr is more accurate. Thus, we consider four

different assumptions for ξ0
cr: (i) constant motion, (ii)

no motion, (iii) half- or (iv) double- that of constant

motion, and choose the one with the lowest energy

according to Eq. 6.

4.3 Weighted Edge Alignment

One of the major challenges of directly using pixels

for VO systems is that it is difficult to achieve accurate

data association, especially when equipped with a
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(a) (b)

(c) (d) (e)

Fig. 4 Weighted edge alignment. (a) and (b) edge pixels to

be registered (blue, yellow respectively). (c) projection under

a no motion assumption, and a class of edge pixels with a

larger number are given a higher weight (darker colors indicate

greater weights). (d) after alignment of edge pixels with larger

weight, the pixel sets with a smaller number are reassigned larger

weights, and matching is performed again. (e) the final matched

pixels (green).

monocular camera. It is worth noting that even in

direct methods [5, 6], a well-designed point selection

strategy is crucial to pick locally recognizable pixels

with sufficient intensity gradient for matching. In our

work, however, we do not need to follow the same

strategy for two reasons. On the one hand, this strategy

relies on local image gradient, which is the basis of edge

detection; on the other hand, the selected pixels tend

to maintain a uniform spatial distribution across the

whole image, but the reprojection error based on the

DT map (see Eq. 5) is unsuitable for non-edge pixels.

Thus, we propose a weighted edge alignment scheme,

based on the observation that when we try to match

two images like Fig. 4(a,b), more significant vertical

regions can be aligned first, and then the horizontal

edge with a smaller number of pixels can be used to

fine-tune the alignment: see Fig. 4(c–e). Intuitively, we

can achieve this by gradually increasing the weight of

non-significant edge regions.

More specifically, we divide edge pixels of the

reference frame into 5 categories according to the local

spatial layout within the 3× 3 neighborhood. The first

4 main types are shown in Fig. 5, and the remaining

ones that do not belong to these 4 types are classified

as the 5th type. Then we count the number of edge

pixels of each type and combine it with the pyramid

to construct a dynamic weight that changes with the

pyramid level:

wkt = (log(Nsum/Nt))
(l−k)/l (8)

(a) (b) (c) (d)

Fig. 5 The 4 main types of edge pixels, based on the spatial

relationship between the target edge pixel (orange) and its

neighboring edge pixels (blue). Non-edge pixels are in gray.

where t = 0, . . . , 4 denotes the type, Nt is the number

of edge pixels of this type, Nsum is the total number of

edge pixels, l is the highest level of the pyramid and

k = 0, . . . , l is the current level (k = 0 corresponds

to the original image). When k = l, the weight of

each edge pixel is 1, and as k decreases, the weight of

pixel types with smaller size increase more rapidly. In

practice, the weight will be within a certain range.

Now we can apply the weights to the iterative energy

function calculation (Eq. 6) in the pyramidal coarse-to-

fine tracking scheme:

Ek(ξcr) =
∑
eri∈Er

wkter
i

‖r(eri )‖γ (9)

When at coarser pyramid levels, types with more edge

pixels have higher weight and dominate registration,

while at finer pyramid levels, types with fewer edge

pixels receive more attention and refine the relative

motion estimate. This dynamic weighting method also

effectively deals with the situation where the minority

follow the majority.

We further illustrate the proposed weighted edge

alignment in Fig. 6. A three-level (0 to 2) pyramid

is used to associate the extracted edge pixels of the

reference frame to the edge map of the target frame.

After iteration at each pyramid level, sampled edge

pixels are projected into the edge map of the current

frame using the estimated relative motion. Fig. 6(c-e)

shows the gradual registration of edge pixels.

4.4 Initialization for a Monocular Camera

When using a monocular camera, we need to

initialize the first frame, which is also the first keyframe,

to bootstrap the system. We follow the strategy of

LSD-SLAM [6], which uses a random depth map for

the first keyframe. Since the sparse edge representation

offers a large convergence basin [35], the system will

converge to a correct depth configuration quickly with

the help of the weighted edge alignment method

mentioned in Section 4.3.
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(a) Reference Frame

(b) Current Frame
(c) after iterations 

on level2
(d) after iterations 

on level1
(e) after iterations 

on level0

1 1 1

2 2 2

00 0

Fig. 6 Projected edge pixels after iteration, at different pyramid levels. (a): reference frame, (b): current frame, (c–e) edge pixels

projected from the reference frame to the edge map of the current frame. Above: full maps. Below: close-up. Circled numbers

indicate the pixel areas mainly affected by the corresponding pyramid level.

4.5 RGB-D Extension

The proposed VO method can be easily extended

to RGB-D sensors. When the input contains depth

images, the main difference from the monocular mode

is in the tracking thread, and the rest of our system

operates independently of the input. Since the depth

sensor provides more reliable depth information, the

initialization phase can be omitted for the RGB-D

sensor. Furthermore, almost all detected edge pixels in

the reference frame can be used in the tracking process,

without the need to select edge pixels with valid depths

as in the monocular mode.

5 Local Mapping

In the local mapping thread, when a new keyframe is

created, all edge pixels with valid depth from keyframes

within a sliding window are projected into it to generate

the depth map. The depths of all these edge pixels, the

camera pose and the camera parameters are optimized

together. Meanwhile, edge pixels and keyframes far

from the current frame are marginalized.

5.1 Keyframe Selection

In optimization-based VO systems, the selection of

keyframes is very important to make the tracking

robust to camera movement. Typically, keyframe

selection ensures that a sufficient number of frames

have passed since the last keyframe insertion [28], or a

certain relative pose threshold has been met [6]. We

also follow the same strategy and combine the edge

matching method in Section 4.3 to construct three

conditions as follows:

• More than 20 frames have passed since the current

keyframe.

• The relative translation distance or rotation angle

have met a predefined threshold.

• Among the four main edge pixel types (see Fig. 5),

for at least one, the number of changes exceeds a

threshold.
When one of the above conditions is met, the current

frame is spawned as a new keyframe.

5.2 Sliding Window Optimization

We adopt a sliding window optimization method

following [5]. More specifically, we keep a small sliding

window F consisting of several (5–7) active keyframes,

and jointly refine all valid edge depths, all camera poses,

and even the camera intrinsics c. The residual of one

edge pixel ei of one keyframe km ∈ F is similar to Eq. 5:

rmn(ekmi ) = Dkn(e′i(ξwkm , ξwkn , dekm
i
, c)) (10)

where e′i is the projected position of ekmi in a different

keyframe kn ∈ F , and ξwkm and ξwkn are the estimated

camera poses relative to the world frame. Then we

can minimize the final energy function in the sliding

window:

E =
∑
m∈F

∑
ei∈Em

∑
n∈F\{m}

∥∥∥rmn(ekmi )
∥∥∥
γ

(11)

The energy can be optimized iteratively using

Levenburg-Marquardt (L-M) algorithm:

Hδx = −b (12)
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Fig. 7 The sharp illumination changes in the balloon tracking sequence of the Bonn RGB-D Dynamic dataset [32].

Tab. 1 Comparison of absolute trajectory RMSE (m) and relative pose RMSE (m) of DSO [5], ORB-SLAM2 [29], DLGO [25],

PL-SLAM [33] and our algorithm on the TUM RGB-D dataset (× indicates algorithm failure)

Sequence
ATE RPE

DSO ORB DLGO PL-SLAM Ours DSO ORB DLGO PL-SLAM Ours

fr1/xyz 0.069 0.084 0.054 0.13 0.065 0.088 0.106 0.067 0.184 0.073

fr2/desk 1.65 1.207 1.33 0.696 0.87 1.81 1.266 1.64 1.078 1.088

fr2/xyz 0.062 0.119 0.065 0.1 0.063 0.077 0.109 0.081 0.142 0.079

fr3/office 1.18 1.233 1.168 1.12 0.64 1.512 1.577 1.464 1.586 1.054

fr3/cabinet 1.08 × 1.05 × 0.84 1.56 × 1.57 × 1.354

fr3/nstr ntex far 0.677 × 0.504 × 0.61 0.876 × 0.74 × 0.755

fr3/str ntex far 0.903 × 0.865 × 0.69 1.052 × 0.946 × 0.80

where b = JTWr consists of the Jacobian J and the

weight matrix W, H = JTWJ + λI is the Hessian

matrix, and δx is the optimal increment.

Due to the bounded size of the sliding window, old

keyframes need to be removed before adding new ones.

Following [5], we adopt a marginalization strategy using

the Schur complement. Typically, the optimization can

be written in a block-matrix way:[
Hαα Hαβ

Hβα Hββ

][
δxα
δxβ

]
= −

[
bα
bβ

]
(13)

where α and β denote the variables that we would

like to keep and to marginalize, respectively. We can

eliminate the coefficient of δxβ by multiplying the

second line of H by HαβH
−1
ββ and subtracting it from

the first. Moreover, following [5], when marginalizing

one keyframe, all edges of this keyframe and all

the edges that have not been observed in the last

two keyframes in the sliding window are marginalized

together to retain the sparsity of H.

6 Results and discussion

The proposed VO system has been implemented

and tested on a desktop computer with a 3.2GHz

Intel i7-8700 CPU and 32GB memory. Since our

system permits two input modes, monocular and RGB-

D, we have tested them separately in the following

subsections. Two main metrics, absolute trajectory

error (ATE) and relative pose error (RPE) [38] are

used to respectively evaluate the global consistency of

the trajectory and the drift. Meanwhile, the root mean

squared error (RMSE) of the translational component

is mainly used for comparison.

6.1 Monocular VO

The monocular VO was evaluated using three public

datasets, including the TUM RGB-D dataset [38], the

Bonn RGB-D Dynamic dataset [32], and the ICL-

NUIM dataset [17]. It is worth noting that the last two

datasets use the same data format as the TUM RGB-D

dataset [38] and provide ground truth trajectories, so it

is easy to use the evaluation tools provided by [38] for

analysis.

Tab. 1 compares ATE and RPE for DSO [5], ORB-

SLAM2 [29], DLGO [25], PL-SLAM [33], and our

method. The first two methods are a direct method

and a feature-based method, respectively, chosen as

representatives of the most commonly used frameworks

at present. The next two methods, DLGO [25] and

PL-SLAM [33], are extensions of the two benchmark

frameworks combining line features. The results for

the first three methods are from [25]; we use the same

evaluation configuration to obtain results for PL-SLAM

and our method.

It can be seen that the proposed method achieves

improvements in robustness and accuracy compared

to the other methods. In general, our method

8
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DSO ORB Ours DSO ORB Ours DSO ORB Ours DSO ORB Ours

fr1_room fr1_desk fr2_metallic_sphere2 fr3_large_cabinet

Fr
am

es

Sequences

Tracking State

Not Initialized OK Lost

Fig. 8 Proportion of different states in the tracking process. We have tested DSO [5], ORB-SLAM2 [29], and our method on the

4 sequences of the TUM RGB-D dataset, and recorded the tracking status of each frame, including not initialized, tracking ok, and

tracking lost.

and the two extensions perform better than the two

benchmark frameworks, reflecting the effectiveness of

introducing edge information to deal with low-texture

environments. ORB-SLAM2 [29] and its extension fail

for the last two low-texture scenes, while our method

and DLGO achieve the best results respectively, shows

that the use of additional image information can help

to improve tracking robustness in low-texture scenes.

Since VO systems need to pay more attention to

tracking, we performed a tracking status comparison

on 4 sequences of the TUM RGB-D dataset (see

Fig. 8). The tracking status of each frame was recorded

when evaluating DSO [5], ORB-SLAM2 [29], and our

method. It can be seen that ORB-SLAM2 [29] has

careful initialization, but it omits many frames and has

the most tracking loss. DSO [5] needs to select two

frames with sufficient translational camera movement

for initialization, so a few frames will be ignored at this

stage. Our method directly initializes a random depth

map for the first frame, and subsequent frames can be

tracked successfully.

The Bonn RGB-D Dynamic dataset [32] contains

24 highly dynamic sequences in which people perform

different tasks, such as manipulating boxes or playing

with balloons, and 2 static sequences. We chose 1 static

and 6 dynamic sequences to evaluate the robustness to

dynamic scenarios. There are many sudden changes in

brightness of the scenes caused by camera movement in

this dataset (see Fig. 7), which have a great impact on

Tab. 2 Comparison of absolute trajectory RMSE (m) of ORB-

SLAM2 [29], DSO [5], PL-SLAM [33] and our algorithm on

BONN-Dynamic dataset (× indicates algorithm failure)

Sequence ORB DSO PL-SLAM Ours

static 2.12 × × 1.91

kidnapping box 0.46 0.35 0.45 0.29

kidnapping box2 0.36 0.35 0.34 0.39

balloon tracking 0.31 × 0.27 0.25

balloon tracking2 0.28 0.37 0.29 0.27

balloon × 0.18 0.22 0.20

balloon2 × × × 0.26

the direct method.

Tab. 2 compares ATE for ORB-SLAM2 [29], DSO [5],

PL-SLAM [33], and our method on the 7 sequences. It

is worth noting that the static sequence contains 10,916

images, which leads to a relatively large cumulative

error. From Tab. 2, it can be concluded that our

method is more robust than the other three methods in

dealing with dynamic scenes and illumination changes.

The ICL-NUIM dataset is captured in synthetic

indoor environments. Tab. 3 compares our method

with ORB-SLAM2 [29], DSO [5], and PL-SLAM [33]

in terms of ATE on the 8 office sequences, in which

half have have added simulated noise. It can be seen

that PL-SLAM is confused, typically because it cannot

detect sufficient point and line features in untextured

areas such as walls, causing it to fail. The robustness of

DSO and our algorithm are better than the other two

9
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Fig. 9 Ego-motion estimation and mapping results for our proposed algorithm on the fr3/long office sequence from the TUM

RGB-D dataset.

Tab. 3 Comparison of absolute trajectory RMSE (m) of ORB-

SLAM2 [29], DSO [5], PL-SLAM [33] and our algorithm on

the ICL-NUIM dataset (× indicates algorithm failure, and *

indicates tracking loss occurs but does not cause failure)

Sequence ORB DSO PL-SLAM Ours

of kt 0 0.49∗ 0.26 × 0.49

of kt 0 (with noise) 0.61∗ 0.30 × 0.45

of kt 1 0.83∗ 0.69 × 0.64

of kt 1 (with noise) 0.81∗ 0.68 × 0.63

of kt 2 0.73 0.79 × 0.80

of kt 2 (with noise) 0.75 0.78 × 0.80

of kt 3 0.57∗ 0.62 × 0.55

of kt 3 (with noise) 0.59∗ 0.61 × 0.53

methods, and our method is competitive in terms of

accuracy. Note that since ORB-SLAM2 is a complete

SLAM system with re-localization and loop-closure

detection, tracking loss will not directly lead to system

failure, while DSO and our method directly trigger

system termination if tracking is lost.

6.2 RGB-D VO

The VO framework proposed in this paper has

good generalisability and can be integrated with depth

sensors. We compare our algorithm with state-of-

the-art edge-based RGB-D VO systems, including

REVO [35] and CannyVO [45]. The former uses

deep learning features to favor object boundaries

and omit weak edges, while the latter adopts two

distance transforms, approximate nearest neighbor field

(ANNF) and oriented nearest neighbor field (ONNF),

to improve registration in terms of efficiency and

W/O

W

fr3/officefr2/xyzfr2/deskfr1/xyzfr1/rpyfr1/roomfr1/desk2fr1/desk

0.25

0.2

0.15

0.1

0.05

0

Fig. 10 Ablation study on the TUM RGB-D dataset. Each

bar corresponds to the (color-coded) absolute trajectory error

over the full sequence. We run each sequence (horizontal axis)

without (‘w/o’) and with (‘w’) the dynamic weighted method as

mentioned in Section 4.3.

accuracy. Quantitative evaluation results are shown

in Tab. 4. It can be seen that our method is more

accurate. As shown in Fig. 9, our method can estimate

a consistent camera trajectory while simultaneously

recovering a semi-dense point cloud for the scene.

Fig. 10 gives results of a leave-one-out ablation

study using the TUM RGB-D dataset to analyse the

accuracy improvements due to the proposed weighted

edge alignment. We selected 8 sequences and tested

each with and without the weight (see Eq. 8) in edge

alignment. We can see that the use of weighted edge

alignment effectively improves accuracy.

6.3 Canny Parameters

In order to compensate for the differences in scenes,

we need to adapt the parameters, mainly the two

thresholds (thigh, tlow), used by the Canny detector [2].

10
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Tab. 4 Comparison of absolute trajectory RMSE (m) of REVO [35], CannyVO [45] and our method on the TUM RGB-D dataset

Sequence REVO [35] CannyVO (ANNF) [45] CannyVO (ONEF) [45] Ours

fr1/xyz 0.068 0.137 0.043 0.033

fr1/rpy 0.049 0.205 0.047 0.042

fr1/desk 0.061 0.212 0.044 0.054

fr1/desk2 0.082 0.381 0.187 0.053

fr1/room 0.298 0.621 0.242 0.186

fr2/desk 0.089 0.039 0.037 0.032

fr3/office 0.117 0.09 0.085 0.042
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Analysis of Canny Parameters

fr1/xyz fr1/rpy fr1/desk

fr1/desk2 fr2/desk fr3/office

Fig. 11 Influence of different Canny parameters. We selected

6 sequences from the TUM RGB-D dataset and recorded the

corresponding absolute trajectory RMSE (m) of our system in

RGB-D mode using 21 different Canny parameter combinations.

Results greater than 0.15 are absent.

Fig. 11 records the ATE results corresponding to

different threshold selections on the 6 sequences of

the TUM RGB-D dataset. It can be seen that

under different scene conditions, the selection of Canny

parameters has a significant impact on the results.

We also give a qualitative comparison of 3D point

clouds for the fr1/desk2 sequence using two different

threshold combinations, (90, 70) and (100, 50); the

influence of the Canny parameters on the generated

map is obvious. If the parameters could be adjusted

adaptively according to the scene, it would bring a great

improvement to the proposed edge-based system, which

we will considered in our future work.

6.4 Speed

Although there are tens of thousands of edge pixels

that need to be matched in each incoming frame, with

the introduction of DT, our method can still achieve

excellent real-time performance. Tab. 5 shows the total

execution time of our method for different sequences.

Note that the processing efficiency is unchanged for

monocular or RGB-D sensors. Tab. 6 compares our

Tab. 5 Execution time of our full pipeline for different

sequences (‘rgbd’ means the system is running in RGB-D mode)

Sequence #Images Times (ms) FPS

fr2/rpy 3290 45403 72.46

fr2/xyz (rgbd) 3615 49508 73.02

lr kt1 966 12453 77.57

of kt0 1508 17369 86.82

balloon tracking 590 7714 76.48

method with state-of-the-art edge-based and line-based

VO/SLAM systems in terms of the average runtime for

each module in the tracking thread. It can be concluded

that our method is highly efficient and has better real-

time performance than state-of-the-art methods that

use edge information.

7 Conclusions

Targeting low-texture scenes which challenge existing

visual odometry methods, we present a novel edge-

based visual odometry algorithm that estimates the

relative camera pose by minimizing the geometric

reprojection error of extracted edge pixels. We

experimentally demonstrate that using more image

information, like direct methods, can help to deal

with low-texture situations. Meanwhile, the geometric

reprojection residual also makes the proposed VO

system insensitive to illumination changes. Combined

with a novel weighted edge alignment method, the

introduced DT map further improves the accuracy and

efficiency of camera tracking. Moreover, the proposed

VO framework has good generality making it suitable

for both monocular and RGB-D cameras. A large

number of experiments conducted on public datasets

show that the proposed method is comparable to state-

of-the-art SLAM systems in terms of tracking accuracy,

and is much faster as well as more robust in challenging

scenarios.

11
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(90,70) (100,50)

Fig. 12 Qualitative comparison of our recovered 3D maps on the fr1/desk2 sequence of the TUM RGB-D dataset using different

Canny parameters.

Tab. 6 Average execution time (ms) used by each part for per frame tracking on the TUM dataset

Operation Yang [41] REVO [35] PL-SLAM [33] Ours

Feature extraction 28.19 7.64 31.32 2.86

Initial pose estimation 4.52 2.36 7.16 1.3

Tracking 19.23 8.53 12.58 3.46

Total 51.94 18.53 51.06 7.62
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