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ABSTRACT

Omnidirectional images of 180◦ or 360◦ field of view provide the
entire visual content around the capture cameras, giving rise to more
sophisticated scene understanding and reasoning and bringing broad
application prospects for VR/AR/MR. As a result, researches on om-
nidirectional image layout estimation have sprung up in recent years.
However, existing layout estimation methods designed for panorama
images cannot perform well on fisheye images, mainly due to lack
of public fisheye dataset as well as the significantly differences in
the positions and degree of distortions caused by different projection
models. To fill theses gaps, in this work we first reuse the released
large-scale panorama datasets and reproduce them to fisheye images
via projection conversion, thereby circumventing the challenge of
obtaining high-quality fisheye datasets with ground truth layout an-
notations. Then, we propose a distortion-aware module according
to the distortion of the orthographic projection (i.e., OrthConv) to
perform effective features extraction from fisheye images. Addi-
tionally, we exploit bidirectional LSTM with two-dimensional step
mode for horizontal and vertical prediction to capture the long-range
geometric pattern of the object for the global coherent predictions
even with occlusion and cluttered scenes. We extensively evaluate
our deformable convolution for room layout estimation task. In
comparison with state-of-the-art approaches, our approach produces
considerable performance gains in real-world dataset as well as in
synthetic dataset. This technology provides high-efficiency and low-
cost technical implementations for VR house viewing and MR video
surveillance. We present an MR-based building video surveillance
scene equipped with nine fisheye lens can achieve an immersive
hybrid display experience, which can be used for intelligent building
management in the future.

Index Terms: Layout estimation; Deformable convolution; Fisheye
image dataset; Orthographic projection

1 INTRODUCTION

Estimating a high-quality 3D room layout from a single image plays
an increasingly important role in holistic scene understanding and
would benefit numerous applications, e.g., entertainment, marketing
productions, surveillance and robotics. Recently, omnidirectional
capture is very appealing, which is supported by a wide variety of
professional and consumer capture devices such as the panoramic
camera or fisheye camera. It can provide a complete coverage of
view, 180◦ or 360◦, compared to the narrow field of view (FoV) of
perspective images. Compared to the panoramic camera, fisheye
camera has three advantages. First, fisheye camera has a relatively
lower acquiring cost than the panoramic camera. Second, a single
fisheye camera can cover a wide field of view close to 180◦, main-
taining the completeness of a large FoV. Moreover, a panoramic
camera usually captures images with one rotating sensor or several
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sensors, and then stitches them into a panorama image, where strong
chromatic aberration may harm the image quality. Third, compared
to the overlapping objects on the left and right ends of the panorama
image, the fisheye image can maintain the integrity of the object.
Moreover, the information learned from feature extraction does not
flow from one side of the image to the other side of the image. This
makes the divided objects difficult to learn and affects the result of
layout estimation. In this work, we focus on room layout estimation
from a single RGB fisheye image.

The automatic layout estimation methods from indoor omnidirec-
tional image using geometry and deep learning techniques have been
developed rapidly. A more recent option to recover room layout is
instead using the latter methods. Some prominent works are: Lay-
outNet [42] generates layout from corner and edge map trained by an
FCN from panoramas. DuLa-Net [34] estimates Manhattan-world
layouts using a perspective ceiling-view from E2P transformation.
HorizonNet [29] represents the corners by a 1-dimensional encoding
of the whole-room layout for a panoramic scene. AtlantaNet [19]
is a novel data-driven method for estimating 3D room layout from
a single RGB panorama without Manhattan world assumption con-
straints. However, the equirectangular projection of panorama image
introduces significant distortions, in which existing convolutional
neural networks (CNNs) architecture cannot be directly applied. To
deal with this problem, several approaches [4, 28, 39] designed for
deforming the shape of convolutional are introduced. CFL [6] as a
novel end-to-end neural network recovers the 3D layout from a sin-
gle 360◦ image. It first attempts to deform the kernel to compensate
for the distortion of equirectangular projection.

The aforementioned methods designed for panorama images do
not perform well on fisheye images, mainly due to two important
and correlated issues: (1) the radically differences between the
panorama and fisheye camera models; (2) the lack of suitable fish-
eye datasets for training and validation with precise annotations.
To address the above issues,we propose a novel implementation of
the deformable convolution for fisheye images in the orthographic
projection (OrthConv), a special case of a fisheye projection. Then,
we adopt the deformable convolution to learn offsets for improving
the feature map accuracy. We further leverage Recurrent Neural Net-
works (RNNs) to capture long-range geometric pattern for layout
estimation. Then, we construct a top-view fisheye image dataset, the
real dataset (PanoContext-F and Stanford2D3D-F) and the synthetic
dataset (Structured3D-F), by re-using existing panorama datasets and
capturing the fisheye images from a surveillance system. It includes
the transformation of three public datasets, which are PanoCon-
text [36], Stanford2D3D [1] and Structure3D [37]. We use the
collected dataset to train a more sophisticated model to automati-
cally estimate room layout from a single fisheye image. We also
show that the layout models pre-trained on the synthetic dataset and
then fine-tuned on the real dataset outperform the models trained
only on the real dataset.

Following this direction, we present a distortion-aware omnidi-
rectional convolutional network for fisheye images. We first exploit
distortion-aware-based CNNs feature extraction block to handle dis-
tortion introduced by orthographic projection. Specially, we adopt
deformable convolution to learn offsets for improving the feature



map accuracy. Second, we further leverage RNNs to capture long-
range geometric pattern for layout estimation. Third, we also show
that the layout models pre-trained on the synthetic dataset and then
fine-tuned on the real dataset outperform the models trained only
on the real dataset. After that, we demonstrate the possible applica-
tion prospect of our method in MR video surveillance through the
visualization of synchronized multiple video streams.

Our contributions can be summarized as follows:

• We present a distortion-aware module to handle the distortion
in fisheye images by adopting deformable convolution based
on the orthographic projection of the fisheye images (i.e., Or-
thConv). It makes the network focus on informative areas to
achieve fast convergence and promising performance.

• We introduce an encoder–decoder strategy for the layout es-
timation from a single fisheye image. The feature map is ex-
tracted by ResNet50 with OrthConv in encoder. In decoder, we
exploit bidirectional LSTM with two-dimensional step mode
for horizontal and vertical prediction to capture the long-range
geometric pattern of the object for the global coherent predic-
tions even with occlusion and cluttered scenes.

• We construct a top-view fisheye image dataset, the real dataset
and the synthetic dataset, that contains 22,583 indoor fisheye
color images paired with the corresponding corner ground
truth.

2 RELATED WORK

Layout estimation from a single image has been extensively stud-
ied for a long time. It provides a strong prior for visual tasks in
holistic scene understanding, such as depth estimation, indoor ob-
ject recognition, human pose estimation, and pedestrian detection.
Early works for this area focused on conventional perspective images
have progressed rapidly with geometric reasoning [5, 12] and data-
driven [11]. However, these methods are limited by the restricted
FoV of perspective images, which only record the small geometric
context of the 3D scene. With the advent of the consumer-level
omnidirectional cameras, such as panorama or fisheye cameras, it
can capture all the visuals of the scene surrounding the viewpoint.
Therefore, a noticeable series of works concentrating on the lay-
out estimation from omnidirectional images is flourishing. These
approaches can be divided into three categories: geometric-based
methods, data-driven methods, and distortion-aware methods.

Geometric-based methods. The seminal approaches to room lay-
out estimation from a single omnidirectional image were [9, 32,
33, 36]. Zhang et al. proposed PanoContext [36] to construct a
whole-room 3D context model, which is the first work that extended
the solution designed for perspective images to panoramas. It re-
covers the room layout with salient objects for panoramic scene
understanding. Yang et al. [33] inferred the 3D room shape from
panorama based on geometric context and line segments supple-
mented by superpixel facets, and embedded as vertices in constraint
graph. Xu et al. [32] estimated the geometry of the room and the
3D pose of objects from a single panorama image for holistic indoor
scene recovery. However, both methods relied on leveraging the
existing frameworks for single perspective images transformed from
the input panorama. Jia et al. [9] introduced the symmetrical rule
describing geometric constraints in indoor fisheye images and per-
formed layout retrieval only through a collection of line segments
extracted from them. Perez-Yus et al. [21] used RGB-D and fisheye
cameras to obtain a scaled 3D model with wide scene reconstruction.
Since it needs to calibrate the two cameras together, which takes
extra effort and reduces its feasibility.

Inspired by the recent significant performance of CNNs for learn-
ing image cues, researchers began to study hybrid-driven methods

to improve performance. It combined geometry prior with depth or
semantics to generate the optimal layout [7, 13, 35]. Fernandez et
al. [7] presented a novel procedure for indoor 3D layout recovery
from 360◦ panoramic images. They combined the accuracy achieved
by geometric reasoning with an edge map extracted by deep learn-
ing techniques to improve performance. Yang et al. [35] inferred
the room 3D structure from a single panorama, and the layout is
recovered using geometric cues and the object mask is estimated
by semantic cues. Immediately afterward, Li et al. [13] proposed
a rapid and accurate approach to improve the results of layout re-
construction by combining geometric and semantic information. It
could effectively solve the problem of object occlusions and clutters.
For these methods, the quality of the extracted features determines
the effectiveness of these methods.

Data-driven methods. Recent methods make use of deep networks
to improve the result of layout estimation. The pioneering work
of Zou et al. [42] designed an encoder-decoder architecture (e.g.,
LayoutNet also denoted as LayoutNetV1) to train an FCN from
panoramas and vanishing lines, generating edge and corner maps
for layout recovery. Moreover, they also extended the annotations of
the Stanford2D3D dataset with a carefully labeled 3D shape layout,
providing 571 RGB panoramas for layout estimation. Subsequently,
the author introduced an improved version of LayoutNet called Lay-
outNetV2 [43]. Yang et al. [34] proposed a deep learning framework
(e.g., DuLa-Net), which exploits features by combining the original
panoramic view with the perspective ceiling-view to predict a more
accurate Manhattan-world 3D room layouts. The further develop-
ment of this research content could be found in [29], in which the
whole-room layout of the panoramic scene was represented as 1D
vectors encoding at each image column to reduce the parameters
and time consumption. Additionally, it further leveraged RNNs in
layout estimation task, to learn the long-range geometric pattern of
room layout for improving the accuracy (e.g., HorizonNet). Pintore
et al. [19] introduced a novel end-to-end neural network architecture
(e.g., AtlantaNet) to predict 3D room layout from panoramic image
without being restricted by Manhattan World.

Distortion-aware methods. All above methods directly apply stan-
dard convolution based conventional CNNs on panoramas, and the
geometric structure is fixed in the modules it uses, so the ability of
geometric transformation modeling is limited. Recently, a novel line
of research focuses on model adaptation based on the shape trans-
formation of the convolution operator to enhance CNN’s modeling
ability. Dai et al. [4] introduced a new module namely deformable
convolution (DCNv1) which can further adjust the spatial sampling
locations with additional offsets. The offsets can be learned in the
target task without additional supervision. While the visualization re-
sult of DCNv1 shows that the coverage of the receptive field over an
object is inexact, which interferes with feature extraction and reduces
the algorithm performance. Therefore, Zhu et al. [39] presented a
new version of deformable convolution (DCNv2), adding the weight
of each sampling point based on DCNv1. The aforementioned
affordable distortion-aware deformable convolution has achieved
significant success in visual recognition tasks, among which the
more prominent ones are semantic segmentation [14, 16, 20], object
detection [2, 3, 27, 31, 40], depth estimation [30, 41], and layout esti-
mation. In the follow-up work, Fernandez et al. [6] presented a novel
end-to-end neural network that recovers the 3D layout by the cor-
ners prediction from a single 360◦ image (e.g., CFL). This network
introduces a convolution defined in equirectangular projection (e.g.,
EquiConv) to compensate for the distortion of panorama. In the case
of fisheye images, the serious distortions introduced by orthographic
projection are variable at the same horizontal and vertical location,
so it is hard to achieve promising performance while directly using
the panoramic method. With our work, we aim to explore distortion-
aware convolution kernel specialized for orthographic projection to



aggregate more geometric information of fisheye image for layout
estimation.

Although our method, like many of the recent ones, shares the
encoder-decoder concept with HorizonNet [29] and CFL [6], we
introduce important cues in the network according to the fisheye pro-
jection model. In particular, the distinct difference from HorizonNet
is that it completely works on the 1D domain for equirectangular
projection, while we work on the 2D domain for orthographic pro-
jection of the fisheye image. Moreover, in contrast to CFL, we use
OrthConv on Res5 of ResNet50 for high-level feature extraction,
while CFL applies EquiConvs directly on the entire ResNet50.

3 APPROACH

Our goal is to design a network architecture for layout estimation
from fisheye images. Before introducing our network, we first for-
mulate the transformation from panorama images to fisheye images
(P2F) for building the fisheye dataset in Sec.3.1. Then in Sec.3.2, we
introduce the proposed distortion-aware convolution operator for or-
thographic projection of the fisheye image. Subsequently, in Sec.3.3
we describe the architecture of our layout estimation network with
distortion-aware convolution.

3.1 P2F Conversion

Currently, there is no publicly available dataset for room fish-
eye layout estimation, thus we build the PanoContext-F dataset,
Stanford2D3D-F dataset, and Structured3D-F dataset by transform-
ing images from the PanoContext [36], Stanford2D3D [1], and
Structured3D [37] via the fisheye orthographic projection model.
The size of the collected dataset is the same as the original dataset,
except for Structured3D-F. We exclude images in the Structured3D
dataset with (1) incorrect ground truth annotation like redundant
corners and missing corners, (2) incorrect floor background, and (3)
outdoor scenes. Finally, the Structured3D-F dataset contains 18111
training images, 1739 valid images and 1671 test images. Next,
we explain the projection model of fisheye and the formulation of
P2F conversion that transforms an equirectangular projection of
panorama to the orthographic projection of fisheye.

The distortion in the image collected by the fisheye camera sys-
tem, a typical non-linear system, increases from image’s center to
the edge. The design of fisheye lenses takes into account a series
of factors, such as size, focal length, and geometry, etc. Thus,
fisheye systems designed by different manufacturers have different
fisheye projection models. According to different expressions of
image radius r and incident angle ϕ , fisheye projection models are
classified as [24]: equidistant projection, stereographic projection,
equisolid-angle projection and orthographic projection. Specially,
orthographic projection (abbreviated as Orth) is mostly used in real
monitoring scenarios, and expressed as follows:

r = f·sinϕ. (1)

The basic idea of P2F conversion is to find the coordinate system
mapping between fisheye and panorama, that is, to calculate the
mapping position of each pixel on the fisheye image to the panorama
image. For an RGB panorama image Ip with the resolution of W ∗H,
W and H are the width and height of panorama image in pixels
and W : H=2:1. Each pixel coordinate in the fisheye image I f is
converted to its corresponding pixel coordinate in the panoramic
image by polar coordinate conversion. That is, the pixels in the
fisheye image domain Ω f : (m,n) ∈ [0, W]× [0, W] are mapped to
the angular domain A : [θ ,ϕ] ∈ [−π,π]×

[
− π

2 ,
π

2
]
, and then are

projected to the panoramic image domain Ωp : (m,n) ∈ [0, W]×
[0,H]. For each pixel in Ω f at position p = m(p),n(p)), we derive
the corresponding pixel position p′=(m(p′) ,n(p′)) in the panorama
by the longitude and latitude in the spherical coordinate system, as

shown in Fig. 1. First, the focal length f and the distance r from the
center of the pixel to p are defined as:

r =
√

m(p)2 +n(p)2, f = H/π, (2)

where m and n are operators that return the cartesian coordinates
of the location p. To project it onto a unit sphere, we adopt the
following relation:

θ = arsin(n(p)/r),ϕ = arsin(r/ f ), (3)

then we apply the following formula:

m(p′) = H− (ϕ ∗ f )/6
n(p′) = (ϕ ∗ f )/8, (4)

to calculate the corresponding position in equirectangular panorama
space. Finally, the pixel value is interpolated from the panorama.
For end-to-end training, the ground truth annotations of corners
provided on the panoramic image are converted in the same way.

Figure 1: The geometric process of transforming a panoramic image
into a fisheye image. (a) The orthographic projected image I f with
w∗w pixels. (b) is a sphere model that can be represented by ortho-
graphic projection or equirectangular projection. Given a 3D point
P(θ ,ϕ) (red point) on the sphere, its corresponding image coordinates
can be found on I f and Ip (green points). (c) The equirectangular
projected image Ip with w∗h pixels.

3.2 Distortion-aware Convolution Module
In [4,6,39], they put forward the distortion-aware deformable convo-
lution by learning additional offsets of the regular kernel to realize
the free-form deformation of the kernel. Inspired by these works, we
propose OrthConv, a deformable convolution according to the ortho-
graphic projection, which compensates for serious distortion of fish-
eye image introduced by the transformation from a non-Euclidean
space to a Euclidean space. The central idea of OrthConv is to con-
duct convolution operation of CNNs in the spherical domain instead
of the regular image domain from the preceding feature maps. It
denotes the convolution kernel as a small patch tangent in the sphere
surface where fisheye images are represented without distortions.
Next, we explain how to calculate the distorted pixel positions from
the original ones.

The standard convolution contains two steps: first is sampling a
set of locations on the regular grid R (represented as receptive field
size and scale) over the input feature map fl at layer l. Here, the
grid R is defined as a 3 × 3 convolution kernel with a dilation of 1
and R = {(−1,−1),(−1,0) . . . ,(0,1),(1,1)}. Then the summation
of a neighborhood of sampled values weighted by w is calculated.
For each location p0 = (u(p0) ,v(p0)), the operation result from
regular grid structure is assigned to the corresponding element of
output feature map fl+1 at layer l +1 as:

fl+1 (p0) = ∑
pn∈R

w(pn) · fl (p0 + pn) , (5)

where p0 + pn represents the sampling location. pn enumerates the
relative location of pixels in the convolution region R. However,



Figure 2: Overview of our network framework for room layout estimation from a single RGB fisheye image. The network takes a high-resolution
fisheye as input and first processes it by the encoder backbone (e.g., ResNet50), with the OrthConv for solving the distortion of the orthographic
projection (detailed in Sec.3.2). Then, the last four feature maps of the encoder are retained for simultaneous capture of low-level and high-level
features through a sequence of convolutional layers (e.g., Convs). The concatenated sequential feature maps are fed to the decoder backbone
(e.g., LSTM) to yield the final corners estimation (e.g., red dot).

this sampling strategy from the regular grid cannot be directly ap-
plied to fisheye images due to the varying distortions introduced by
orthographic projection.

Following [4], we transform the regular grid according to the
image distortion model. To preserve the consistency of context, we
first extract the valid region of the input image. If p0 is located in
the invalid region, the offset is set as (0, 0). Based on Equation (1),
we can sample a non-regular grid from fisheye image and perform
distortion-aware convolution for layout estimation by Equation (2):

fl+1 (p0) = ∑
pn∈R

w(pn) · fl
(

p0 + pn +∆p′n
)
, (6)

where pn +∆p′n represents the irregular sampling process on the
non-regular grid. ∆p′n is the offset calculated according to the ge-
ometric relationship of orthographic projection. We first calculate
the longitude and latitude of p0 in the spherical coordinate system
pθ−ϕ (ϕ (p0) ,θ (p0)) as:

ϕ (p0) = arcsin
(

2r0
W

)
,θ (p0) = arctan

(
v(p0)
u(p0)

)
, (7)

where r0 =

√
u(p0)

2 +v(p0)
2. Then the rotation matrix

T
(
Ry (θ (p0)) ,Rx ((π/2)−ϕ (p0))

)
is generated using the Euler-

Rodrigues formula associated with counterclockwise rotation. Sub-
sequently, any point pn on the convolution kernel (resolution is
kw
∗kh) is rotated by T as follows:

p′n = T × pn

|pn|
, (8)

where pn = [i, j,d]i, j ∈ [−kw/2,kh/2]. d is the distance from R to
the center of the unit sphere and defined as:

d =
kw

2tan
(

2πkw
W

) . (9)

Next, p′n is converted to the longitude and latitude coordinates as
follows:

ϕ (p′n) = arctan

(√
x(p′n)

2+y(p′n)
2

z(p′n)

)
,θ (p′n) = arctan

(
y(p′n)
x(p′n)

)
.

(10)
Finally, p′n is back-projected to the fisheye image domain using

the longitude and latitude coordinates:

u(p′n) = W/2∗ sinϕ (p′n)∗ cosθ (p′n)
v(p′n) = W/2∗ sinϕ (p′n)∗ sinθ (p′n) ,

(11)

and the relative offset coordinates are calculated as:

u(∆p′n) = u(p′n)−u(pn)
v(∆p′n) = v(p′n)− v(pn) .

(12)

3.3 Network Architecture for Layout Estimation

An overview of our network architecture for layout estimation is
depicted in Fig. 2. We use the orthographic projection (Orth) for
the fisheye images. The input Orth fisheye is C×H×W (for chan-
nel, height, width). The network output is a binary segmentation
mask of 1×H×W, describing the shape of the floor. Given Hori-
zonNet’s simplicity, efficiency and state-of-the-art performance on
room layout estimation, we followed its encoder-decoder strategy
for learning floor layout from a single fisheye image. We introduce
the deformable convolution according to the distortion of the ortho-
graphic projection into the encoder to improve modeling ability of
CNNs for geometric transformations. Considering the distribution
characteristics of the floor corners in the fisheye image, we restore
the 2D representation [C, H, W] from the 1D vector [C, W]. Addi-
tionally, the “time step” of RNNs is designed as two parameters: row
and column, to capture long-range geometric pattern of the entire
indoor scene.

Encoder: We leverage ResNet [8] as a feature extractor, which has
proved to be one of the most effective encoders for both perspective
and omnidirectional images [29]. Considering that the low-level
convolution layer can learn low-level features such as edge and color,
the high-level convolution layer can learn key distinguishing fea-
tures. We follow the design strategy of [4] and replace the standard
convolution (of 3 × 3 filter) of the last block in ResNet-50 with our
deformed convolution, OrthConv. The last four feature maps of
the encoder are retained for simultaneous capture of low-level and
high-level features. Res2- Res5 of feature maps are then reduced
to 32 × 64 × 64, 64 × 64 × 64, 128 × 64 × 64 and 256 × 64 ×
64, respectively, through a sequence of convolutional layers (Convs
in Fig. 2). Then we reshape these features maps to the same size,
256×64×64. Finally, the reshaped features maps are concatenated
to obtain a single sequential feature map of 4096×1024 (i.e., 4096
layers for a sequence having a length 4096).

Decoder: We apply the bi-directional LSTM [23] as the core of
the decoder. The sequential feature map is fed to capture the long-
range geometric pattern of the object for the global coherent pre-
dictions even ambiguous situations such as occlusion and cluttered
scenes [29]. The output of the decoder is a 1× 1024 × 1024 feature
map, which collects all the time steps of the LSTM layers to obtain
the prediction mask of floor shape.



4 EXPERIMENTS AND RESULTS

In this section, we present a large corpus of experiments aimed at
assessing the effectiveness of our proposed distortion-aware room
layout estimation method from a single fisheye image. We first
describe the collection of fisheye dataset. Then explain the imple-
mentation details of experiment, including evaluation metrics and
training strategy. Next, the performance of our OrthConv is evalu-
ated on a real dataset and synthetic dataset for layout reconstruction
by quantitative and qualitative comparison. Extensive experiments
demonstrated that the proposed OrthConv generally outperforms
DCNv1 and DCNv2. Finally, we compare our approach with other
state-of-the-art approaches [6, 29, 42, 43] on layout estimation of
our collected fisheye dataset, and find that our approach can achieve
remarkably better performance than LayoutNetV1 [42], Layout-
NetV2 [43], CFL [6] and HorizonNet [29].

4.1 Fisheye Dataset

Collecting a high-quality fisheye dataset with sufficient number
of images and the corresponding layout groundtruth is crucial for
training more sophisticated models. Unfortunately, existing public
indoor omnidirectional datasets, such as the real dataset, consisting
PanoContext dataset [36] and Stanford2D3D dataset [1], and the
synthetic Structured3D dataset [37], are all panorama images. To
fill this gap, we construct a top-view fisheye image dataset through
transforming panorama images from [1, 36, 37], the real fisheye
dataset (e.g., PanoContext-F, Stanford2D3D-F) and the synthetic
fisheye dataset (Structured3D-F), with a total size of 22,583.

The PanoContext-F dataset consists of 512 real indoor fisheye
images such as bedrooms and living rooms. The Stanford2D3D-F
dataset with 550 real fisheye images is collected from six large-scale
indoor scene such as cluttered classrooms and office. Note that
these two datasets are too small, thus, following [5, 43], we com-
bine their training and validation data for the training stage and the
verification stage respectively to prevent overfitting. The split strat-
egy of training/validation/test for the real dataset is similar to [29],
with numbers at 817, 79 and 166, respectively. The Structured3D-F
dataset contains 21521 synthetic fisheye images, all of which are
excellent data after eliminating mislabeling. For this dataset, we
select 18111, 1739 and 1671 fisheye images for training, validation
and test, respectively.

4.2 Implementation Details

Evaluation metrics. Following the quantitative benchmark of [29,
34, 42], our approach is evaluated on three standard metrics: i) 2D
Intersection over Union (2D IoU), calculates the pixel-wise inter-
section over union by projecting our predicted floor corners to the
ground-truth and averaged across all fisheye images. Higher values
indicate better performance. ii) Corner error (CE), defined as the
average Euclidean distance between the predicted floor corners and
the ground truth corners across all fisheye images. It is normalized
by the image diagonal length and smaller is better. iii) Pixel error
(PE), is the pixel-wise error between the semantic layout prediction
(wall and floor) and the ground-truth. This error is averaged across
all fisheye images and smaller is better.

Training strategy. We implement our approach using PyTorch and
test on a single NVIDIA Titan X GPU. All input RGB images and
the corresponding ground-truths are 1024×1024. We employ Adam
optimizer [10] to train the network for 100 epochs with batch size 4
and learning rate 0.0001. The Binary Cross-Entropy Loss is applied
for the floor corners. We train our network on the real dataset of
PanoContext-F dataset and Stanford2D3D-F dataset and test them
separately. Moreover, we further pre-train on Structured3D-F dataset
for 100 epochs, then fine-tune the model on the real dataset.

Figure 3: Qualitative comparison results of layout estimation on the
real dataset. The first two rows are PanoContext-F and the following
two rows are Stanford2D3D-F dataset. In each result, we display
the source fisheye image, the ground truth (blue) and the predicted
layout (red and green). Notice that the green emphasizes our plau-
sible result and the pre-training on Structured3D-F dataset achieves
remarkable improvement, denoted as w/. The black mask is due to
the corresponding panorama from the Stanford dataset that does not
cover full view vertically.

Figure 4: Qualitative comparison of layout estimation on the synthetic
dataset. In each result, we display the source fisheye image, the
ground truth (blue) and the predicted layout (red and green). Notice
that the green emphasizes our plausible result.

4.3 Results of OrthConv

Evaluation on the real dataset. A quantitative comparison for
layout estimation between the proposed deformable convolution
and other convolutions on the real dataset are summarized in the
first (2-nd to 4-th columns for PanoContext-F) and second (5-th to
7-th columns for Stanford2D3D-F) block of Table 1. It can be ob-
served that OrthConv achieves more satisfactory results than DCNv1
and DCNv2, which validates the effectiveness of our deformable
convolutions (OrthConv) for the fisheye image. We visually com-
pare layout estimation results by different convolution methods on
PanoContext-F and Stanford2D3D-F dataset as shown in Fig. 3.
Compared to DCNv1 and DCNv2, our network with deformable



Table 1: Quantitative comparison for layout estimation on our collected fisheye dataset with the distortion-aware network using different deformable
convolutions (DCNv1, DCNv2 and OrthConv). The accuracy is shown in % and bold numbers indicate the best performance. w/o and w/ indicate
whether to use Structured3D-F for pre-training. Evaluation metrics with (↓), smaller is better; while for evaluation metrics with (↑), bigger is better.

Convolution
Type

PanoContext-F Stanford2D3D-F Structured3D-F

CE(%)↓ PE(%)↓ 2D IoU(%)↑ CE(%)↓ PE(%)↓ 2D IoU(%)↑ CE(%)↓ PE(%)↓ 2D IoU(%)↑

DCNv1[18] 4.14 1.47 79.55 5.14 1.69 74.47 0.77 0.61 94.29
DCNv2[19] 3.9 1.45 79.81 4.97 1.66 75.21 0.75 0.6 94.5

OrthConv (w/o) 3.77 1.44 80.59 4.81 1.79 75.72 0.68 0.55 94.93
OrthConv (w/) 2.45 1.09 86.53 2.99 1.17 83.46 - - -

convolutions (OrthConv) can better handle the fisheye distortion
caused by orthographic projection and produces high-quality layout
results.

We further verify the generalization of our method to room lay-
out estimation. Our network is initially trained on the synthetic
Structured3D-F dataset, generating model parameters for 100 epochs
suffixed with ‘SF100’. We then fine-tune this model on the real
dataset, containing PanoContext-F and Stanford2D3D-F, respec-
tively. As illustrated in the last row of Table 1, it makes a remarkable
improvement on the PanoContext-F and Stanford2D3D-F dataset,
with an overall performance gain of CE (1.32%, 1.82%), PE (0.35%,
0.62%) and 2D IoU (5.94%, 7.74%) respectively. Furthermore,
qualitatively our results (w/ Structured3D-F pre-training) are signifi-
cantly better than the results (w/o Structured3D-F pre-training) as
shown in Fig. 3. This indicates that the generalization capability and
the efficiency of the proposed model.

Evaluation on the synthetic dataset. The quantitative results for
layout estimation between the proposed deformable convolution and
other convolutions on the synthetic dataset are shown in the third
(8-th to 10-th columns for Structured3D-F) block of Table 1. The
proposed OrthConv obtains much higher estimation accuracy on
2D IoU and much lower error on CE compared with DCNv1 and
DCNv2. The visual results on the Structured3D-F dataset are shown
in Fig. 4. We can see that DCNv2 performs better than DCNv1,
while our OrthConv is less error-prone and generally produces a
more plausible layout estimation than others.

4.4 Comparison with State-of-The-Art Layout Estima-
tion Methods

We compare our approach with the state-of-the-art data-driven meth-
ods: LayoutNetV1 [42], LayoutNetV2 [43], CFL [6] and Horizon-
Net [29]. In particular, we make a comparison with the results of
CFL for standard convolutions (denoted as CFLStd) and equirectan-
gular convolutions (denoted as CFLEqui) to further verify the effec-
tiveness of our OrthConv. Additionally, we modify LayoutNetV2,
replacing the last block in ResNet50 with OrthConv (denoted as
LayoutNetV2OrthConv), to verify the effectiveness of using RNN
as a decoding strategy. Though all four methods follow the same
encoder-decoder strategy, they take a single RGB panorama as the
network input, and the general framework exists differently in the
details. A direct comparison of these four methods may confuse
the impact of contributions and obtain the implausible layout es-
timation. To carry out a fair comparison, we first unify some of
the training details consisting of the input of a single RGB fisheye
and the parameters of the network. Then we modify the PyTorch
source code of LayoutNetV1 [42], LayoutNetV2 [43], CFL [6] and
HorizonNet [29] available for retraining on the fisheye dataset. Fi-
nally, we make a quantitative and qualitative comparisons of four
methods on estimating Manhattan layout using the PanoContext-F,
Stanford2D3D-F and Structured3D dataset.

Qualitative results. The qualitative comparisons of the four meth-
ods on three datasets are shown in Fig. 5. The first three rows are

the comparison results of all data-driven methods on PanoContext-F
dataset. The middle two rows demonstrate the comparison results
on Stanford2D3D-F dataset. Our approach is superior to the other
methods on both datasets, and has better robustness to many sit-
uations, such as open corridors and severe occlusion as shown in
Fig. 5 (2nd row, 3rd-5th rows). Additionally, the qualitative results
of the four methods on the PanoContext-F dataset are better than
the Stanford2D3D-F dataset, which is mainly related for two rea-
sons. The first one is the fisheye image which contains a black mask
converted from Stanford2D3D dataset, which generated from the
original panorama does not cover the full view vertically. This mask
influences the accuracy of feature extraction. The second one is
Stanford2D3D-F dataset which shows more challenging scenarios
such as cluttered laboratories or corridors. PanoContext-F dataset
contains simpler indoor scene like bedrooms and living rooms.

The last three rows of Fig. 5 illustrate the qualitative comparisons
of the four methods on Structured3D dataset, where the scenarios
are less complex than the two real datasets mentioned above. The
results show that our approach can achieve more accurate estimation
of localization of layout corners, especially for a better estimation
of the cluttered scenes and the open spaces, such as the balcony and
kitchen (7th row and 8th row).

Quantitative Evaluation. Table 2 demonstrates the performance of
these four methods on layout corners estimation using PanoContext-
F dataset, Stanford2D3D-F dataset and Structured3D dataset, respec-
tively. We consider CE, PE and 2DIoU for the performance evalua-
tion. The results display that our approach obtains state-of-the-art
layout estimation from a single fisheye image on three datasets. For
PanoContext-F, Stanford2D3D-F dataset, LayoutNetV1 and CFLStd
have similar performance on CE and 2DIoU while LayoutNetV2
boosts the overall performance. Especially, LayoutNetV2OrthConv
with a large margin (∼3.5% in CE, ∼18% in 2DIoU). Observably,
the performance of CFL Equi has a large drop compared with CFLStd
on these two real datasets (∼4.5% in CE, ∼15% in 2DIoU), while
it is comparable on Structured3D-F dataset. This shows that the
equirectangular convolutions cannot solve the distortion in the fish-
eye that is different from the panoramic distortion. Compared with
LayoutNetV2OrthConv, our method has a further improvement, espe-
cially on PanoContext-F dataset and Structured3D-F dataset. This
is due to the fact that LSTM, a type of RNN architecture, stores its
prediction information for other regions in the cell state, and thus it
can accurately predict the occlusion region based on the geometric
pattern of the entire scene.

5 APPLICATIONS

The use of digital images and videos captured by traditional and
omnidirectional cameras has grown explosively in such fields as
surveillance and social networking. The quantity of media places a
cognitive burden on users, particularly in tasks such as monitoring
videos captured from massive camera networks. The most widely
used but also low efficient way to display massive surveillance videos
is to arrange them in a monitor matrix. Researchers have studied
how to use 3D graphics and mixed reality techniques to effectively



Figure 5: Comparison with state-of-the-art methods on three datasets. The 1st to 3rd rows are PanoContext-F, the 4th and 5th rows
are Stanford2D3D-F dataset and the last three rows are Structured3D dataset. Left to right: results of LayoutNetV1, LayoutNetV2Std ,
LayoutNetV2OrthConv, CFLStd , CFLEqui, HorizonNet and our approach. In each result, we display the source fisheye image, the ground truth (blue)
and the predicted layout (red and green). Note that the green emphasizes our plausible result.

Table 2: Quantitative comparison of [6, 29, 42, 43] and our approach on our collected fisheye dataset. The accuracy is shown in % and bold
numbers indicate the best performance. Evaluation metrics with (↓), smaller is better; while for evaluation metrics with (↑), bigger is better.

Methods PanoContext-F Stanford2D3D-F Structured3D-F

CE(%)↓ PE(%)↓ 2D IoU(%)↑ CE(%)↓ PE(%)↓ 2D IoU(%)↑ CE(%)↓ PE(%)↓ 2D IoU(%)↑

LayoutNetV1 [42] 7.62 7.20 60.75 8.65 6.71 56.72 5.9 6.23 58.21
LayoutNetV2Std [43] 5.73 5.96 75.49 6.64 5.91 70.96 1.33 2.00 90.67
LayoutNetV2OrthConv 4.40 4.61 78.91 4.89 4.90 75.46 1.15 1.88 91.58

CFLStd [6] 8.53 2.19 62.71 9.89 2.78 57.78 5.96 1.34 68.95
CFLEqui [6] 13.85 3.29 46.21 14.18 3.43 44.82 6.11 1.46 66.79

HorizonNet [29] 4.14 1.48 79.42 5.19 1.71 73.91 0.89 0.69 93.33
Ours 3.77 1.44 80.59 4.81 1.79 75.72 0.68 0.55 94.93

organize and visualize videos captured from such networks, also
known as immersive video [15, 18, 22, 25, 38]. It could produce
immersive, detailed, informative, spatio-temporally consistent visual
experience.

For a single ceiling mounted camera equipped with 180◦ circular

fisheye lenses, thanks to its low cost and omnidirectional FoV, it
can obtain image information of the entire scene to the maximum
and efficiently. This type of image has great advantages in structure
recovery, content visualization and overall context understanding.
DeCamp et al. [18] proposed an immersive system for browsing and



Figure 6: MR video surveillance: an real office environment, captured
from a building video surveillance system, constructed from 9 fisheye
lens cameras. (a) The layout estimation result of our approach for
each fisheye image (marked by green lines). (b) The existing 3D
models of the office environment. (c) The texture model recovered
from each fisheye image consists of one floor and four walls.

visualizing surveillance video, HouseFly. It uses fisheye camera as a
video capture tool and regular indoor CAD model a visual carrier of
video. However, it uses an interactive calibration method to project
the video onto the 3D model to display multiple streams, which is
time-consuming and labor-intensive.

The essence of camera calibration is to calculate the camera
intrinsic and extrinsic parameters. We perform the calibration by the
pairs of corresponding points (pi, Pi), i is the number of wall-floor
corners. pi is the image-coordinate point of corner generated from
our layout estimation approach, as shown in Fig. 6(a). Pi denotes the
corresponding world-coordinate point on the corner of the existing
3D model, a manually built CAD model, as shown in Fig. 6(b). This
model as one of the primary display elements, provides an overall
space for MR video surveillance. We also need manual operations
to annotate 4 matching points for the upper corners of fisheye image
and the 3D model. With help of them, since the correct corner maps
have been found for each fisheye image, rich corresponding points

could be provided. Given these corresponding points, we define an
error function for the calculation of camera parameters (e.g., rotation
and translation matrix) through the Levenberg Marquardt solver [17].
Then the projective texture mapping [26] is conducted to calculate
the corresponding world-coordinate point for image-coordinate point
on the fisheye image, generating the textured model as shown in
Fig. 6(c). Finally, we perform texture update for real-time video to
achieve immersive video surveillance.

The method of automatic or semi-automatic room layout esti-
mation based on fisheye image can provide high-efficiency and
low-cost technical implementations for the mapping process. This
technology bringing broad application prospects in VR house view-
ing and MR video surveillance. Fig. 6 We display an MR-based
real building video surveillance scene, equipped with nine fisheye
lens cameras, with a deployment height of 2.8 meters, as shown in
Fig. 6. It achieves the visualization of the synchronized multiple
video streams, which can be used for intelligent building manage-
ment in the future. However, it also have some limitations: (i) due to
the lack of non-cuboid images, one assumption of our method is the
cuboid geometry. It is difficult for our method to obtain plausible
layout estimation from noncuboid image, such as the 4th and 5th in
Fig. 5; and (ii) the lack of texture in the fisheye image will bring a
poor visual experience, such as the black mask of the 4th and 5th in
Fig. 5.

6 CONCLUSION

In this work, we have presented a distortion-aware learning network
to estimate room layout from a single fisheye image. Our network
architecture is trained under the complete supervision of ground
truth corners. To achieve this, we collect the first fisheye dataset by
re-using public available panorama images with both real-world and
synthetic datasets. Since distortion is a major challenge for layout
estimation from fisheye images, we introduce deformable convo-
lution (i.e., OrthConv) to overcome it caused by the orthographic
projection. Experiments show that it outperforms the state-of-the-
art convolutions for omnidirectional image processing, including
DCNv1 and DCNv2. Additionally, extensive comparative experi-
ments with the state-of-the-art methods show that our method can
achieve superior performance, where directly training using our fish-
eye dataset is the key to achieve appreciable accuracy. What’s more,
we present an MR-based building video surveillance scene, achiev-
ing an immersive hybrid display experience and demonstrating the
high-efficiency of our approach for MR video surveillance. Finally,
our fisheye dataset can contribute to development of future appli-
cations (e.g., surveillance, navigation and entertainment) requiring
layout estimation, depth estimation and object detection in fisheye
images.

As our approach is the first data-driven work for fisheye layout es-
timation, there are many challenges needed to overcome. One is that
the prediction performance of our method may be affected by the
large occluding objects in the fisheye image of the real scene. The
other is the layout estimation results of our approach are restricted
to the Manhattan world. We will explore the following research
directions in future work. First, introducing instance segmenta-
tion or object depth estimation branch to the network architecture,
which ignores the large occluding objects to potentially improve the
accuracy of layout estimation. Second, designing a more general
network for omnidirectional image processing that is not limited to
and Manhattan, including panorama and fisheye images with serious
distortions.
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formable convolutions for semantic segmentation of fisheye images in
autonomous driving systems. arXiv preprint arXiv:2102.10191, 2021.
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