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RCAG-Net: Residual Channelwise Attention Gate
Network for Hot Spot Defect Detection

of Photovoltaic Farms
Binyi Su , Haiyong Chen , Kun Liu , and Weipeng Liu

Abstract— The small hot spot defect detection for photo-
voltaic (PV) farms is a challenging problem due to the feature
vanishing as the network deepens. To solve this challenging
problem, a novel residual channelwise attention gate network
(RCAG-Net) is proposed by employing a novel RCAG module to
achieve multiscale feature fusion, complex background suppres-
sion, and defect feature highlighting. In RCAG-Net, the novel
RCAG module first realizes feature fusion by adding the features
of different scale layers. Next, global average pooling (GAP) and
multilayer perceptron (MLP) are used to dimension reduction
and refinement of the fused features, then yielding an attention
map for channelwise feature reweighting by gate mechanism,
which employs selective transmission of the convolution neural
network (CNN)-extracted features to achieve informative feature
filtering. Moreover, residual connection from the fused features
to the final output facilitates the insertion of the new RCAG
into some classical pretrained models, without breaking its initial
behavior. Finally, the proposed approach is validated through a
real defect detection system, and the experimental result clearly
verifies its effectiveness for small hot spot detection of PV farms.

Index Terms— Attention network, defect detection, photo-
voltaic (PV) farms, unmanned aerial vehicle.

I. INTRODUCTION

SOLAR photovoltaic (PV) systems can directly convert
solar energy into electrical power. Nowadays, PV elec-

tricity energy is becoming more and more interesting and
attractive among many kinds of renewable energies. In 2019,
China alone accounts for almost 40% of global solar PV
expansion. With increasing cost-competitiveness and contin-
uous policy support, global additions will exceed 110 GW per
year by 2024. Moreover, the total global power generation of
PV systems may reach 1200 GW by 2024 [1].
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Fig. 1. PV farm and UAV in the left picture, IR image with four small
hot spot defects (small object area ≤ 322 pixels, defined in MS COCO data
set [9]) in the blue circle on the right picture, and one multicrystalline PV
module in the green box.

Thus, defect detection is crucial to the normal operation
of PV farms [2] for the timely and accurate fault elimination,
which advantages safe and high-efficiency running of the PV
farms in the field. As shown in Fig. 1, most of the defects and
failures on the multicrystalline PV module are hot temperature
regions, named hot spot defect, which presents as blob-shape
highlight areas in the infrared (IR) images captured by
thermal IR imaging camera mounted on the unmanned aerial
vehicle (UAV) [3]. These hot temperature regions associate to
some faults, such as dust shielding, broken cells, and circuit
fault, which are easily caused by external environment and
service life.

Fig. 2 presents the architecture of our UAV-based hot spot
detection system, which can diagnose the defect location of
global positioning system (GPS) in PV farms. By UAV-based
image acquisition system, we can capture relatively clear IR
image of hot spot defects, while the characteristics of these
defects present small scale, low contrast with background,
and the background interference of the suspected defect,
which brings some difficulties to the accurate recognition and
location of these hot spot defects in PV farms. However, hot
spot defects will reduce the efficiency of power generation,
produce fire hazards, and then cause irreparable economic
losses. Thus, detecting these defects in PV farms is quite
necessary for safe and efficient operation during the power
generation process.

In fact, computer vision-based method can meet the impera-
tive requirement of the safe and efficient operation in PV farms
[4]. Conventional computer vision methods for defect inspec-
tion mainly depends on filters [5] or feature descriptors [6],
which needs to be designed according to specific applications.
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Fig. 2. Our designed UAV-based intelligent automatic defect detection system for hot spot defect in PV farms.

Image filtering is to filter out the specific band frequency
in the signal, so as to retain the required band frequency [5].
However, filter-based methods heavily rely on the expertise
experience for different applications, which limited its exten-
sion. Feature descriptors [6] in conventional methods mainly
depends on manually designed extractors, which requires
professional knowledge and a complicated parameter adjust-
ment process. At the same time, each method targets a
specific application and has poor generalization ability and
robustness.

Recently, the deep convolution neural networks (CNNs)
have obtained significant success for defect inspection task
[7]. Deep learning is a data-driven feature extraction method.
According to the learning of massive image samples, the spe-
cific feature representation of the data set can be obtained,
which are more robust and have more generalization abil-
ity. The disadvantage is that the data set used to train the
model requires higher computational complexity. Despite its
shortcomings, CNN-based methods have achieved excellent
performance on the image classification and detection task [8].
Thus, the application of CNN to solve hot spot detection in
PV farms shows bright prospect.

For raw PV farm IR image, there are two challenging obsta-
cles: one is the small-scale hot spot defect (small object area ≤
322 pixels, defined in MS COCO [9]), which just occupies
small proportion of pixels in captured images, and another is
the complex background disturbance.

In the CNN-based model, as the number of convolutional
layers deepens and downsamples, small-scale defect features
will continue vanishing, resulting in poor detection perfor-
mance. As an effective approach, multiscale feature fusion
through cross-connection of different scale has great potential
to lighten the feature vanish of the small-scale defect, which is
employed in this article to improve the effectiveness of small
object detection. Li et al. [10] employed single shot detec-
tion (SSD) algorithm based on the pyramidal feature fusion
to detect small object, which achieved a great improvement
comparing with original SSD model [11]. Dong et al. [12]
proposed attention-based feature fusion network for surface

small defects’ detection, which can fully exploit the high-level
features that contain a great deal of semantic information and
low-level features that contain rich textural details of small
defect. However, low-level features except for rich texture
features also contain a large amount of complex background
redundant information, which would have a negative effect to
the model learned by training.

Based on the above analysis, to suppress complex back-
ground feature disturbance during the pyramid feature fusion
process, a novel residual channelwise attention gate (RCAG)
module is proposed, which achieves feature fusion by adding
the features of different scale layers. Then, global average
pooling (GAP) and multilayer perceptron (MLP) are used
to dimension reduction and refinement of the fused features,
which will form an attention map for channelwise feature
reweighting by gate mechanism [13] that is responsible for
selective transmission of signals or features. Gate mechanism
can achieve noise background feature suppression and defect
feature highlighting. For example, if one feature map from the
fused features mainly contains defect features, a high weight
in the attention map will be multiplied with it, which indicates
that the feature is allowed to pass. Otherwise, a small weight
will be used, which indicates that the feature is prohibited
to pass. By above calculation, the useful semantic and tex-
ture features from pyramidal layers are preserved, and noise
background features will be suppressed as much as possible.
Moreover, residual connection from the fused features to
the final output allows us to insert a new RCAG module
into some classical pretrained models, without breaking its
initial behavior, thereby greatly enhancing the versatility of
the RCAG module.

Finally, a novel end-to-end regression network (RCAG-Net)
is proposed to detect small hot spot defects by employing two
RCAG modules to achieve multiscale feature fusion of the
final three layers in the backbone feature extraction network
through cross-scale connection. The proposed RCAG-Net can
greatly improve the detection accuracy of small hot spot defect
in PV farm IR images. The contributions of this article are
summarized as follows.
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1) We propose a novel RCAG module, which can adap-
tively achieve pyramidal features fusion, background
features suppression, and defect features emphasis by
employing attention map generated by GAP and MLP
operations to reweight with the fused multiscale pyra-
midal features, and residual connection ensures the ver-
satility of the novel RCAG module.

2) We propose a novel CNN-based defect detection net-
work (RCAG-Net) to detect small hot spot defects,
which employs two RCAG modules to select the infor-
mative multiscale feature in the backbone final three
layers by cross-scale connection. This operation can
greatly improve the feature representation ability of the
small hot spot defect in PV farm IR images.

3) The proposed RCAG-Net has strong competitiveness in
hot spot defect classification and detection performance.
Furthermore, the speed of RCAG-Net is fast, which has
great potential to be applied in practical hot spot defect
location task.

The rest of this study is organized as follows. Section II
presents the defect inspection methods, CNN-based detec-
tors, and some attention networks. Section III overviews
the designed UAV-based defect detection system. Section IV
introduces the details of the proposed approaches. Section V
gives and discusses the related experimental results. Finally,
conclusion is summarized in Section VI.

II. RELATED WORKS

A. Defect Inspection

Many computer vision methods have been proposed to
detect defects in various application scenarios. These meth-
ods can be roughly classified into the following types:
image filtering methods, feature descriptor-based methods, and
CNN-based methods.

For image filtering methods, Aghaei et al. [4] proposed a
filter-based algorithm to detect hot spot defect in IR image
of PV farms, which employed the Gaussian filter and the
Laplace filter to filter out the complex background information
and retained the hot spot region simultaneously. Li et al. [5]
employed an image matching method based on the Gaussian
function to detect surface defects of the modules in PV farms,
which achieved desirable performance.

Different from image filtering methods, descriptor-based
methods mainly rely on the extracted features and classifiers
for defect recognition. Gao et al. [6] employed a feature
extractor to extract the texture features of the edge, corner,
color, and blob in the PV farm IR images, which applied
a classifier to divide these images into defective and non-
defective. The limit of this method is that the IR image is
captured by car-based system, which is slower than UAV-based
system to image acquisition used in this article. Liu et al. [14]
developed an unsupervised machine learning algorithm based
on one-class clustering, which applied morphology-based
approach to achieve feature extraction, and then clustered all
the defects features with similar characteristic into one class
to classify the defects in PV farms.

Recently, CNN-based methods have gradually become
mainstream for defect detection. Li et al. [15] introduced a
lightweight neural network for defect inspection of the PV
farms, which can be used to classify several types of defects in
visible images and achieve significant accuracy improvement
comparing with conventional methods. Deitsch et al. [16]
presented a novel VGG16-based methodology to automatically
classify the defective PV module in solar cell electrolumi-
nescence images. Alvaro et al. [17] developed a two-stage
network to build a robust and high-efficiency defect detection
module, which first combined the camera GPS position with
defect position in IR image to calculate the practical GPS
position of the defects in PV farms. However, this method
is less time-efficiency: one reason is that this approach is
two-stage network [8], [18], which needs a Region Proposal
Network to extract the suspected defect proposals in PV farm
IR image, and then, another network is applied to classification
of these proposals.

B. CNN Detectors

The CNN detectors attempt to classify and locate each
object in the image with a right-size bounding box, which
can be classified into two types: 1) region-based meth-
ods, e.g., Faster R-CNN [8] and Mask R-CNN [18] and
2) regression-based methods, e.g., Retinanet [19] and YOLOv3
[20]. Region-based methods first generate many proposals that
contains defects; then, these proposals will be sent to the
following network for class division. Region-based methods
are more accurate, but it slightly increases computational
complexity. The regression-based method is a research hot
topic [21] recently, detection accuracy of which can be close to
or better than that of region-based methods while maintaining
fast speed. The representative regression-based method is
YOLOv3, which directly divides an image into small grids to
predict bounding boxes by regression. The detection approach
proposed in this article is also a one-stage method, which
can make a balance between speed and accuracy of defect
detection.

C. Attention Network

Attention mechanism has become an indispensable part
of the CNN model and has shown excellent effects in
suppressing complex backgrounds and highlighting object
features. Schlemper et al. [13] proposed a novel soft-attention
mechanism, which employed gate mechanism and attention
module to achieve noise feature suppression and informative
feature highlighting in tissue/organ detection. Hu et al. [22]
proposed a novel channelwise attention module, which is
applied to perform dynamic channelwise feature reweighting
and makes a good performance in image classification task.
Fu et al. [23] applied self-attention mechanism to integrate
contextual information of objects and suppress the noise
background in scene segmentation task. Su et al. [24]
proposed a novel complementary attention network to detect
solar cell PV defects, which can realize the suppression of
noise features and the highlighting of defect features by
fusing channelwise features and spatial features.
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TABLE I

PARAMETERS OF UAV SYSTEM

III. UAV-BASED DEFECT DETECTION SYSTEM

At present, in the field of PV farm defect detection, most
of the UAV-based systems [5], [25] are only applied to image
inspection and cannot obtain the GPS position of defects.
Thus, a new UAV system combined with the GPS position
of IR thermal camera to calculate the hot spot defect GPS
position is designed, which can obtain the rough GPS location
information of the defective area and provide a reference for
defective PV module maintenance and replacement. Noting
that GPS-based precise defect positioning is still a challenging
task, which depends on two aspects, one is the defect location
in the thermal image, another is the image GPS position in PV
farm. In this article, the main target is to improve the defect
location accuracy in the thermal image.

Fig. 2 presents our designed UAV-based intelligent auto-
matic defect detection system. When we give the geographic
information of the PV farm and the cruising range, the UAV
will automatically plan a proper cruise route to cover the whole
farm [25]. The speed, altitude, and photographic frequency
are controlled by the ground control station (GCS). Every
image captured by the thermal IR camera on the UAV is
transmitted to GCS by the 4G wireless communication net-
work in real time. Simultaneously, image GPS position, UAV
altitude, and image acquisition frequency corresponding to
each image will be preserved by GCS. Then, the discriminative
features will be extracted for defect location through proposed
deep-learning based algorithm in computer server, and this
recognition process is offline. We employ the camera GPS
position recorded when taking the IR images and the defect
location in PV images to calculate the defect GPS position
through coordinate system transformation, which is an essen-
tial reference to workers to maintain the normal operation of
the PV farms.

The PV farm IR images are collected by a digital IR thermal
imaging camera (Zenmuse XT2) installed on a lightweight
UAV (DJI M200 V2). The sharpness of aerial images and
field of view scope of the camera have a great influence
on the recognition results. Choosing a suitable field of view
scope is essential to hot spot detection. As shown in Fig. 3,
the larger the field of view scope is, the more multicrystalline
PV modules are contained, but the more blurred the image is.
The limitation of the proposed RCAG-Net is that, if the image
is taken by UAV at an altitude of about 50 m, the background

Fig. 3. Images collected by UAV at different altitudes.

Fig. 4. GPS position of the camera relative to the GPS location of the defect.

is very complicated, and the hot spot defect is too small,
the proposed RCAG-Net cannot get a good detection effect.
Thus, the maximum altitude of 35 m is selected in this article,
which is a balance between the view scope and the image
sharpness. The specifications of the UAV (DJI M200 V2) show
that, when the GPS signal is good, the GPS vertical error
of the UAV is ±0.5 m, and the horizontal error is ±1.5 m
[26]; thus, the maximum error introduced in the location is
estimated to 1.5 m. Noted that other parameters of UAV system
are illustrated in Table I. Moreover, season, weather, surface
temperature, and other factors should be considered in the
process of IR image acquisition.

As shown in Fig. 4, the angle at which the thermal IR
camera takes the image is perpendicular to the ground. The
altitude H1 of the UAV determines the field of view scope
(length: L1, width: W1), which corresponds to the number of
PV modules included in the IR image

L1 = 2H1 tan(60◦/2) (1)

W1 = 2H1 tan(54◦/2). (2)

x �o�y � is the image coordinate system, and the corresponding
coordinate of the defect location is (x �

1, y �
1). xoy is the spatial

coordinate system in PV farms corresponding to the image.
The hot spot defect coordinate (x1, y1) in system xoy can be
calculated by the following function:

x1 = x �
1/512 × W1 − W1/2 (3)

y1 = y �
1/640 × L1 − L1/2 (4)

where 512 corresponds to the height and 640 corresponds to
the width of the IR image. The hot spot defect GPS position
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(xdefect, ydefect) is defined as follows:
xdefect = xGPS + x1/dlong (5)

ydefect = yGPS + y1/dlati (6)

where xGPS and yGPS are the longitude and latitude of the
thermal IR camera, respectively, so that the GPS of coordinate
origin o is the same. dlong is the correspondence between
longitude and meter, which is 102834.7426 m per degree
in this article. dlati is the correspondence between latitude
and meter, which is 111712.6915 m per degree. Noted that
the conversion relationship between meter and longitude or
latitude is related to geographical location. According to the
above calculation, we can get the actual GPS position of the
defect in the PV farm. The defect GPS positions are saved as
a text file, which will be used to create a measurement history.

IV. METHODOLOGY

In this section, we first introduce the channelwise atten-
tion module in SENet [22], which motivates our proposed
RCAG Module. Then, we present the general and lightweight
additional block RCAG. Finally, the defect detection model
RCAG-Net is presented, which incorporates several RCAG
modules to fuse pyramidal features and suppress the complex
background disturbance for small hot spot defect detection in
PV farm IR images.

A. Revisiting Channelwise Attention in SENet

We first revisit one of the most popular channelwise atten-
tion units in SENet, which improves the representational power
of the CNN by measuring channelwise relationships. Given
the input feature X ∈ R

C×W×H , where C , W , and H are
the channel number, width, and height of the feature maps,
respectively, the GAP layer will pool it into an 1-D vector
g(X) ∈ R

1×C

g(Xk) = 1

W H

W,H∑
i=1, j=1

Xi, j,k, k ∈ {1, . . . , C}. (7)

Then, the MLP that is composed of two fully connected (fc)
layers (fc-ReLU-fc) is employed to feature refinement. After
being activated by the sigmoid function, the channelwise
attention map A ∈ R

1×C is obtained, which will multiply
with the input feature X ∈ R

C×W×H to accomplish the useful
feature highlighting and noise feature suppression.

The channelwise attention module in SENet is a single scale
feature filter module, and the versatility of this module needs to
be further enhanced. To address above two problems, we pro-
pose a novel RCAG module, which employs gate mechanism
to integrate the fused multiscale feature of different pyramidal
layers. Moreover, the versatility of the RCAG module can be
greatly improved by the residual connection operation [27].

B. Novel RCAG

When revisiting the single-scale channelwise attention mod-
ule in SENet, how to design a multiscale, general, and light-
weight attention module is very necessary. Thus, we propose

the novel RCAG module, which can greatly improve the
performance of small hot spot defect detection in the PV farm
IR image captured by the UAV-based system.

The schematic of the novel RCAG module is presented
in Fig. 5. Given two different scale gate features, the multiscale
feature fusion is accomplished by upsampling, convolution,
addition, and activation operations. Then, the fused features
will be filtered by the following convolution operation, and
the GAP layer is employed to extract the global features
and accomplish dimension reduction. Next, the MLP layer is
combined with a sigmoid function to generate the channelwise
attention map, which will multiply with the fused feature for
feature reweighting. Finally, the residual connection from the
fused features to the final output allows us to insert a new
RCAG module into some classical pretrained models, without
breaking its initial behavior, and it will improve the efficiency
of the network learning channelwise attention map and prevent
the gradient from disappearing during the training process.

Specially, the features from different scale layers p ∈
R

Cp×W/2×H/2 and q ∈ R
Cq×W×H are transformed into two

feature spaces f and g, respectively; after elementwise sum-
mation and activation with an ReLU function, the fused feature
z is obtained, which can be defined as

z = ReLU( f (upsampling(p)) + g(q)) ∈ R
C×W×H (8)

where f (p) = W f p and g(q) = Wgq . Then, the feature z is
fed into a convolutional layer to filter the multiscale features
and generates another feature space h, where h(z) = Wh z.
Next, the GAP layer is employed to dimension reduction and
global features extraction, which will pool h(z) into an 1-
D vector g(h(z)) ∈ R

1×C . Next, MLP employs two fully
connected layers f c1×C/r and f c1×C (where the first layer
f c1×C/r has C/r channels, the second layer f c1×C has C
channels, and r is the reduction ratio) with ReLU function to
refine the global feature g(z). Subsequently, the sigmoid func-
tion is applied to feature activation to produce the channelwise
attention map

A = sigmoid( f c1×C(ReLU( f c1×C/r (g(h(z)))))) (9)

where W f , Wg, Wh ∈ R
C×W×H are weights learned by 1 × 1

convolution operations.
Each channel Ak, k ∈ {1, . . . , C} in attention map A ∈

R
1×C will reweight with the feature map in h(z) ∈ R

C×W×H ,
which is a feature reweighting process. By above calculation,
the useful semantic and texture features from different layers
are preserved, and the complex background will be suppressed
as much as possible. Finally, we perform the residual con-
nection operation that is an pixelwise addition with the fused
feature h(z) to acquire the final output feature o f

o f =
C∑

k=1

Akh(zk) + h(z). (10)

The residual connection allows the attention network to
learn the weights of each channel at a global view, which
can greatly enhance the versatility of the attention module.
Otherwise, these weights in the RCAG module can be trained
during backpropagation as same as other weights in the
network.
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Fig. 5. Schematic of the proposed RCAG module. Small object features are selected by analyzing both the textural and sematic information provided by
the gate signals (p and q), which are collected from two different scales.

Fig. 6. Architecture of the proposed RCAG-Net. L1–L5 are multiscale feature extraction layers. y1–y3 are multiscale prediction layers.

Algorithm 1 Defect Detection of RCAG-Net
Input: a raw IR image with a size of 640 × 512 pixels
1) resize the image to 416 × 416 pixels
2) extract the image final three-layer features F3, F4 and F5

3) initialize vector F as F5

for i = 1 in range(3)
i) utilize feature F to predict the defect class ci

and location li

ii) fuse multi-scale features F = RC AG(F, F5−i )
4) Non-Maximum Suppression (NMS) and Intersection over
Union (IoU) are used to output the suitable defect location
li

Output: class c and position l of the defect

C. Overview of the Proposed Defect Detection Architecture

The RCAG module has a similar effect as the attention
module in SENet [22], which can selectively emphasize infor-
mative features and suppress disturbed ones. Fig. 6 presents the
overall architectures of the proposed RCAG Network (RCAG-
Net), and the pseudocode is presented in Algorithm 1. The
proposed RCAG-Net employs two novel RCAG modules to
obtain better feature representation ability for the small hot
spot defect with the complex background disturbance, which
can be divided into four major components: i) input image;
ii) feature extraction; iii) feature fusion; and iv) prediction.

Noted that, except for the RCAG block, the architecture of the
RCAG-Net is designed by referring to YOLOv3 [20], which
is one of the most popular deep learning object detectors in
practical applications as the detection accuracy and speed are
well balanced [28].

1) Input Image: The raw IR images of the PV farm and
corresponding ground truths are input to the network, which
will extract the texture and semantic features. The larger the
image size, the higher the computational power and memory
required. Compared with the size of the original image
(640 × 512), the processing speed of 416 × 416 images will
be faster, and its accuracy will hardly be affected. In addition,
the size of the input model image must be a multiple of 32
(416/32 = 13). Because the network downsamples five times,
each sampling step is 2, so the maximum step of the network
(step refers to the input size divided by the output) is 25 = 32,
as shown in Fig. 6. By the above analysis, the input IR
image with original resolution 640 × 512 pixels is resized
to 416 × 416 pixels through bilinear interpolation, and the
corresponding ground truths should be adjusted relevantly.

2) Feature Extraction: DarkNet53 [20] as the backbone
of the RCAG-Net is employed to extract the informative
feature of the IR image in PV farms, which applies the
1 × 1 and 3 × 3 convolutional operations [Convolution-
BatchNormalization-LeakyReLU (CBL)] with the residual
connection to filter out the image features. The architecture
of the DarkNet53 is presented in Table II, which includes
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TABLE II

ARCHITECTURE OF THE DARKNET53

five-scale layers. Every layer is composed of convolution and
residual connection to extract features, and the downsampling
operation is accomplished by the convolutional layer using a
3×3 kernel with stride = 2. DarkNet53 is much more effective
to extract informative features in different pyramidal layers,
which will be fused through the following attention-based
multiscale feature fusion module (RCAG).

3) Feature Fusion: The output features of the final three
pyramidal layers (L3–L5) will be integrated together by the
novel RCAG module with recurrent operations. Low-level fea-
ture maps contain rich textural details of small objects, while
high-level feature maps include much semantic information
of the large object. RCAG module utilizes gate mechanism
combining with channelwise attention to integrate different
pyramidal feature maps, which greatly enhances the feature
representation ability for small hot spot defect detection under
the complex background disturbance in the PV farm IR
images. Noted that, except for the multiscale feature fusion
module based on the novel attention module (RCAG), other
aspects are similar to YOLOv3.

4) Prediction: Three prediction headers absolutely employ
three feature maps with different scales to predict the objects
with different sizes. A small object is predicted by the large
scale headers, such as y2 and y3, which includes more details
of a small object. A large object is predicted by the small-scale
header such as y1, which includes more information of large
object after feature downsampling.

During prediction, the input image is divided into several
grids, the number of which is the product of height and width
of final output feature maps. The network divides each thermal
image in the training data set into S2 grids. If the center of
the hot spot ground truth falls into a grid, then the grid is
responsible for detecting the object. Each grid in the detection
header is assigned with three types of anchors (header y1:
10×12, 11×9, and 16×16; header y2: 7×11, 8×10, and 9×8;

and header y3: 6 × 8, 7 × 8, and 7 × 9), which are responsible
to predict three bounding boxes, respectively. In other words,
every grid is applied to predict three defective boxes that
consist of four coordinate offsets, one confidence, and one
class predictions. Thus, the output result of the prediction
header has a size of S × S × (3 × (4 + 1 + 1)), where S × S
represents the resolution of the final convolutional feature map.

5) Loss Function: The loss function is used to evaluate the
difference between the predicted value and the ground truth.
The smaller the loss function is, the better the performance
of the model is. In proposed RCAG-Net, the loss function
for each prediction header consists of the coordinate error,
the intersection over union (IoU) error, and the classification
error, which is denoted as follows:

loss = Errorcoord + Erroriou + Errorcls. (11)

The coordinate prediction error Error_coord is denoted as
follows:

Errorcoord = λcoord

S2∑
i=1

B∑
j=1

I obj
i j [(xi − x̂i) + (yi − ŷi)]

+λcoord

S2∑
i=1

B∑
j=1

I obj
i j [(wi − ŵi) + (hi − ĥi )] (12)

where λcoord is the weight of coordinate error, S2 is the
number of grids, whose value is square of height or width
of the prediction layers (y1–y3), referring to Fig. 6, S2 =
13×13, 26×26, 52×52 for the three-scales prediction layers,
respectively, and B is the number of bounding boxes generated
by each grid. λcoord = 5 and B = 3 are selected in this study.
I obj
i j = 1 denotes that the hot spot defect falls into the j th

bounding box in grid i ; otherwise, I obj
i j = 0. (x̂i , ŷi , ŵi , ĥi )

are values of the center coordinate, height, and width of the
predicted bounding box. (xi , yi , wi , hi ) are the true bounding
box values.

The IoU error Erroriou is defined as follows:

Erroriou =
S2∑

i=1

B∑
j=1

I obj
i j (Ci −Ĉi )

2+λnoobj

S2∑
i=1

B∑
j=1

I obj
i j (Ci − Ĉi )

2

(13)

where λnoobj is the weight of the IoU error. λnoobj is assigned
with 0.5 in this study. Ĉi is the predicted confidence, which
is the likelihood that the grid i contains object. Ci is the
true confidence. The classification error Errorcls is defined as
follows:

Errorcls =
S2∑

i=1

B∑
j=1

I obj
i j

∑
c∈classes

(pi(c) − p̂i(c))
2 (14)

where c donates the class of the detected object. pi(c) rep-
resents the true probability that the object belongs to class c
in grid i . p̂i(c) is the predicted value. The Errorcls for grid
i is the total of classification errors for all the objects in
the grid. By constraint optimization through the sum of the
coordinate error, the IoU error, and the classification error,
the deep learning model will gradually converge and achieves
the desired performance.
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TABLE III

DISTRIBUTION OF THE PV FARM IR IMAGE DATA SET

6) Weight Update: The purpose of updating weights
through backpropagation is to minimize the loss. When the
proposed RCAG-Net, including the RCAG module, is trained,
the loss is taken as a function of the weight parameters, and
CNN needs to calculate the partial derivative of the loss with
respect to each weight parameter and then uses the stochastic
gradient descent (SGD) method to iteratively update weights
in the direction where the gradient descents fastest, until the
conditions for the parameter to stop updating are met. The
weight parameters of CNN can be millions or even more than
100 million. The backpropagation algorithm can efficiently
calculate the partial derivatives through the reverse derivation
mode, which can greatly accelerate the weight learning.

V. EXPERIMENTS

To evaluate the effectiveness of the proposed methods,
we carry out extensive experiments on our PV farm IR image
data set. The experimental results verify that the proposed
RCAG-Net performs much better than the previous approach
(YOLOv3) in the challenging small hot spot defect detection
task. Especially, the hot spot defect is easy to be disturbed by
the complex background, such as poor contrast and the similar
background region. In Section V, we introduce our data set and
the implementation details, and then, a series of experimen-
tal results and discussions are presented to demonstrate the
proposed methods.

A. Data Set

Our data set includes 700 defect-free images and 312 defec-
tive images, which was collected from a PV farm by a thermal
IR camera mounted on a UAV. The resolution of these images
is 640 × 512. The average size of the defect ground truth
is 112 pixels ≤ 322 pixels, which is defined as a small
object in MS COCO data set [9]. These defective images
are divided into 158 training images and 154 testing images.
The Gaussian blur, contrast normalization, image sharpening,
and image mirroring are employed to augment the data set,
which can increase the diversity of samples, thereby enhancing
the robustness of the hot spot defect detection model. The
distribution of the PV farm IR image data set is illustrated
in Table III.

B. Evaluation Metrics

The performance of classification is assessed by the
following indexes, such as precision (P), recall (R), and
F-measure (F). Moreover, average precision (AP), mean IoU
(MIoU), the number of parameters, and speed are applied to

TABLE IV

HYPERPARAMETERS OF RCAG-NET

evaluate the effectiveness of defect detection

Precision = TP

TP + TN
, Recall = TP

TP + F P
(15)

F − measure = 2 × Precision × Recall

Precision + Recall
(16)

IoU = detection result ∩ ground truth

detection result ∪ ground truth
(17)

where TP represents true positive; TN represents true negative;
and FP represents false positive. detection result is the predic-
tion box of the defects; ground truth is the manual annotation
of the real defect position in training image.

C. Implementation Details

The code of the proposed RCAG-Net architecture is accom-
plished by Keras (v2.24). We apply the k-means algorithm
to calculate the most suitable anchors of our IR image data
set, which are 6 × 8, 7 × 8, 7 × 9, 7 × 11, 8 × 10, 9 × 8,
10 × 12, 11 × 9, and 16 × 16. Due to the memory constraint
of our server, the batch size is set to 8, and the iterative
epochs are set to 500. The proposed algorithm runs on a server
with an Intel CPU (i7-6700 K, 4.00 GHz) and two NVIDIA
GeForce GTX 1080 GPUs. The input images are resized to
416×416. Each header predicts three boxes at different scales
for four bounding box offsets, one confidence prediction, and
one class score prediction. Thus, the output dimensions of the
final prediction layers (y1, y2, y2) at three different scales are
13 × 13×[3×(4+1+1) = 18, 26 × 26 × 18, 52 × 52 × 18.

In this study, we make the ground truth of the hot spot
defect via a data set annotation software (LabelImg) in
the VOC2012 format. A defect corresponds to a tightly
enclosed box, without too much expert experience. The stan-
dard VOC2012 format data set can ensure a fair compari-
son between different detectors. The VOC2012 format data
set includes three files: 1) Annotations; 2) ImageSets; and
3) JPEGImages. The Annotations file is mainly composed of
the xml file, which includes defect ground truth information.
The ImageSets file includes the Main file, in which four
text files (train.txt, test.txt, trainval.txt, and val.txt) divide
the data set. The original thermal images are placed in the
JPEGImage file. Moreover, the hyperparameters’ information
of the RCAG-Net model is presented in Table IV.

D. Evaluation

In this section, the qualitative result presentation and the
quantitative experimental analysis are carried out to assess the
performance of our proposed algorithm (RCAG-Net).

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 18,2021 at 01:32:32 UTC from IEEE Xplore.  Restrictions apply. 



SU et al.: RCAG-NET FOR HOT SPOT DEFECT DETECTION OF PV FARMS 3510514

Fig. 7. Visualization of the RCAG output feature maps. First row: raw IR image captured by UAV. Second row: output feature map obtained by the first
RCAG module in RCAG-Net (resolution: 26 × 26 pixels resize to 640 × 512 pixels). Third row: output feature maps obtained by the second RCAG module
in RCAG-Net (resolution: 52 × 52 pixels resize to 640 × 512 pixels). Fourth row: hot spot defect detection results.

1) Visualization Analysis of the Feature Maps: The RCAG
module plays the most important role in the proposed RCAG-
Net, which can guide multiscale feature fusion and suppress
the noise background features simultaneously. To explore the
performance of the proposed RCAG module in the proposed
RCAG-Net, we visualize the output feature maps, in which the
hot spot defect presents highlight regions, as shown in Fig. 7.
Feature maps can help us to better understand what has been
learned during the training process.

For example, hot spot defect a0 as shown in the white
circles of Fig. 7 is a relatively small object, the corresponding
output feature a1 in the first RCAG module that is employed to
integrate the output feature of L4 and L5 has vanished, and the
reason is that as the network goes deeper, the feature of small
hot spot defect will be weakened by convolution and down-
sampling operations until it disappears. Furthermore, feature
vanishment will lead to the small defect undetectable, while
the second RCAG module, which fuses output features of the
first RCAG module and the output features of L3, presents

complete defect information a2 that is necessary to the precise
hot spot defect detection in the PV farm IR image. Low-level
features include more textural and colorful details that are
beneficial to small hot spot defect recognition. RCAG receives
these details from L3 and integrates it with the high-level
semantic features of the first RCAG module; therefore, rich
textural and semantic information is preserved at the same
time, which will be applied to accurately predict the small
hot spot defect in IR image. The fourth row in Fig. 7 shows
the hot spot detection results, which verifies that the proposed
RCAG-Net can make an excellent performance on the small
hot spot defect detection task, in which the RCAG module
plays an important role to guide multiscale feature fusion of
the pyramidal layers and improve the feature representation
ability of small hot spot defects in PV farm IR images.
Moreover, hot spots b0 and c0 present similar characteristic
with a0.

A key problem of YOLOv3 [20] is that if the low-level layer
is directly applied to concatenate with the high-level layer, lots
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Fig. 8. Difference between the output feature map of L2 and the second
RCAG module in the proposed RCAG-Net.

of redundant information in low-level features would have a
negative effect on the model learned by training, which can
be solved by the proposed RCAG module. Fig. 8 shows the
visual difference between the output feature map of L3 and
the second RCAG module in the proposed RCAG-Net. The
L3 output feature map except for the hot spot information also
contains many complex background feature, which will have
a negative impact on the defect detection results. However,
the output feature map from the second RCAG module is
less disturbed by the complex background feature, which
illustrates that the proposed RCAG module can effectively
suppress the disturbance of the complex background during
the pyramidal feature fusion process and guide the detection
model to focus on the hot spot defects under the complex
background disturbance in the PV farm IR images, which is
beneficial to improve the detection result of small hot spot
defect in PV farm IR image.

2) Visualization of More Detection Results: More visual-
ization results are shown in Fig. 9. The hot spot defects
are very difficult to identify by the naked eyes. On the one
hand, the defects are very small, and on the other hand,
they are seriously interfered with by the complex background.
However, the proposed RCAG-Net performs accurate position
prediction under the interference of noise background, which
illustrates that the RCAG module performs effectively to
multiscale feature fusion and complex background suppression
of hot spot defect detection in PV farm IR images. As shown
in Fig. 9, the detection results include the defective box,
class, and confidence. The score threshold of the confidence
is set to 0.1 in Table IV, which can ensure that the hot
spot defect is not easy to be missed during the process of
practical intelligent fault elimination in PV farms. In short,
we can conclude from the above presentation results that
the proposed RCAG-Net framework performs precisely hot
spot defect position prediction under the disturbance of noise
background.

3) Quantitative Evaluation: The precision (P), recall (R),
F-measure (F), AP, and MIoU of original YOLOv3 and the
proposed RCAG-Net with different backbones (DarkNet19
[20], MobileNet [29], VGG16 [30], and DarkNet53 [20])
on our PV farm IR image data set are shown in Table V.
Noted that RCAG-Net is designed by referring to YOLOv3;
thus, we compare the proposed RCAG-Net with YOLOv3 by

Fig. 9. Visualization results of proposed RCAG-Net on raw PV farm IR
images captured by the UAV system.

employing different backbones to illustrate the effectiveness
and versatility of the proposed RCAG module, which can
be utilized to improve the feature representation ability of
small hot spot defect under complex background disturbance.
As shown in Table V, the experimental results are presented
objectively in terms of image-level classification and detection
on our PV farm IR image data set.

For the image-level classification task of small hot spot
defect, the RCAG module improves the performance remark-
able, which illustrates that the RCAG module can promote
the classification results of many popular CNN models, such
as DarkNet19, VGG16, MobileNet, and DarkNet53, which
are employed to extract the textural and sematical features
of PV farm IR image. As shown in Table V, the proposed
RCAG-Net achieves 2.40%, 2.99%, 2.95%, and 3.83% hit
rates of F-measure improvement from YOLOv3 corresponding
to DarkNet19, MobileNet, VGG16, and DarkNet53, respec-
tively, which illustrates that, as a general attention module,
the RCAG module can be widely used to fuse multiscale
features and boost the feature representation ability of small
hot spot defect under complex background disturbance. More-
over, when DarkNet53 is used to be the backbone, the best
experimental results are achieved by the proposed RCAG-Net,
the performance is improved to 92.61% for F-measure, and the
recall of the hot spot defect reaches 97.06%, which means that
the defect image is not easy to be missed during the image
automatic classification process.

For detection of small hot spot defect, we apply AP,
MIoU, the number of parameters, and speed to evaluate
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TABLE V

EXPERIMENTAL RESULTS OF THE YOLO-BASED METHODS (YOLOV3 AND THE PROPOSED RCAG-NET) WITH DIFFERENT BACKBONES ON OUR PV
FARM IR IMAGE DATA SET

TABLE VI

EXPERIMENTAL RESULTS OF DIFFERENT DETECTION METHODS WITH THE SAME BACKBONE (VGG16)

Fig. 10. P/R curves of YOLOv3 and the proposed RCAG-Net with the same
backbone (DarkNet53).

the performance of the proposed RCAG-Net architecture.
As shown in Table V, in the case of the same backbone,
the proposed RCAG-Net performs better than YOLOv3 in
hot spot defect detection task. Comparing with the YOLOv3
(DarkNet53), RCAG-Net (DarkNet53) improves AP and
MIoU by 4.66 and 3.01 points, respectively. The P/R curves
of YOLOv3 and the proposed RCAG-Net corresponding to
the same backbone (DarkNet53) are shown in Fig. 10. The
AP value is the enclosed area of the curve and axes. From
the above comparisons, we can conclude that RCAG-Net is
superior to YOLOv3 to detect small hot spot defects, and the
RCAG module shows good versatility for different backbones.
Moreover, time-efficiency evaluation plays a vital role in the
process of intelligent defect detection. With the same input
image size (416×416 pixels), the RCAG-Net is similar to the
previous YOLOv3 in terms of parameter number and speed,
which verifies that the proposed RCAG module is lightweight
and only slightly increases the complexity and computational
burden of the model.

TABLE VII

COMPARED WITH SOME TRADITIONAL METHODS

4) Comparison With Other Detection Methods: In this
section, we conduct the quantitative evaluation in hot spot
defect detection using RetinaNet [19] and Faster R-CNN [8],
which employ the same backbone (VGG16) to extract the
feature of PV farm IR image. RetinaNet is a one-stage and
multiscale detector, which can be applied to combine with
the proposed RCAG module to achieve small hot spot defect
detection. As compared in Table VI, RetinaNet+, the proposed
RCAG, outperforms the original RetinaNet by 3.92%, 1.89%,
and 2.74% in terms of F-measure, AP, and IoU, respectively.
The results demonstrate that the proposed RCAG module can
be well extended to other object detection frameworks using
lower model complexity.

Furthermore, except for RetinaNet, we compare our
RCAG-Net with the single-scale detector Faster R-CNN,
which is a popular two-stage network and has achieved well
performance in defect detection task [24]. In terms of the
hot spot classification task, the proposed RCAG-Net achieves
14.82% and 9.01% F-measure improvement than RetinaNet
and Faster R-CNN, respectively, which illustrates that the
proposed RCAG-Net is the better at classifying defective
IR image of the PV farm. In terms of position prediction,
we calculate MIoU to evaluate the effectiveness of position
prediction. The proposed RCAG-Net achieves 15.44% and
4.70% MIoU improvement than RetinaNet and Faster R-CNN,
respectively, which illustrates that the proposed RCAG-Net
is more accurate in locating the hot spot defect in PV farm
IR image. Otherwise, the recall rate of RCAG-Net (95.39%)
is higher than RetinaNet and Faster R-CNN, which means
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Fig. 11. Relative GPS positions of hot spot defects in PV farm IR image. (a) Raw image. (b) Detection results. (c) Relative GPS position.

TABLE VIII

RELATIVE GPS COORDINATES LOCATION

that the undetected error of hot spot defects is low in the
practical detection process, which is essential to hot spot defect
elimination.

5) Comparison With Some Traditional Methods: For the
image classification task, CNN performs much better than
traditional methods in recent years [31]. The data set of
good images is divided into 800 and 2700 for training and
testing the traditional descriptor-based methods, such as his-
togram of oriented gradient (HOG) [32], local binary patterns
(LBPs) [33], Center Pixel Information Center Symmetric LBP
(CPICS-LBP) [34], and adjacent evaluation completed LBP
(AE-CLBP) [35]. The distribution of the defective images is
the same as in Table III. We compared our approach with the
above descriptor-based methods to validate the effectiveness
of our RCAG-Net. The support vector machine (SVM) with
polynomial kernel function is utilized as the base classifier to
classify the images. As shown in Table VII, the performance
of RCAG-Net is 68.94%, 52.95%, 51.58%, and 41.12% better
than HOG+SVM, CPICS-LBP+SVM, LBP+SVM, and AE-
CLBP+SVM, respectively, which illustrates that the proposed
RCAG-Net performs better than traditional methods in the
classification task of the PV farm IR images.

E. GPS Coordinate Transformation

The final GPS coordinates location presents in Table VIII,
where H1 = 34.99 m, xGPS = 115.293517◦, and yGPS =
40.508145◦. The rows denote different defects in the image
sample. The first column is the predicted position of the
defects in the image coordinate system. T and L represent
the coordinates of the top left corner in the IR image detected
box, and B and R represent the coordinates of the bottom
right corner. The second column defines the center coordinates
position of the detected box, which is (x �

1, y �
1), where x �

1 =
(T + B)/2, y �

1 = (L + R)/2. The third column defines the
predicted GPS latitude and longitude of the defect. The fourth

is the real GPS location of the defects, and the predicted error
is shown in the fifth column. If the telemetry data are not
accurate enough, the results will be different. Fig. 11 shows
the example of final GPS coordinates of the hot spot defects
in the PV farm IR image. The detected box in the IR image
combines with the GPS location when capturing the image to
calculate the defect real GPS position in the PV farm.

The positioning method was verified using a handheld GPS
thermal IR camera. We verify all the predicted hot spot GPS
positions through manual checking. The measurement error
represents the distance from the predicted GPS position to
the hot spot defect real GPS position. Referring to Table VIII,
the average measurement error is 1.08 m, and all the errors are
below the mix estimated threshold of 1.5 m. The length of the
PV module cluster is longer than this threshold, and there is a
certain distance between different clusters; thus, the location
is relatively accurate. Since positioning errors are inevitable,
this method cannot guarantee the precise positioning of all
defects in PV modules. This measurement error is not a
major disadvantage because all detected hot spots must be
manually checked before any repairs are performed. In addi-
tion, the rough GPS location information of the defective
PV module can provide a reference for defective PV module
replacement and helps improve the efficiency of maintenance.

VI. CONCLUSION AND DISCUSSION

This article presents a UAV-based intelligent location sys-
tem, which can feedback the hot spot defect GPS position
in PV farms. In addition, we proposed a novel hot spot
defect detection framework (RCAG-Net) that adopts a novel
attention module (RCAG) to aggregate the pyramidal features
of different scales by gate mechanism. The novel RCAG
module can effectively fuse multiscale features, suppress the
complex background information, and improve the feature
representation ability of the CNN models. Experimental results
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show that RCAG is an extremely lightweight and general
module to improve the performance of some deep CNN
detectors with different backbones to detect the small hot
spot defect in PV farm IR images. Code is available at
https://github.com/binyisu/RCAG.

As part of future works, one or more defects appear in
adjacent frames multiple times; thus, the repeated areas in
adjacent frames need to be processed before outputting the
results, which is the focus of our future research.
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