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ABSTRACT This work aims to establish visual correspondences between a pair of images depicting
objects of the same semantic category. It encounters many challenges such as non-overlapping of scenes
or objects, background clutter, and large intra-class variation. Existing methods handle this task with
handcrafted features, which cannot effectively fit the correlations between non-overlapping images. Besides,
additional training or information may be implemented into the learned features. In this paper, we propose
a novel approach for semantic correspondence, which is based on deep feature representation, geometric
and semantic associations between intra-class objects, and hierarchical matching selection according to
the convolutional feature pyramid. Firstly, we construct the initial correspondence by developing a sparse
feature matching model on the coarsest feature level, which enforces the nearest-neighbor searching under
semantic and geometric consistency constraints. Further, a narrowing strategy is proposed and employed
from the coarsest to the finest feature level, which hierarchically refine and optimize the correspondence.
The results illustrate that this approach achieves competitive performance on the public datasets for semantic
correspondence.

INDEX TERMS Feature matching, consistency constraints, nearest-neighbor searching, hierarchical opti-
mization, convolution feature pyramid.

I. INTRODUCTION
Establishing correspondences between images is one of
the fundamental problems in computer vision and graph-
ics. Early works are concerned with calculating the corre-
lations among multiple overlapping images (instance-level
correspondence), such as image stitching [1], 3D recon-
struction [2], [3], and stereo matching [4]. They assume
that the input image pair shows a proportion of the same
scenes or objects from different viewpoints, and corre-
spondences are obtained by using the handcrafted fea-
ture descriptors, e.g., Scale-Invariant Feature Transform
(SIFT) [10] and Speeded Up Robust Features (SURF) [11].
In the latest years, the semantic correspondence exploration
[5]–[7], i.e., intra-class semantic object matching, has been
developed (category-level correspondence), which is widely
applied in various fields such as object recognition [8] and
re-identification [9]. It establishes the correlations between
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different objects of the same semantic category. This is a
challenging task due to non-overlapping, background clutter,
intra-class variation, and difference in viewpoint.

Let us consider that both intra-class objects share similar
semantic structure. In other words, extrinsic similar geom-
etry and intrinsic semantic association between objects are
available for semantic correspondence. The key issue is how
to utilize the finite associated information to select enough
salient features for matching. Traditional handcrafted fea-
tures, such as SIFT [10] and SURF [11], work well on
matching the overlapping images. But they are not suitable
for the category-level correspondence since they are mainly
designed for the same objects or scenes. Besides, the correla-
tions between images can also be obtained by searching for
the keypoint pair whose neighbors have similar displacement
vector [12]. Some methods use the matching constraint to
minimize the appearance matching cost and to preserve the
geometric consistency [21], [22]. Meanwhile, Graph cut [15],
random search [16], [17], and hierarchical optimization [13]
are also used to further improve the correspondence. With the
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development of strong representation ability of the Convolu-
tional Neural Networks (CNNs), a number of works employ
the CNN feature representations and show that the CNN
features aremore flexible than handcrafted features, andmore
effective for nearest-neighbor matching [18], [19]. Remark-
ably, since the shallower layer of a CNNs model focuses
on low-level image features like color and texture whereas
the deeper layer on high-level semantic information, how to
effectively select and utilize CNN features is still an open
question.

In this work, we build a novel coarse-to-fine framework for
deep semantic feature matching, which fully utilizes the deep
feature representations, semantic and geometric information
consistencies, and hierarchical mapping relationships. Given
two input images containing objects of the same semantic
category, we first extract the feature representations based on
a pre-trained classification CNN model [29] and generate a
five-layer feature map pyramid for each image. The top layer,
which is defined as the coarset layer, holds semantic informa-
tion covering object-specific attribute representation and the
bottom layer defined as the finest layer describes low-level
contexts including color and texture. Then, we develop a
sparse feature matching mechanism to produce the initial
feature correspondences based on the top-layer represen-
tation in the pyramid. Analogously to traditional feature
descriptor and matching [10], the best candidate match for
each feature representation can be established by identify-
ing its nearset neighbor in the database of features from
the original images. We select as many representational and
salient features as possible and establish inter-image corre-
spondences based on semantic and geometric consistencies
via the nearest-neighbor searching.

To ensure approximate accuracy, it enforces the nearest-
neighbor searching under confidential correspondence con-
sistency constraints which encode the geometric and semantic
associations between intra-class objects. Furthermore, since
the feature point mapping from the top pyramid layers to
the bottoms ones has position offsets, directly projecting the
correspondence from a high-layer pyramid, which describe
correspondence between paired feature representations from
different images, to a low-layer one produces inaccurate
low-level feature point correspondences and may drop a lot
of salient feature information. To overcome the misaligned
mapping from the top layer to the bottom one and improve
the correspondence, we introduce a hierarchical optimization
strategy, which is designed to re-target the corresponding
keypoints across layers. We directly map the corresponding
points of the higher layer to the lower layer and treat the
center of themapped patches at the lower pyramid layer as the
candidate corresponding keypoints. It searches for the mutual
nearest neighbors of the candidate keypoints to ensure each
potential salient position. Meanwhile, we introduce a narrow-
ing scheme to further improve the correspondence at each
pyramid layer. An imitation foreground detection method
is adopted to reduce the non-salient features and remove
mismatches. Our approach not only ensures the robustness of

the intra-class variation between objects, but also accurately
locates sparse feature correspondences. The contributions of
our work are mainly three-fold:

• We integrate high-level semantic information and
object-level geometric information of the images into
candidate generation, and establish correspondences
with semantic contents of the objects.

• We introduce a simple yet effective narrowing strategy,
i.e., the imitation foreground detection method, for fea-
ture selection to improve the exclusivity among candi-
dates. It can reduce the searching scope at the lower
pyramid layer and mitigate the error accumulation dur-
ing hierarchical optimization.

• Experiments illustrate that the proposed approach
obtains competitive performance on standard bench-
marks for semantic correspondence.

II. RELATED WORK
Semantic correspondence has gained rising attention in the
last years. Especially, more and more works are concerned
with deep feature matching, and continue to make new
advances.

The first version establishes correspondences using the
handcrafted features which is based on semantic flow [13].
It constructs a hierarchical optimization structure to solve
the displacement vectors of discrete pixel-points. The main
idea is to introduce a matching constraint to minimize the
appearance matching cost. To perform more effective match-
ing, Kim et al. [14] design a spatial pyramid matching model.
They regularize the corresponding consistency from an entire
image, tomeshes, to each pixel rather than only pixel-based in
SIFT-Flow [13], and enable faster dense matching. Besides,
Zhou et al. [21] improve both feature affinities and cycle
consistency of the correspondence by solving a low-rank
matrix recovery problem [23]. Wang et al. [22] add another
matching constraint to preserve the geometric consistency.
These methods obtain effective correspondences based on the
notion of matching SIFT [10], even better than most of the
work on semantic correspondence. However, accurate initial
inputs are important.

Recently, some works focus on deep semantic feature
matching due to the breakthrough of deep neural networks.
These works are generally divided into two categories: end-
to-end alignment methods and post-processing based meth-
ods. The former utilizes the powerful information mining and
fitting capabilities of deep neural networks, and also inher-
its its restrictions such as strongly dependence on manual
annotations and additional training. SCNet is presented by
Han et al. [42], which utilizes the CNNs to learn a geometri-
cally plausible model for semantic correspondence. It incor-
porates the geometric consistency and uses region proposals
as matching primitives. Rocco et al. [24] train their neural
network architecture for geometric matching in a supervised
manner to mimic the traditional matching [10]. To avoid the
manual annotations, they further develop a weakly supervised
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matching network [7] by adopting a scoring strategy of
inliers [25] as loss function. Besides, Kim et al. [44] con-
struct a self-similarity CNN feature descriptor. They lever-
age object candidate priors provided in selected datasets
and combine a matching consistency to mitigate the restric-
tions, with enabling a weakly-supervised training. It is
further improved by introducing a discrete local labeling
optimization [45], with estimating dense affine transforma-
tion model between semantically similar images. Besides,
they also train a pyramidal affine regression networks to esti-
mate locally-varying transformation field across images [46].
These methods are concerned with designing complicated
network architectures to calculate the parameters of trans-
formation model between objects or scenes for alignment,
and obtain superior performance for semantic correspon-
dence with a certain degree of supervision, such as additional
prior information or manual annotations for their learning
procedure.

In contrast to the end-to-end alignment methods, the lat-
ter aims to establish the correspondences by employing the
CNN feature representations and constructing an effective
post-processing model. It generally adopts pre-trained classi-
fication networks to extract image features without any anno-
tations or additional training. Ufer and Ommer [5] design
a complicated matching system based on optical flow [12].
CNN features are extracted from images by using pre-trained
AlexNet model [26] and a convolutional pyramid model is
formulated [20], with each input image corresponding to a
Gaussian image pyramid. The Gaussian image at each image
pyramid layer is used to generate a feature pyramid. Further-
more, a cross-domain correspondence method (NBB) is pro-
posed by Kfir et al. [27]. It utilizes the notion of Deep Image
Analogy [28], [43] to find the correspondences between
main objects of interest belonging to different semantic cate-
gories in different images, while sharing similar geometry.
A hierarchical matching method is adopted to search for
candidate correspondences according to the constructed con-
volutional feature pyramid. It follows a simple matching rule,
which directly measures the similarity between CNN feature
descriptor, resulting in lower robustness. Error accumulation
is caused by its feature selection scheme and mismatches are
ignored at each pyramid layer. Besides, geometric informa-
tion may be lost since only semantic association between
objects are used for their matching.

To mitigate these, we adopt the notion of hierarchical opti-
mization method and propose a narrowing scheme to improve
the method. An imitation foreground detection method is
adopted to improve the correspondences at each pyramid
layer. It rejects the outliers and focuses the correspondences
on objects. Thus unnecessary mappings are avoided, and
the search scope is reduced at the lower pyramid layer.
It mitigates background clutter and reduces computational
complexity. The learned CNN features are directly used
without constructing additional descriptors. Meanwhile, geo-
metric and semantic associations between intra-class objects
are encoded to enforce the nearest-neighbor searching. The

proposed method is implemented without any training or
additional annotations in our experiment.

III. PROPOSED APPROACH
This section describes the proposed framework for semantic
correspondence in detail. Given two images depicting objects
of the same semantic category, we first extract the feature rep-
resentations based on a pre-trained CNNs model and produce
a five-layer feature map pyramid for each image. And then
a salient feature selection scheme is employed to filter out
most of the non-salient features. Furthermore, a coarse-to-
fine matching process is performed. Firstly, a sparse feature
matching mechanism is introduced to produce the initial
correspondences based on the top-level representation in
the pyramid. It encodes both the geometric and semantic
associations between intra-class objects as confidential cor-
respondence consistency constraints, which is formulated
as minimizing an objective function consisting of semantic
consistency term, distance consistency term, and orientation
consistency term. To further improve the correspondences,
we introduce a hierarchical optimization strategy, which is
designed to re-target the corresponding feature points across
layers. We directly map the corresponding points of the
higher layer to the lower layer and treat the center of the
mapped patches at the lower pyramid layer as the candidate
corresponding keypoints. Then the mutual nearest-neighbors
of the candidate pairs are found by using sliding windows in
the corresponding patch pair at each pyramid layer, and we
adopt an imitation foreground detection method, consisting
of a dynamic threshold selection scheme and an outliers
rejection model [25], to further improve the hierarchical opti-
mization process. Finally, the resulting correspondences are
obtained at the bottom pyramid layer, as shown in Figure. 1.

A. PRETREATMENT
In this section we use a pre-trained CNN classification net-
work to extract multi-level features and produce a five-layer
feature map pyramid. Then a salient feature selection process
is performed to filter out most of the non-salient features
by using a regularization algorithm and a threshold selection
scheme. These operations ensure the matching in subsequent
section.

1) DEEP CONVOLUTIONAL FEATURE PYRAMID
Below, we use a standard CNN architecture for feature
extraction. It generally extracts discriminative image features
through multiple convolutional layers, and generates the cor-
responding feature maps with different scales by combing
activation layer and pooling layer.

Given an image pair (I i, I j), they are fed forward through
the VGG-19 model [29] pre-trained on ImageNet [30].
We extract the CNN features and produce a five-layer fea-
ture map pyramid (L = 1, 2, 3, 4, 5) with scaling fac-
tor 1/2. Specifically, the feature map FL is extracted from
the ReluL_1 layer of VGG-19. The feature maps (FLi ,F

L
j )

for two images are hL × wL × dL tensors, which are
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FIGURE 1. Overview of our approach. Given two images depicting the main objects of the same semantic category, firstly a pre-trained VGG-19 Network
model [29] is used for feature extraction and to produce a five-level convolutional feature pyramid as shown in (a). Then we propose to perform a
coarse-to-fine matching process to obtain accurate correspondences in (b). Initial correspondence is formulated as minimizing an objective function
consisting of three consistency constraints, which encodes geometric and semantic associations between intra-class objects, shown as blue block in part
(b). Then we explore a hierarchical correspondence optimization strategy to improve the correspondence from the top pyramid layers to the bottom ones.
It performs a mutual nearest-neighbor matching model with additional imitation foreground detection at each pyramid layer. Then the resulting
correspondences are produced at the bottom pyramid layer. Specifically, the orientation of the pyramid structure given in (b) is the inverse of the
convolutional feature pyramid generated in (a).

denoted as dense h× w grids of d-dimension CNN features:
FL ∈ RhL×wL×dL .

2) SALIENT FEATURE SELECTION
One of the challenges of semantic feature matching is the
background clutter, resulting in incorrectly matching certain
regions of the background to semantic features. To effectively
match the salient semantic features, a salient feature selection
scheme is employed to filter out most of the non-salient
features at each pyramid layer. In other word, the salient fea-
tures within the foreground semantic objects are maintained,
while features in the background are rejected. Generally, the
VGG-19 model is used for object recognition and classifica-
tion. It can effectively locate the semantic objects and produce
different feature maps or feature representations, which is
very beneficial for semantic feature matching. Specifically,
this process is performed for all the feature presentations at
the top pyramid layer, and only for the corresponding features
within the candidate patches at the other pyramid layer.

Firstly the extracted image features are taken as the input
to a filter that performs a salient feature selection process at
the top pyramid layer. We utilize the notion of the keypoint
localization of SIFT [10] and construct a filter to select the
salient features by comparing a point to its neighbors in
the corresponding 3 × 3 region at the current scale. The
robustness of matching can be first enhanced by integrat-
ing the regularization theory. The discrete CNN feature FL

with L = 5, which corresponds to the feature maps at the

top pyramid layer, is regularized to a normalized interval
(i.e. [0, 1]). Then we adopt a min-max normalization func-
tion to measure the saliency of each feature point, which is
denoted as

sL(p) =

∥∥FL(p)∥∥− min ∥∥FL∥∥
max

∥∥FL∥∥− min ∥∥FL∥∥ (1)

where ‖·‖ represents the L2 norm and sL(p) represents the
probability score of being salient feature at position p at
the current pyramid layer L. max

∥∥FL∥∥ and min
∥∥FL∥∥ are

the maximal and minimal normalization value of all fea-
ture points on the tensor feature map FL , respectively. Then
we perform a salient selection process to filter out the
low-response points and preserve the salient features, which
is defined as

1_sL(p) :=
{
1 if s(p) > τL

0 otherwise
(2)

where τL is a threshold for layer L. 1_sL is an indicator
matrix and 1_sL ∈ RhL×wL . The new tensor feature map F̃L

is generated by preserving the feature points whose indicator
values equal to 1 and assigning others with 0. It contains all
regularized salient features from the input image.

B. INITIALIZATION FOR MATCHING
The goal of initialization stage is to obtain as many corre-
spondences as possible while ensuring approximate accuracy.
One of the challenges is that there are no same scenes or
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objects between images. To avoid matching those in compati-
ble regions, we enforce the nearest-neighbor searching under
confidential correspondence consistency constraints which
encode the geometric and semantic associations between
intra-class objects. Meanwhile, the search scope is con-
strained within the main objects of interest. Inspired by
[5], [12], we develop a simple and straightforward matching
model at the top pyramid layer, which has high response on
objects and suppresses irrelevant backgrounds, to formulate
the initial correspondences of selected salient features.

In the matching model, exploring the initial correspon-
dences is formulated as minimizing an objective function
consisting of three constraint terms, i.e., the semantic con-
sistency constraint ensuring correspondences with similar
appearance, the distance consistency constraint and orien-
tation consistency constraint enforcing them with similar
geometry. The consistency constraints are defined in detail
in the following.

1) SEMANTIC CONSTRAINT
Generally, the description of the appearance is an impor-
tant and fundamental feature representation of an standard
RGB image. A semantic consistency constraint is introduced
to ensure the matched candidates sharing similar semantic
appearance. Given a feature pair (p, q) extracted from the
corresponding image pair (Ii, Ij), a cosine similarity function,
sim(·), is adopted to measure the semantic distance between
them. This term is defined as

ES (V ) =
∑
p,q

e
(1−sim(f Li (p),f

L
j (q)))

2/σ2S
− 1 (3)

sim(f Li (p), f
L
j (q)) =

f Li (p) · (f
L
j (p))

T

‖f Li (p)‖ ∗ ‖f
L
j (p)‖

(4)

where σS is a constant factor, and f Li (p) is the normalized
feature descriptor in image Ii. To reduce the computational
complexity, it searches for K nearest neighbors as candidates
in image Ij for each keypoint in another image Ii. Note that K
is set to 5 in our experiment.

2) DISTANCE CONSTRAINT
Given a pair of salient feature points for each object, we con-
sider that there is relative positional consistency between
the two pairs. For example, different saloon cars share sim-
ilar relative position between the front wheel and headlight,
as shown in Figure. 2. To effectively utilize this characteristic,
the difference between the relative positions of feature pairs
from two images, which is equivalent to the relative Euclidean
distance, is calculated. The smaller difference indicates the
larger the matching probability. Then we introduce a distance
constraint to enforce distance consistency by minimizing the
difference, which is defined as

ED(V ) =
∑

p,p′,q,q′
ed

2(p,p′,q,q′)/σ 2D − 1 (5)

FIGURE 2. The geometric correlations between the positions of salient
features. (p,q), (p′,q′) are two keypoint pairs and the relative distance
and orientation between directed line vector pp′ and qq′ are all intended
to be consistency.

where (p, p′), (q, q′) represent the point pairs selected from
the images i and j separately and σD is a constant factor.
d(p, p′, q, q′) encodes the difference between the relative dis-
tances

−→
pp′ and

−→
qq′ as

d(p, p′, q, q′) = abs


∣∣∣−→pp′∣∣∣
Bdiagi

−

∣∣∣−→qq′∣∣∣
Bdiagj

 (6)

where |·| is the module of the corresponding line vector and
B is the diagonal distance of the bounding box around object.

3) ORIENTATION CONSTRAINT
Similarly, each pair of feature points selected from an image
can be connected by a straight line. The orientations of
intra-lines from two images should be consistency as shown
in Figure. 2. Thus an orientation consistency constraint is
introduced and defined as

EO(V ) =
∑

p,p′,q,q′
er

2(p,p′,q,q′)/σ 2O − 1 (7)

where r(·) is denoted as an inverse cosine function, which
measures the angle of intersection of the intra-object lines,
and defined as

r(p, p′, q, q′) = arc cos

 −→
pp′ ∗

−→
qq′∣∣∣−→pp′∣∣∣ ∗ ∣∣∣−→qq′∣∣∣

 (8)

4) OBJECTIVE FUNCTION
The essence of matching is to search for two candidate feature
points with minimal consistency. We formulate this task as
minimizing an objective function, which is defined as

E(V ) = ES (V )+ λDED(V )+ λOEO(V ) (9)

where λD and λO are the weights of the distance constraint
and orientation constraint separately, ES (V ) constrains the
appearance similarity, andED(V ) andEO(V ) enforce geomet-
ric consistency. Finally, E(V ) is iteratively solved to produce
the initial correspondences V .

5) DISCUSSION
Different from [5], [12], our proposed approach has several
advantages: (a) It requires a general and simpler convolu-
tional feature pyramid, and has more robust salient feature
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FIGURE 3. The mapping relationship between point and patch at the
neighboring pyramid layers. (p,q) is a matched keypoint pair at the
(L + 1)-th pyramid layer, which corresponds to a patch pair (P,Q) at the
L-th pyramid layer according to the receptive field.

selection scheme motivated by SIFT [10]. (b) It adopts a
nearest-neighbor searching scheme during the matching step,
which obeys an error tolerance mechanism. It only searches
for K nearest neighbors, without additional penalty, to obtain
as many correspondences as possible while ensuring approx-
imate accuracy. (c) The keypoint selection scheme is based
on geometric information such as edge rather than object
proposal.

C. OPTIMIZATION
Since the points at the top pyramid layer have a large receptive
field to the input image, the initial correspondences describe
relationships between patches. To propagate the patch-level
correspondence to pixel-level, we develop a novel hierarchi-
cal mapping scheme to gradually mapping the initial corre-
spondences from the top layer to the bottom layer. Firstly,
each point at the higher pyramid layer is projected to a
patch at the lower layer. A point-to-patch mapping process
is performed to transfer the point-level correspondences at
the higher layer to the patch-level correspondences at the
lower layer. Then the descriptors contained in the patches
are normalized by using a revised Z -Score normalization
method. And then a mutual nearest-neighbor matching model
is introduced to search for the potential correspondences
in each candidate patch pair at each pyramid layer. Finally
we adopt a simple yet effective scheme, which imitates the
foreground detection, to mitigate the background clutter. The
details are follows.

1) POINT-TO-PATCH MAPPING
For a set ofmatched keypoint pairs,V L+1

={(pL+1m , qL+1m )}Mm=1
(L = 1, 2, 3, 4), at the (L + 1)-th pyramid layer, a point-to-
patch mapping process V L+1

→ UL aims to generate a set
of corresponding patch pairs,UL

= {(PLm,Q
L
m)}

M
m=1, at the L-

th pyramid layer. As shown in Figure. 3, point p is inversely
mapped to patch P according to the coordinate mapping of
the VGG-19model [29], i.e., up-sampling in double. For each
matched keypoint pair (pL+1m , qL+1m ), the point pL+1m (x, y) (or
qL+1m (x, y)) is mapped to the center point p′Lm (or q′Lm) of a
patch PLm (or QLm), in which x and y are the coordinates of

point pL+1m . The mapped patch PLm is denoted as

PLm=
[
p′Lm_x−ζ, p

′L
m_x+ζ

]
×

[
p′Lm_y−ζ, p

′L
m_y+ζ

]
(10)

where (p′Lm_x , p
′L
m_y) is the two-dimensional coordinate of

point p′Lm with corresponding to (2x, 2y), QLm is represented
the same as PLm. ζ is a constant and set to 2 in our experiment.
QLm andPLm are then formulated as amatched patch pair inUL .

2) DESCRIPTOR NORMALIZATION
To eliminate obvious luminance and color differences
before further matching, we adopt the Z -Score normal-
ization method with introducing additional parameters
[27], [33], [34], which is mainly used for style transferring.
It locally normalizes the feature descriptors and globally bal-
ances the differences in luminance and color. For the selected
keypoint pairs in each matched patch pair (PL ,QL), corre-
sponds to the feature maps (FLi ,F

L
j ), which are normalized

as

NL
i (p

L) = µ(PL ,QL) ·
FLi (p

L)− µ(PL)

σ (PL)
+ σ (PL ,QL) (11)

where

µ(PL ,QL) =
µ(PL)+ µ(QL)

2

σ (PL ,QL) =
σ (PL)+ σ (QL)

2
(12)

where µ(·) ∈ Rd , σ (·) ∈ Rd are the corresponding
spatial mean and standard deviation respectively and NL

j (q
L)

is defined similarly.

3) MUTUAL NEAREST-NEIGHBOR MATCHING
Given the matched patch pairs UL

= {(PLm,Q
L
m)}

M
m=1

for the image pair (Ii, Ij) and normalized feature repre-
sentations (Ni,Nj) for keypoints in the patches, a mutual
nearest-neighbormatching process, i.e., matching from Ii to Ij
and that inversely from Ij to Ii, is implemented at the
L-pyramid layer for both images. It seeks to locally explore a
set of corresponding keypoints within each matched patches,
with the assistance of a number of neighbouring key-
points, and produce the resulting keypoint correspondences
SL = {(pLn , q

L
n )}

NL

n=1.
Firstly, we compute the local keypoint correspondences in

a matched patch pair (PLm,Q
L
m) holding a pair of candidate

keypoints (pL ∈ PLm, q
L
∈ QLm). For correspondences

from PLm to QLm taken as the example in the following steps,
the correspondences SPLm→QLm

(pLn ) is evaluated with the key-
point similarity as follows,

Corr(pL) = argmax ŜIM (pL , qL ,PLm,Q
L
m), (13)

where ŜIM (·) is the similarity metric function measured by
introducing a weighted nearest-neighbor metric scheme. It is
defined as

ŜIM (p, q,P,Q) =
∑

p′′∈P,q′′∈ Q

w ·
Ni(p′′) · Nj(q′′)

‖Ni(p′′)‖ ·
∥∥Nj(q′′)∥∥ , (14)
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where p′′ and q′′ represent the neighbors of the keypoints pLn
and qLn , separately. Ni(p

′′) is the normalized descriptor of p′′.
The weight w is defined as w = wi ·wj with wi = 1/d2(p, p′′)
and wj = 1/d2(q, q′′). Here d(·) represents the Euclidean
distance between two points. We restrict the neighbor region
to 3× 3 at the higher pyramid layers (L = 3, 4), and to 5× 5
at the lower pyramid layers (L = 1,2).

The resulting correspondence (pL ,Corr(PL)) is added
to SPLm→QLm

. Note that SPLm→QLm
contains all the correspon-

dences with maximal similarity value. The correspondences
SQLm→PLm

(qLn ) is established the same as SPLm→QLm
. Then the

final correspondences SL is obtained by performing the inter-
section of SPLm→QLm

(pLn ) and SQLm→PLm
(qLn ).

Furthermore, we develop an imitation foreground detection
method for further optimization, which is implemented at
each pyramid layer. Firstly a feature selection process is
performed with selecting the dynamic threshold in Eq.(2) to
adjust the rejection mechanism of salient features at the L-th
pyramid layer according to the distribution of CNN features.
Meanwhile, an outliers rejection scheme is used to further
remove the mismatches [25]. A transformation model, e.g.,
homography, is first estimated according to a set of observed
keypoints containing outliers. The corresponding parameters
are calculated and a threshold is set to distinguish inliers and
outliers. These approximately select the foreground objects
which mitigates the background clutter, narrows the search
scope at the lower pyramid layer, and reduces the error accu-
mulation during hierarchical optimization. Finally, the result-
ing correspondences are obtained at the bottom pyramid
layer. The algorithm flow is as shown in Algorithm 1.

4) DISCUSSION
We utilize the notion of hierarchical optimization [27]
inspired by Liao et al. [43]. Specifically, they use a direct
mapping scheme, in which each candidate is mapped to
a patch at the lower pyramid layer and they only utilize
the semantic information. It results in complicated calcu-
lation, error accumulation, and more mismatches. To mit-
igate these, we propose an imitation foreground detection
method to improve the correspondences at each pyramid
layer. It rejects the outliers and focuses the correspondences
on objects. Thus unnecessary mappings are avoided, and
the search scope is reduced at the lower pyramid layer.
It mitigates the background clutter and reduces computa-
tional complexity. Meanwhile, geometric and semantic asso-
ciations between intra-class objects are encoded to enforce
the nearest-neighbor searching.

IV. EXPANSION
Objectively, most existing methods on semantic matching
globally estimate a transformation model, typically homog-
raphy, affine, or thin-plate spline transformation, to reject
the outliers and align the objects. However, it is sensitive to
images with large differences in viewpoints and ignores some
salient details. Thus we introduce a local deformation method

Algorithm 1 Deep Semantic Feature Matching
Require:

Two RGB images Ii, Ij;
Ensure:

A set of matched point pairs V 1
= {(p1n, q

1
n)}

N 1

n=1;
Pretreatment and Initialization:
1. Extract {FLi }

5
L=1 and {FLj }

5
L=1 using the VGG-19 net-

work model pre-trained on ImageNet;
2. Generate a set of normalized features, S∗, solving
Eq. (2);
3. Establish the initial correspondences V 5

=

{(p5m, q
5
m)}

M
m=1 using Eq. (9).

Optimization:
for L = 4 to 1 do
1. Map keypoint pairs {(pL+1m , qL+1m )}Mm=1 to the patch
pairs {(PLm,Q

L
m)}

M
m=1, using Eq. (10);

2. Calculate the normalized feature descriptors NL
i (p

L)
and NL

j (q
L) using Eq. (11);

3. Estimate the correspondences SPLm→QLm
(pLn ) and

SQLm→PLm
(qLn ), using Eq. (13);

4. Generate a set of correspondences, SPLm→QLm
(pLn ) ∩

SQLm→PLm
(qLn ), at the L-layer pyramid;

5. Produce the final correspondences, {(pLn , q
L
n )}

NL

n=1,
at the L-th pyramid layer by using an imitation fore-
ground detection method.

end for

to improve it. Firstly the input image are divided into uniform
grids, with each grid corresponding to an estimated homog-
raphy. Then the outliers are eliminated according to the dif-
ferent grids. Furthermore, the input images are deformed and
aligned. The homography estimation is as example in detail
in the following.

A. HOMOGRAPHY TRANSFORMATION
Given a matched keypoint pair X = [x, y] and X ′ =

[
x ′, y′

]
,

a homography transformation relationship between the key-
points is estimated as calculating an linear transformation
with homogeneous coordinates, which is denoted asx ′y′

z′

 ∼ H

xy
z

 (15)

where ∼ indicates equality up to a scale factor, H represents
a 3 × 3 homography matrix with eight parameters in our
experiment defined as

H =

h11 h12 h13h21 h22 h23
h31 h32 h33

 (16)

The mapping between X and X ′ is as
x ′ =

h11x + h12y+ h13
h31x + h32y+ 1

y′ =
h21x + h22y+ h23
h31x + h32y+ 1

(17)
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where is linearised as[
−x −y −1 0 0 0 xx ′ yx ′ x ′

0 0 0 −x −y −1 xy′ yy′ y′

]
h = 0

(18)

which can be written as

A · h = 0 (19)

where h = [h11, h12, h13, h21, h22, h23, h31, h32, 1], it has 8
degree-of-freedom.

A =
[
−x −y −1 0 0 0 xx ′ yx ′ x ′

0 0 0 −x −y −1 xy′ yy′ y′

]
(20)

Generally, four matched keypoint pairs are selected to esti-
mate the eight parameters, and the input images can be
globally deformed and aligned according to the estimated
homography.

B. LOCAL WEIGHTED HOMOGRAPHY TRANSFORMATION
The input images are first divided into uniform grids. Then a
local weighted homography transformation model is adopted
to estimate the homography for each grid, which is denoted
as ̂x ′ŷ′

1

 ∼ Ĥ

xy
1

 (21)

where X̂i = [̂xi, ŷi]T is the center of each grid, Ĥ is estimated
as solving a weighted problem,

ĥ = argmin
N∑
i=1

‖ωiAih‖2 s.t. ‖h‖ = 1 (22)

where {ωi}Ni=1 are the weights of assigning higher weights to
the points that are closer to X̂i, which is defined as

ωi = exp

(
−
∥∥X̂ − Xi∥∥2
σ 2

)
(23)

where σ is a scale factor. Please refer to [39] for further
details.

V. IMPLEMENTATION AND EVALUATION
In this section, we evaluate the performance of the pro-
posed approach on the publicly available benchmark datasets.
Meanwhile, the implementation details, results, analyses, and
comparisons to the state-of-the-art methods are provided in
detail.

A. EVALUATION DATASETS AND PERFORMANCE
MEASURE
Quantitative evaluation of our approach is implemented
on two benchmark datasets: PF-PASCAL dataset and
PF-WILLOW dataset which are the subsets of the Proposal

Flow dataset [35]. The former contains 20 semantic cate-
gories with totaling approximately 1300 image pairs. The
latter includes 4 semantic categories, which is divided into
10 subsets according to the background distribution and dif-
ferent viewpoints, for a total of approximately 900 image
pairs for testing. Note that both provide the keypoint annota-
tions on the semantic objects in the corresponding image pairs
as ground truth for evaluation, and several matched keypoint
pairs are assigned onto the salient positions of the correspond-
ing object pairs. Generally, a percentage of correct key-points
transfer (PCK) metric [36], [37] is adopted for the evaluation
of our approach on both benchmark datasets. It is calculated
by measuring the offsets between the ground-truth and the
practical positions of transferring the matched keypoints. For
a sparse set of correspondences between source and target
images selected from datasets, the annotated keypoints are
warped from source image to target image according to an
estimated transformation. A correspondence is determined
as inliers when the corresponding offset is less than θ ·
max(H ,W ), where θ is the tolerance factor, and H and W is
the height and width of the bounding box respectively, which
is provided by datasets.

B. IMPLEMENTATION DETAIL
Essentially, the aim of the proposed approach is to establish
the correspondences located at the salient postions and the
key module is the constructed post-processor, it will not
have much influcence on the results using the CNN mod-
els with different depths. We use a VGG-19 [29] model
pre-trained on ImageNet [30] without fully connected layers.
In the initialization stage, the objective function relies on
the geometric and semantic associations between intra-class
objects. It is iteratively solved for initial correspondence at
the top pyramid layer. In our experiments, we empirically set
λD = 0.5 and λO = 0.5, and σA, σD, σO are all set to 5.
Note that the input images are resized to 224 × 224. For the
generated convolutional feature pyramid, few salient features
and correspondences are produced at the higher pyramid layer
(L = 4,5), we lowered the quantitative criteria by selecting a
smaller threshold. Meanwhile, the number of the candidate
pairs is sufficient for matching at the lower pyramid layer
(L = 1, 2, 3), a larger threshold was selected to reduce
the computational complexity and negative matches. Thus a
dynamic threshold feature selection scheme is adopted, and
the corresponding threshold is empirically set to 0.3 at the
L-th pyramid layer (L = 4, 5) and to 0.4 (L = 1, 2, 3). Finally
the projective transformationmodel is estimated, according to
the resulting correspondences, to deform and align the input
images.

We evaluate our approach with three parts which is
organized as follows. Section 4.3 evaluates the imitation
foreground detection method on the PF-PASCAL dataset.
Accuracy and robustness evaluation of the proposed approach
are provided in Section 4.4. Based on the resulting correspon-
dences, semantic alignment is introduced in Section 4.5.
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FIGURE 4. Pairwise semantic object matching using our approach.

TABLE 1. PSCK on the PF-PASCAL dataset.

C. KEYPOINT SELECTION
For a set of correspondences, UL

= {(pLi , q
L
i )}

uL
i=1, obtained

after performing the nearest-neighbor matching at the L-th
pyramid layer, a set of optimized correspondences, ML

=

{(pLj , q
L
j )}

vL
j=1, is produced by using an imitation foreground

detection method, where v ≤ u. In order to evaluate this
method, we introduce a percentage of salient and correct
key-points (PSCK) metric inspired by SIFT [10]. It is defined
as PSCK = v/u to determine the percentage of original and
positive correspondences. Note that the larger PSCK indi-
cates the better the correspondences. From Tab.1, it is clear
that the proposed strategy effectively improves the corre-
spondences, achieving an approximatively 25% improvement
over original without using the method on the PF-PASCAL
dataset [35]. Generally, we adopt this simple and effective
strategy to improve the correspondences at each pyramid
layer. It effectively rejects the outliers and focuses the cor-
respondences on objects. Thus unnecessary mappings are
avoided, and the search scope is reduced at the lower pyramid
layer. Besides, It mitigates background clutter and reduces
computational complexity.

Besides, some parameters are selected and proved in our
experiments. The dynamic threshold feature selection scheme
is adopted to further reject outliers at each pyramid layers,
where the threshold is set to 0.3 at the L-th pyramid layer
(L = 4, 5) and to 0.4 (L = 1, 2, 3). According to different
thresholds (i.e., τ ∈ [0, 1]), the corresponding tests on the
PF-PASCAL and PF-WILLOW datasets are implemented,
as shown in Figure. 5. The result shows that the mean PCK
has a tendency to grow first and then flat, and finally decline.
The smaller threshold leads to the weaker filter capacity of
the matched feature pairs and the larger number of feature
representations. It further results in producing more outliers
and the matching tends to be redundant. Obviously, the sat-
uration tends to be saturated at around 0.5, the number and

FIGURE 5. The test result of the selected thresholds on the PF-PASCAL
and PF-WILLOW datasets.

accuracy of the matched feature pairs are balanced. The
number of feature representations is less and less when the
threshold continues to increase, and the matched feature
pairs are unevenly distributed, which is not conducive to
the performance evaluation. It shows that the trend of the
mean PCK is relatively smooth in the range of 0.3 to 0.55,
where the accuracy of the matching and the number of feature
representations are relatively balanced in this interval. Let us
consider that the scale of the feature representations at the
higher pyramid layers is smaller (L = 4, 5), and the number
of feature representations is very small. And the scale is
larger and the candidates are more at the lower pyramid layer
(L = 1, 2, 3). So we select the smaller threshold to search
for more feature representations at the higher pyramid layer
(L = 4, 5), and the larger threshold to reduce the redundancy
of the feature representations at the lower pyramid layer
(L = 1, 2, 3).

D. KEYPOINT MATCHING
Accuracy evaluation of the proposed method is implemented
on the PF-PASCAL dataset, and the robustness evaluation
is on the PF-WILLOW dataset containing more challeng-
ing examples with intra-class variation, background clutter,
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TABLE 2. PCK (θ = 0.1) on the PF-PASCAL dataset.

FIGURE 6. The visual comparisons of matching results based on the ground truth of Pascal 3D+ dataset. It was done between the proposed approach
(e) to different methods, i.e., (b) PF [35], DSFM [5], and NBB [27].

or difference in viewpoint. To be more convincing, we com-
pare the proposed approach to the state-of-the-art methods on
semantic correspondence.

1) RESULT ON THE PF-PASCAL DATASET [35]
Since the estimation of PCK relies on the density and
accuracy of correspondences, and the corresponding trans-
formation, we evaluate these on the PF-PASCAL dataset,
with the larger PCK corresponding to more accurate cor-
respondence and transformation. Concretely, the evaluation
is implemented with θ = 0.1 and the tolerance error for
correspondence is approximately 20 pixels, and θ = 0.05
and the tolerance error is about 10 pixels, respectively. Exper-
iments illustrate that the proposed approach outperforms the
other pairwise correspondence methods, and more detailed
comparison per-class is shown in Tab. 2 and 3.

The results show that traditional handcrafted features or
other non-feature based matching are insufficient for seman-
tic object matching, such as SIFT-Flow [13], DSP [14],
and Zhou et al. [38]. They cannot be effectively used
to extract enough salient features from original images
with non-overlapping regions. Some other works, such as
DSFM [5], PF [35], Liao et al. [43], NBB [27], and our
approach, build on pre-trained CNN features and obtain
better correspondences. Note that we utilize the notion of

TABLE 3. Mean PCK (θ = 0.05) evaluation on the PF-PASCAL dataset.

hierarchical optimization [27] with introducing an imitation
foreground detection method, and our approach outperforms
these other works. Tab.2 shows that our method outperforms
the other methods, obtaining an overall PCK of 54.5%, which
is a 6.1% improvement over the best competitor [35]. These
indicate that the proposed consistency constraints and opti-
mization strategy are effective, and the coarse-to-fine match-
ing process works well on semantic feature matching.

However, the results show that the generalization ability
of other matching methods and our approach cannot meet
our expectations. It is represented as binarization as shown
in Tab. 2, such as the categories of bird, pers, and plant
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TABLE 4. PCK(θ = 0.1) comparison on the PF-WILLOW dataset.

FIGURE 7. Alignment examples on the Proposal Flow datasets [35]. (a) Source images are deformed and aligned to (b) Target images
according to the estimated transformations using different methods, i.e., (c) SIFT-Flow [13], (d) DSP [14], (e) PF [35], and (f) Our approach.

with low accuracy. It is mainly caused by strong occlu-
sion, background cluster, and single geometric feature con-
tained in original images. Typically, the bird in the grass and
the flowerpot filled with plants, bringing more challenges
and resulting in insufficient keypoints for correspondence.
Besides, another result with θ = 0.05 is achieved from the
corresponding literatures due to some belong to proprietary
projects as shown in Tab. 3. It clearly shows that our approach
gains an obvious improvement over other matching methods.

2) RESULT ON THE PF-WILLOW DATASET [35]
Next, we evaluate the robustness of the proposed approach
on the PF-WILLOW dataset by calculating the PCK with
θ = 0.1. More challenging examples are selected for evalu-
ation. The key of matching semantic features is to accurately
extract the salient features from the main objects of interest
in the examples with background clutter, and to address dif-
ferences in appearance to estimate the transformation model
between the examples with changes in viewpoint. The results
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illustrate that our approach outperforms the other methods
as shown in Tab. 4. Overall, the proposed approach is more
robust than other matching methods.

3) DISCUSSION
The results of semantic correspondence using global and
local transformation estimation are represented as Oursglobal
and Ourslocal separetely, as shown in Tab. 2, 3, and 4. Specif-
ically, since the size of the feature maps at the lower pyra-
mid layers (L = 3, 4, 5) is insufficient to locally calculate
the transformation, the difference between two schemes is
concentrated in the first two layers of pyramid (L = 1, 2),
as shown in Figure 1 (b). In addition, the example of the
matching is shown in Figure. 4 and visual comparison of
matching results is implemented on a comprehensive dataset,
i.e., Pascal 3D+ dataset, as shown in Figure. 6. The annota-
tions in the original image are transformed to the target image
according to the estimated transformations using different
methods. To effectively perform the comparison, some results
are achieved from theNBB [27] and ourmethods outperforms
these other works.

E. IMAGE ALIGNMENT
Early, some existing works, such as SIFT Flow [13] and
DSP [14], use handcrafted features for semantic correspon-
dence. They build on the notion of flow and implement
matching and alignment between images by calculating the
vector displacement among pixels. Furthermore, some other
methods are concerned with establishing better transforma-
tion models for alignment [5], [7], and it is also an exten-
sion and development trend of semantic correspondence. Our
approach establishes correspondences by searching for CNN
feature keypoints and estimates the corresponding transfor-
mation between images, which is based on sparse features.

The source image is deformed and aligned to the tar-
get image according to the estimated transformations using
the established correspondences [39]. To effectively eval-
uate the proposed approach, we select some challenging
examples with side viewpoints, mixed viewpoints (i.e., gen-
eral viewpoints + side viewpoints), and background clutter.
Experiments illustrate that obvious distortion appears in the
alignments [13], [14], [35], and the proposed approach per-
formswell on image alignment, as shown in Figure. 7. Overall
the proposed approach establishes successful semantic fea-
ture matching.
Discussion: The resulting correspondences are evaluated

on benchmark datasets as shown in Tab. 2 and 3, and the
results of the robustness evaluation are shown in Tab. 4. Our
approach performs well on semantic feature matching and
alignment, and obtains the competitive performance to many
methods, such as SIFT-Flow [13], DSP [14], and PF [35]
regarded as the state-of-the-art methods for semantic feature
matching, and Zhou et al. [38], DSFM [5], SCNet [42], and
NBB [27] proposed in the latest years. The alignment results
are shown in Figure. 7.

VI. CONCLUSION
We have proposed a novel approach for semantic feature
matching based on pre-trained CNN features, with enforcing
the nearest-neighbor searching under additional consistency
constraints and guiding correspondence improvements with
a hierarchical optimization strategy. According to the charac-
teristics of CNN features and intra-class objects, we perform
a coarse-to-fine process by minimizing an objective function
and introducing the corresponding optimization scheme. The
results clearly demonstrate the competitive performance of
the proposed approach for semantic correspondence on stan-
dard benchmark datasets.
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