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Abstract—We propose a rapid and accurate approach to
recover the layout of a room automatically from a single fisheye
image. It decomposes the fisheye image to a set of perspective
images and jointly extract line images from the fisheye image
and perspective images for geometric information. The semantic
information gained from semantic segmentation on a cylinder
expansion of the fisheye image are then used for structure
line determination. By considering distinct features contained
in the perspective images, the invalid hypotheses are filtered
effectively and the most accurate structure lines are selected
to minimize computational cost. To evaluate the effectiveness of
the proposed approach, we construct an annotated fisheye image
dataset. Comprehensive experimental evaluation on the dataset
illustrate that our proposed approach produces higher quality
layout estimations than existing layout reconstruction approaches
and being 6 times faster in the reconstruction time.

I. INTRODUCTION

Indoor layout estimation has received a lot of attentions in
recent years with the explosive popularity of house selling and
renting. It creates a high level of engagement and provides a
viable means to view and interact with indoor environments
regardless of cost, time, and spatial limitations. Typically, the
basic methods for estimating indoor layout from a single
image are extracting orthogonal vanishing points based on
geometric information by clustering line segments in the scene.
They generate a set of candidate box layouts with these line
segments [1, 2]. These methods are widely used due to their
simplicity and low complexity. However, they rely heavily on
the orthogonal lines in the structure, and will get artifacts or
wrong layout with non-orthogonal situation. To address this
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Fig. 1. Our method predicts a cuboid shape room layout from a single fisheye
image.

problem, subsequent studies [3–5] work on reducing the cost
of computation complexity.

Recent advances in the areas of deep learning have led to
the development of layout estimations that build upon deep
Convolutional Neural Network(CNN). In order to recover the
room layout, Dasgupta et al. [3] use Fully Convolutional
Network (FCN) to learn semantic surface labels. Zou et al. [6]
use the vanishing point cues precomputed from perspectives,
geometric constraints and a corresponding RGB panorama
image to get the boundaries and corners with a deep Encoder-
Decoder network. The majority of deep learning approaches
use the perspective sub-images as inputs and can result in
impressive layout reconstruction estimations, but with the
cost of high computational complexity or low quality layout
reconstruction. Note the field-of-view(FOV) of the perspective
image is normally small, the layout of the entire room cannot
be obtained easily, or even impossible. We argue that a fisheye
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Fig. 2. Overview of our method.

camera with a single lens in reality can keep the natural
of large FOV and has relatively lower acquiring cost than a
panorama camera.

In this paper, we first investigate how 3D indoor layout can
be restored with various cameras and inputs. Without introduc-
ing a depth cameras or relying on any depth information, we
propose a rapid and accurate approach for 3D indoor layout
estimation. It produces high quality layout reconstruction just
with a single fisheye image, as shown in Fig. 1. In Fig. 1,
a conference room has been well reconstructed in a cuboid
shape with our method. Firstly, we extract the curves and
get the semantic labels of the fisheye image. Secondly, for
each line-image, we determine whether it is related to room
structure with an energy function. Line-images that related to
room structure are used to generate hypotheses. We then rank
the hypotheses constructed with these structure line-images
and choose the top one as the optimal layout.

The main contributions of this paper are summarized as
follows:
• A novel approach is proposed that directly operate on a

single fisheye image to accurately locate semantic indoor
structure lines with corners and recover 3D indoor layout.

• Distinct features are always of a special importance in
the 3D indoor layout reconstruction, in our approach,
an algorithm for structure line determination is derived
by fully exploiting the distinct features extracted from
perspective images. That is in the fisheye images those
features are scarcely noticeable.

• A fisheye image dataset is created by containing over 200
valid images in a cuboid structure with annotated planes,
corners, and interesting lines based on available Internet
data and the SUN360 dataset [7], which is the largest
scale fisheye image dataset for 3D room estimation to
now.

We also implement our proposed approach in the created
dataset and conduct quantitative and qualitative comparisons of
the state-of-the-art 3D indoor layout approaches. The extensive
experimental results show that our approach not only has

reconstruction time that about almost 6 times faster than
PanoContext, but also achieves the best accuracy in both
intersection boundary detection and layout estimation.

The rest of this paper is organized as follows. In section II,
we provide a brief overview of the existing 3D indoor layout
estimation approaches in the literature. Section III provides
a detailed explanation of the proposed approach. Section IV
demonstrates the effectiveness of the proposed approach using
images of the newly created fisheye image dataset comparing
state-of-the-art methods, followed by conclusions in Section
V.

II. RELATED WORK

The methods of indoor layout estimation by panoramic
images have been widely studied in recent years [8–10].
Yang et al. [9] derive an occlusion detection method using a
Markov random field (MRF) to select plausible constraints for
reconstruction. Zhang el at [10] combine both bottom-up and
top-down context information to output 3D bounding boxes of
the room and all major objects. They concern a whole-room
3D context model to address the indoor scene understanding
problem with a single panorama.

Note that the panoramic images are generally proposed
by complex image stitching and inevitably have artifacts,
it is rather difficult for users to generate correct models.
PanoContext [10] is similar to our method in that it projects
the panoramic image into a set of overlapping perspective
images and combines the feature maps back into the panoramic
image. There are two main problems in PanoContext. The first
problem is that the detected lines do not have semantic prop-
erties. The number of hypotheses generated by a combination
of random selected five lines are huge (more than 20,000) and
the run time is really long (over 1 hour). The second problem
is that they decompose the panorama image into a series of
perspectives with small FOV to acquire structure lines with
several unwanted side efforts. It loses unique features that can
be abstracted from the panoramic view of the panorama and
meaning of using the panorama in a certain sense.



Fig. 3. (a) The highlight part between the two concentric circles is an Annular
Area. (b) Slide window can decompose the Annular Area into a series of
perspective images. (c) The output after decomposition.

In our approach, we extract the lines directly in the fisheye
image and filter out the lines that are not in the ground-
wall intersection area according to semantic segmentation.
Different from PanoContext that randomly samples five non-
degenerative lines to form a room layout hypothesis, in our ap-
proach, up to four lines are needed to determine a hypothesis.
The number of hypotheses is greatly reduced. In [8], the layout
of the whole scene is recovered by the combination of fisheye
camera and depth camera. Perez-Yus et al. [8] combine depth
information with the large view of fisheye camera to get the
structure of room. Although this fisheye image-based layout
estimation method produces better reconstruction results, the
fisheye camera is needed to be calibrated along with a depth
camera, which costs extra efforts and consequently reduces
the methods’ feasibility. This is in contrast to our work which
performs indoor layout reconstruction merely with a single
fisheye image. To our knowledge, this is the first work to tackle
the single fisheye-based layout reconstruction in the field.

III. FISHEYE LAYOUT ESTIMATION

From a single fisheye image I , the proposed method es-
timates the layout based on three modules: preprocessing,
structure line-images selection and layout determination. The
preprocessing module includes line-images extraction and
classification. Line-images are detected from the fisheye im-
age and perspective images respectively and then classified
according to two indicators. Structure line-images selection
module selects structure-related line-images based on semantic
segmentation. When the number of structurally related line-
images detected in the fisheye image is less than the threshold,
we will supplement it with the structural lines detected in
the perspectives as shown by the dotted line in Fig. 2.
Finally, layout determination module generates hypotheses and
chooses the optimal one as the final estimation. The above
process is shown in Fig. 2.

A. Preprocessing

1) Line-images Extraction: For fisheye image, we choose
the work from [11] for line-images extraction. 3D lines in
space are shown as straight lines in perspectives, but curved
lines in omnidirectional images which are called line-images.
The shapes of these line-images vary alone with the change
of camera types. Each 3D line Li forms a plane αi with the
principal point of the camera. For every point P lying on 3D
line Li, the projection of P must satisfy the condition nTαi

·p =

0, where nαi denote the normal of the plane αi. The constraint
for points on the line projection in image coordinates is as
follows:

nx · x̂+ ny · ŷ + nz · r̂ cot
r̂

f
= 0 (1)

where x̂ and ŷ refer to the image coordinates of p̂ = (x̂, ŷ),
r̂ represents the polar of p̂ in polar coordinates and nαi =
(nx, ny, nz)

T . We extract f and normal nα of every 3D line
as main calibration parameters. We notice that the normal nα
can measure the similarity of every line-image extracted from
fisheye image, and can be used to merge similar line-images
and simplify calculation.

For perspective images, we apply the line segment detection
(LSD) algorithm [12] to extract lines on perspective images.
Different from [10], we only project a specific Annular Area
into a series of perspective images instead of the entire
image. Annular Area, as shown in Fig. 3(a), is the area
where corners and boundaries appear frequently. In order to
obtain the location of corners and boundaries more accurately,
we use the slide window to decompose the Annular Area
into a series of specified-sized (320 ∗ 320) perspectives with
overlapping areas as shown in Fig. 3(c). Since the perspective
is enlarged after the decomposition process, the details that are
not obviously noticeable in the source fisheye image would be
clearly displayed in the perspectives.

2) Line-images Classification: We project the lines ob-
tained from the perspectives back into the fisheye image and
classify these line-images based on two indicators: orientation
and position. Orientation refers to the direction of the van-
ishing point to which the current line-image belongs. Position
refers to the spatial position of the surface where the current
line-image is located. In the process of hypotheses generation,
we randomly select one line-image from each category to form
a closed area.

Orientation: Every line-image in 3D space corresponds to a
part of great circle on the unitary sphere and appears as a curve
in fisheye image. For each line-image li, we use nαi

to denote
where it lies on. The vanishing direction Vpi = (e1i , e2i , e3i)
associated with the line li should be perpendicular to nαi

.
We use a RANSAC-based algorithm to determine the location
of three vanishing points and then mark the orientation label
for each line-image according to the vanishing point that it
belongs to.

Position: Another important projection property of sphere
camera model is that the great circles of 3D parallel lines
intersect in two antipodal points p

′
and p

′′
in sphere. The

connection of these two points is recorded as lp′p′′ . We can
divide the line-image belonging to the same vanishing point
into two parts according to the relative positions of the line-
image itself and their corresponding lp′p′′ .

Classification: We assume that after rotation, the vanishing
point in the horizontal direction is v2, and the vanishing point
in the vertical direction is v3. The line-images belonging to the
same vanishing point can be divided into two parts according



Fig. 4. (a) Line-images belong to v3 . (b) Line-images belong to v2 . (c)
Line-images classification: The set of green line-images on the left side of the
green dotted line belong to Sl and right side belong to Sr . The set of blue
lines on the up side of the light yellow dotted line belong to Sf and below
side belong to Sb.

Fig. 5. The process of generate semantic labels for fisheye image.

to their two antipodal points as shown in Fig. 4. The line-
images belong to v2 and lie in the upper part of line lp′p′′ are
labeled as front and denoted as Sf . The lower part are labeled
as back denoted as Sb. Similarly, the line-images belong to the
vanishing point v3 can be divided into two parts according to
their two antipodal points, and the left part are labeled as left
and denoted as Sl and the right part are labeled as right and
denoted as Sr.

Therefore, all of the line-images, including that generated
by back-projected to the fisheye image from perspectives, are
classified into four sets: Sf , Sb, Sl and Sr. So we can get the
following equation:

Lfish ∪ Lpers = Sf ∪ Sb ∪ Sl ∪ Sr (2)

where Lfish respects the line-images detected in the fisheye
image and Lpers denotes the lines extracted from the perspec-
tive images.

Because the wall-wall boundaries are perpendicular to floor
in Manhattan world, we can gain the layout estimation by
determine the wall-floor boundaries and corners. So, after
classification, we randomly sample four line-images with
semantic limitation from Sf , Sb, Sl and Sr to form a closed
curved quadrilateral as hypothesis.

B. Structure Lines Determination

1) Semantic Segmentation: We use semantic segmentation
results as input for structure line selection. Since the kernel
of the deep neural network is rectangular, we first convert
the fisheye image to a rectangular image, and use RefineNet
[13] to get suitable semantic label for each pixel. With rich
contextual information in fisheye images, semantic label for
each pixel is more accurate than that in perspective image

Fig. 6. (a) Before and after supplementation. (b) Semantic labels for source
image. Dark red for wall and blue for ground. (c) Sematic labels on perspective
image.

with small FOV. By training the model on ADE20K [14], we
can obtain semantic labels on the cylindrical expansion of the
fisheye image. Then we re-project the semantic labels back
to fisheye image. For perspective images, we perform seman-
tic segmentation with RefineNet. The process of generating
semantic labels for fisheye image is shown in Fig. 5.

2) Structure Line-images Determination: We determine the
initial set of structural lines by selecting ling-images. It is then
supplemented with line-images extracted from the perspective
images.

Structure Line-images Selection: Ideally, the line lies on
wall-floor boundaries extracted from the RGB image should
also be the boundary line for semantic labels of wall and
ground in the semantic segmentation map. But in fact, the
accuracy of semantic segmentation is not perfect, these lines
are not always aligned. So, we design a strategy to preserve the
lines with high probability of separating the walls and floor.

We design an energy function Eli to score every line-image
in Lfish or every line in Lpers according to its respective
semantic labels:

Eli =
∑
p∈li

w · fE(p, σwin) (3)

where li stands for a line-image in Lfish or a line in Lpers, p
represents pixel on li. w is the weight item and its default value
is 1. When the scenes are cluttered with complex geometry, we
increase the w of Lpers to get more details as a supplement.
fE(p, σwin) is a measurement of the distribution of semantic
labels within range σwin of pixel p. The score Eli is higher
when the degree of mixing of wall label and the floor label on
either side of line li is lower. After determining the energy of
each line, we keep the lines whose energy is higher than τ .

Structure Line-images Supplementation: The scenes are
usually cluttered by objects severely. In this case, most of the
intersection of the walls and the ground is blocked by the
object. Therefore, the number of line-images that extracted on
the fisheye image while satisfy the semantic limitation may be



too small. At this point, as shown in Fig. 6, the lines detected
on the perspective images should be used as a supplement to
increase the robustness of the system.

Each line-image li in sets Sf , Sb, Sl and Sr includes two
values: one is label Lfish or Lpers, where Lfish means li
has been extract from fisheye and Lpers means li has been
extract from perspectives. The other is energy El calculated
from Eq.3. We divide each set into three subsets with different
priorities. Finally, we use the highest priority subset of each
set to generate hypotheses. The specific method is shown in
Algorithm 1.

Algorithm 1: Structure Line-images Determination
Input: Four line-image sets Sf , Sb, Sl and Sr
Output: Sres = {S1

f , S
1
b , S

1
l , S

1
r}

1 Sres = φ
2 for S ← Sf , Sb, Sl, Sr do
3 S1 = φ;S2 = φ;S3 = φ;
4 for li ∈ S do
5 if Label(li) == Lfish ∧ Eli > τ then
6 S1 ← S1 + li by adding the line-image li

into S1;
7 else if Label(li) == Lpers ∧ Eli > τ then
8 S2 ← S2 + li by adding the line-image li

into S2;
9 else

10 S3 ← S3 + li by adding the line-image li
into S3;

11 set priority(S1) > priority(S2) > priority(S3);
12 if |S1| < τc then
13 if S2 6= 0 then
14 S1 = S1

⋃
S2;

15 else
16 S1 = S1

⋃
S3;

17 Sres = Sres
⋃
S1

18 return Sres;

C. Layout Generation and Ranking

Room layout hypotheses in fisheye image can be generated
by connecting line-images to create room corners. Once the
hypotheses are generated, a joint inference is applied to select
the most appropriate combination of them as an interpretation.
The number of hypotheses depending on the trade-off between
accuracy and speed is always very large, i.e. 20,000 in [10]. In
this section, we will illustrate how to generate and rank layout
from line-images of fisheye image.

1) Similar Line-images Merger: Similar line-images often
generate similar hypotheses. In order to reduce this cost, we
decide to merge similar line-images in spatial position. For
every two line-images li and lj in each set Sf , Sb, Sl and
Sr, we make decision based on line-image’s normal vector
nα. If the angle between nαi and nαj is less than ∂m while

the starting point of one line-image is located on another line-
image, we will merge them. The normal vector nα of the new
merged line-image is equal to the longer one. The starting and
ending points of the new merged line-image are same as the
minimum starting point and the maximum ending point of the
two line-images.

2) Hypotheses Generation: Our hypotheses generation is
based on corners produced by four structural lines’ intersec-
tion. In Manhattan World assumption, two lines are enough to
define a corner. We iteratively choose one line-image in every
structure set (S1

f , S
1
b , S

1
l , S

1
r ) to form a group of corners Gcor.

These corners are clockwise arranged in the XY–plane. Each
group of corners generates a hypothesis. We start with S1

l , for
example, to select a line-image li, then we extend it in two
directions alone with the track of the big circle which it lies
on. Next, in a clockwise direction in the XY–plane, a line-
image lj in S1

f is randomly selected and prolonged to find its
intersection with li. We will choose another one l

′

j in S1
f if

there is no intersection between lj and li after extending the
specified length σlen. According to this process, we can gain
a closed Manhattan layout for every group of line-images. We
record the id for each line-image in every group and then score
each hypothesis.

3) Ranking: In the evaluation process, we determine which
one is the best from all layout hypotheses Hi generated in
the last stage. The ranking function consists of three items,
one measures the score of corners, the other two measure
the fitness of hypothesis and the orientation map as well as
semantic segmentation.

Our ranking formulation is:

h∗ =argmax
h

∑
hi

[w1 ·AccCor(hi)

+ w2 ·AccOM(Ohi , Oworld)

+ w3 · ErrSem(Rhi , Sworld)]

(4)

where hi is one of hypotheses in Hi. We use AccCor to
determine the score of corners for each hypothesis, AccOM to
measure the difference of orientation between hypothesis and
ground truth, ErrSem to measure the proportion of inaccurate
semantic labels between the hypothesis and the scene in real
world. Weight w1, w2 and w3 determine the weight of the
corresponding item. We will explain the details of each item
in the following sections.

Corner Evaluation: Each hypothesis contains four corners
and each corner defined by two line-images. Inspired by the
work of [8], the accuracy of each corner depends on two
factors: a) the length of corresponding line-images li and lj
that intersect at the corner; b) the distance between the corner
and two nearest endpoints of li and lj .

AccCor(hi) =
∑
L

[fleng(li, lj)

+
1

fdist(li, lj , fintsec(li, lj))
]

(5)

where L is the collection of lines in hi and fintsec denotes the
point of intersection of two line-images. fleng measures the



length of two corresponding line-images and fdist measures
the distance between two line-images’ endpoints and the
corner.

Orientation Map Evaluation: We use orientation map to
evaluate the fitness of the orientation between hypothesis and
the surfaces in real world. Orientation map, introduced by
[2], is an image whose pixels encode the believed orientation
according to the line segments and the vanishing points. For
each hypothesis hi, we generate a labeled image Ohi , in which
each pixel encodes the orientation of the surface. We divide
Ohi in three regions Ohi

floor, O
hi

LRwall, O
hi

FBwall representing
the region of floor, the region of left and right wall and the
region of front and back wall. For the orientation map Oworld

about the surface in the world, we also divide it in three parts
as Oworldx , Oworldy , Oworldz according to the vanishing points.
The AccOM is given by:

AccOM(Ohi , Oworld) =
∑
ch

Ohi

ch

⋂
Oworldch

Ohi

ch

⋃
Oworldch (6)

where ch represents the number of channels. Ohi

ch denotes the
ch channel of Ohi

.
Semantic Evaluation: The value of ErrSem(Rhi , Sworld)

is used to measure the proportion of inaccuracy between
semantic label in the world Sworld and semantic region in
the hypothesis Rhi . We divide hi in two regions: floor and
walls. A place outside the closed area encircled by the line-
images in hi is belongs to walls Rhi

wall and the other is seen
as floor Rhi

floor. The pixels with wall semantic tags in Sworld

belong to Sworldwall , and the pixels with the ground semantic tags
in Sworld belong to Sworldfloor . The ErrSem is given by:

ErrSem(Rhi
, Sworld) =−

1

|P |
· (Rhi

wall

⋂
Sworldfloor

+ λ ·Rhi

floor

⋂
Sworldwall )

(7)

where |P | is the total number of pixels in the fisheye image.
λ determined by the clutter of room. When there are many
objects in the room, the accuracy of semantic segmentation
about floor will decrease. Consequently, the proportion of
score for walls should be larger.

IV. EXPERIMENT

We conduct our experiments on a newly created fisheye
image dataset crawl from Internet and SUN360 dataset [7], and
perform quantitative and qualitative evaluations by comparing
to two representative indoor layout reconstruction approaches
LayoutNet [6], PanoContext [10]. We test our method and
panoContext on Linux machine with Intel Xeon 3.5G Hz in
CPU mode and a single NVIDIA Titan X GPU for LayoutNet.

A. Dataset

While the research on 3D indoor layout reconstruction has
been receiving intensive attention, the public datasets to date
are still the most scare resource in field. We have studies

Fig. 7. Representative fisheye image selected in different scenes in our dataset.

all relevant image datasets that can be partially or possibly
used for 3D indoor layout reconstruction and argued that the
majority of datasets are small (e.g., up to 70 images) and very
specific (e.g., containing perspective or panoramic images). To
substantially evaluate our approach and provide a new means
of 3D indoor layout reconstruction, we collect fisheye images
and create a new large dataset after essential preprocessing like
determine the effective domain of the fisheye image which is
currently available to the scientific community. The dataset
consists of 200 fisheye images mainly collected by reproject-
ing from SUN360 dataset, and from the Internet. Given the
retrieved fisheye images, those without a cuboid structure,
are moved manually. For every fisheye image, we marked
the corners and the surface of walls. Similar to PanoContext,
we recover cuboid shape layout from a single fisheye image.
Fig. 7 shows representative fisheye images of different indoor
scenes in our dataset. As is often the case, object occlusions
and cluttering commonly appears in images. We highlighted
its importance by collecting 200 images from different scenes.
Our dataset contains 70 images acquired with a fisheye camera
and 130 images re-projected from the panorama in SUN360
dataset, including 40 offices, 90 bedroom rooms and 70 living
rooms. To annotate these fisheye image, we design a Matlab
annotation tool to mark the corners, structure lines and the
orientation of each surface.

B. Quantitative Evaluation

To find the proper weights in the scoring function (4), we
test the impact of each sub-item in the scoring function. We
first calculate the accuracy of corner estimation by employing
keypoint Error (KE) and Pixel Accuracy (PA) as evaluation
metrics. Keypoint Error (KE) refers to the distance of pixels
between the estimated points and the annotated points nor-
malized by the diagonal length of fisheye image’s cylindrical
expansion. Pixel Accuracy (PA) represents pixelwise error
between the predicted surface labels and ground truth labels.

Table I shows the quantitative comparison among the pro-
posed scoring functions. Our approach AccCor +AccOM +
ErrSem(4) outperforms other individual functions in terms
of pixel accuracy and keypoint errors. It comes from a good
tradeoff among the accuracy of corner detecting, the accuracy
of orientation map and the error of semantic map. In contrast,
for those three scoring functions, AccOM (6) achieves higher



Fig. 8. Qualitative comparison results with LayoutNet. Yellow lines are the
results of LayoutNet and white lines are our result. For ease of comparison, we
re-project the panoramic images of LayoutNet into fisheye images to display.

TABLE I
RESULTS ON OUR FISHEYE DATASET

Method Keypoint Error(%) Pixel Accuracy(%)
AccCor(5) 2.63 85.53
AccOM(6) 1.70 93.71
ErrSem(7) 3.57 82.76

AccCor+AccOM+ErrSem(4) 1.08 95.80

accuracy by selecting matching degree between orientation of
each surface in hypotheses and in real scene. When the posi-
tion of a corner in the hypothesis is slightly inaccurate, two or
more surfaces would be affected. This will magnify the minor
errors in the hypothesis and differentiate hypotheses scores.
In this way, the best candidate can be selected. ErrSem(7)
uses the difference between the distribution of ground and
wall in hypotheses and in real scene as filter condition. The
accuracy is the lowest when we use it independently, as
shown in the third row of Table I. That is because in a
real scene, most of the ground is cluttered by objects. The
semantic label of the blocked part is object, which reduces
the pixel proportion of ground and wall in the picture. Thus,
when there is a tiny difference in the corner, semantic image
is not sensitive enough to recognize it and filter ability is
relatively weak. AccCor(5) uses the length of curves and the
distance between curves and intersections to rank hypotheses.
When using AccCor(5), independently, result accuracy can
be easily affected by the degree of clutter of objects in the
room. When there are fewer objects in the room, multiple
long curves appear. At this moment, AccCor(5) will have
better filter ability. Therefore, we combine application of these
three scoring functions together, as shown in the fourth row
of Table I, to handle different indoor scenes and achieve the
best results.

C. Qualitative Evaluation

We compared our method with a neural network based
method LayoutNet and a geometric information based method
PanoContext.

Fig. 9. Qualitative comparison between PanoContext and our approach for
cuboid layout prediction on SUN360 dataset. Yellow lines are the results of
PanoContext and white lines are that of ours. Similar to Fig.8, the panoramic
images are reprojected to fisheye images.

LayoutNet utilizes panoramic images and deep neural net-
work to capture the structural layout of the room. It performs
better in terms of time consumed and accuracy compared to
other existing work on panoramas. We first conduct a com-
parison with LayoutNet on the fisheye images collected from
the Internet in our dataset. In particular, the fisheye images
and theirs cylinder expansion are used in our approach and
LayoutNet, respectively. Fig. 8(a) and (b) show the detected in-
tersecting lines between planes in white with our approach and
that of LayoutNet in yellow. Since there is less clutter in the
upper part of the walls in panorama, the intersections between
walls can make a clear judgment based on the orientation of
lines. However, due to the lack of semantic constrains, the
intersections between the ground and the wall are often missed
or mis-delineated, which significantly degrades the accuracy
and quality of 3D indoor layout reconstruction, especially for
the rooms with object occlusions and clutters. In our approach,
we consider the semantic segmentation information, leading to
more accurate structure lines between wall and ground. We
make another comparison with LayoutNet on the SUN360
dataset. The deep neural network infers the position of the
structural line by acquiring features within the image to obtain
room layout. Low-level texture information gradually misses
due to convolution and pooling operations. Therefore, deep
neural networks can only infer the approximate position in
some cases and cannot restore the original position of the
true structural line. By combining lowlevel texture information
with high-level semantic information, we can get the original
position of the structure line. This makes our layout estimation
more accurate, are shown in Fig. 8(c) and (d). The results
demonstrate our proposed algorithm is very effective in de-
tecting intersecting lines between planes, and can efficiently
apply to different scenes with various object occlusion and
clutters.

PanoContext projects the panoramic image into a set of
overlapping perspective images, and then combines with fea-
ture maps to yield a panoramic image with more accu-



rate structural layout. For comparability, we reproject the
panoramic images captured in cuboid shape rooms to fisheye
images and add to our dataset. The inputs for PanoContext
are original pictures in SUN360 dataset and for ours are
reprojected fisheye images. The experimental results show that
the running time of the panoContext is more than 1 hour, and
ours is no more than 10 minutes. Regarding the room layout
effect, PanoContext is based on a large number of hypotheses,
and the optimal layout estimate by the scoring function is
greatly affected by the degree of room confusion. Although
the final layout hypothesis is also generated based on low-
level texture information and jointly optimized with objects,
its accuracy in estimating the position of the structure line is
quite low. We observe that some segments detected on the
wall and ground are treated mistakenly as structural lines to
form a layout hypothesis due to the lack of semantic label
constraints. In our method, there are only no more than 2000
hypotheses, making the computing time really short. Under
the premise of ensuring efficiency, our method can accurately
locate the position of the structural line through the semantic
labeling, and then infer the position of the corner and obtain
a reasonable indoor layout estimation as shown in Fig. 9.

V. CONCLUSION

In this paper, we have presented an approach that enables
to recover a cuboid shape room with the Manhattan World
assumption by directly operating a single fisheye image. Our
approach highlights the impact of semantic information and
distinct structural features on the results of the layout recon-
structions in the presence of object occlusions and clutters.
We newly create a fisheye dataset for approach evaluations
and the experimental results provide a strong evidence for the
effectiveness and feasibility of our proposed approach. As a
part of our future work, we will investigate a deep neural
network for fisheye images to generate layout estimation and
combine with the specific semantic lines to handle the non-
cuboid layout.
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