
Page 1 of 24

TITLE
• AADS: Augmented Autonomous Driving Simulation using Data-driven Algorithms
• Augmented Autonomous Driving Simulation

Authors

W. Li,1*† C. W. Pan,2* R. Zhang,3* J. P. Ren,3 Y. X. Ma,4 J. Fang,1 F. L. Yan,1 Q. C.
Geng,5 X. Y. Huang,1 H. J. Gong,6 W. W. Xu,3 G. P. Wang,2 D. Manocha,7† R. G. Yang1†

Affiliations

1, Baidu Research, Beijing, China
2, Peking University, Beijing, China
3, Zhejiang University, Hangzhou, China
4, The University of Hong Kong, Hongkong, China
5, Beihang University, Beijing, China
6, Nanjing University of Aeronautics and Astronautics, Nanjing, China
7, University of Maryland, College Park, USA

* These authors contributed equally to this work.
† Corresponding authors. Emails: {liwei87, yangruigang}@baidu.com, dm@cs.umd.edu.

Abstract
Simulation systems have become an essential component in the development and
validation of autonomous driving technologies. The prevailing state-of-the-art approach
for simulation is to use game engines or high-fidelity computer graphics (CG) models to
create driving scenarios. However, creating CG models and vehicle movements (a.k.a. the
assets for simulation) remains a manual task that can be costly and time-consuming. In
addition, the fidelity of CG images still lacks the richness and authenticity of real-world
images and using these CG images for training leads to degraded performance.

In this paper we present a novel approach to address these issues: Augmented
Autonomous Driving Simulation (AADS). Our formulation augments real-world pictures
with a simulated traffic flow to create photo-realistic simulation images and renderings.
More specifically, we use LiDAR and cameras to scan street scenes. From the acquired
trajectory data, we generate highly plausible traffic flows for cars and pedestrians and
compose them into the background. The composite images can be re-synthesized with
different viewpoints and sensor models (camera or LiDAR). The resulting images are
photo-realistic, fully annotated, and ready for end-to-end training and testing of
autonomous driving systems from perception to planning. We explain our system design
and validate our algorithms with a number of autonomous driving tasks from detection to
segmentation and predictions.

Compared to traditional approaches, our method offers unmatched scalability and realism.
Scalability is particularly important for AD simulation and we believe the complexity and
diversity of the real world cannot be realistically captured in a virtual environment. Our
augmented approach combines the flexibility of a virtual environment (e.g., vehicle
movements) with the richness of the real world to allow effective simulation of any
location on earth.

Summary

mailto:dm@cs.umd.edu

Page 2 of 24

By augmented images with synthesized traffic, we present a truly scalable and high-
fidelity simulation system to enable end-to-end training/testing of autonomous driving
anywhere on earth.

MAIN TEXT

1. Introduction

Autonomous vehicles (AV) have attracted considerable attention in recent years from
researchers, venture capitalists, as well as the general public. The societal benefits in terms
of safety, mobility, and environmental concerns are expected to be tremendous and have
captivated the attention of people across the globe. However, in light of recent accidents
involving AV, it has become clear that there is still a long way to go to meet the high
standards and expectations associated with AV.

Safety is the key requirement for AV. It has been argued that an AV has to be test-driven
hundreds of millions of miles in challenging conditions to demonstrate statistical
reliability in terms of reductions in fatalities and injuries (1), which could take tens of
years of road tests even under the most aggressive evaluation schemes. New methods and
metrics are being developed to validate the safety of AV. One possible solution is to use
simulation systems, which are common in other domains like law enforcement, defense,
and medical training. Simulations of autonomous driving can serve two purposes. The first
is to test and validate the capability of AV in terms of environmental perception,
navigation, and control. The second is to generate a large amount of labelled training data
to train machine learning methods, e.g., a deep neural network. The second purpose has
recently been adopted in computer vision (2, 3).

The most common way to generate such a simulator is to use a combination of computer
graphics, physics-based modeling, and robot motion planning techniques to create a
synthetic environment in which moving vehicles can be animated and rendered. A number
of simulators have recently been developed, such as Intel’s CARLA (4), Microsoft’s
AirSim (5), NVIDIA’s Drive Constellation (6), Google/Waymo’s CarCraft (7), etc.

While all of these simulators achieve state-of-the-art synthetic rendering results, these
approaches are difficult to deploy in the real world. A major hurdle is the need for high-
fidelity environmental models. The cost of creating life-like CG models is prohibitively
high. Consequently, synthetic images from these simulators have a distinct, CG-rendered
look-and-feel, i.e. gaming or VR system quality. In addition, the animation of moving
obstacles, such as cars and pedestrians, is usually scripted and lacks the flexibility and
realism of real scenes. Moreover, these systems are unable to generate different scenarios
composed of vehicles, pedestrians, or bicycles, as observed in urban environments.

Page 3 of 24

Fig. 1. The inputs, processing pipeline, and outputs of our AADS system. The top is
the input dataset. The pipeline of AADS is shown between the dashed lines and contains
data preprocessing, novel background synthesis, trajectory synthesis, moving objects
augmenting, and LiDAR simulation. The bottom shows the outputs from the AADS
system, which include synthesized RGB images, a LiDAR point cloud, and trajectories
with ground truth annotations.

Page 4 of 24

In this paper we present a new data-driven approach for end-to-end simulation for
autonomous driving: Augmented Autonomous Driving Simulation (AADS). Our method
augments real-world pictures with a simulated traffic flow to create photo-realistic
simulation scenarios that resemble real-world renderings. Fig. 1 shows the pipeline of our
AADS system as well as its major inputs and outputs. Specifically, we propose using
LiDAR and cameras to scan street scenes. We decompose the input data into background,
scene illumination, and foreground objects. We present a new view synthesis technique to
enable changing viewpoints on the static background. The foreground vehicles are fitted
with 3D CG models. With accurately estimated outdoor illumination, the 3D vehicle
models, computer generated pedestrians, and other movable subjects can be repositioned
and rendered back into the background images to create photo-realistic street-view images
that look like they were captured from a dashboard camera on a vehicle. Furthermore, the
simulated traffic flows, e.g., the placement and movement of synthetic objects, are based
on captured real-world vehicle trajectories that look natural and capture the complexity
and diversity of real-world scenarios.

Compared with traditional VR-based or game-engine-based AV simulation systems,
AADS provides more accurate end-to-end simulation capability without requiring costly
CG models or tedious programming to define the traffic flow. Therefore, it can be
deployed for large-scale use, including training and evaluation of new navigation
strategies for the ego-vehicle.

The key to AADS’s success is the wide availability of 3D scene scans and vehicle
trajectory data, both of which are needed for the automatic generation of new traffic
scenarios. We will also release part of the real-world data that we have collected for the
development and evaluation of AADS. These data are either the first of their kind or the
largest publicly available in terms of urban scenarios for autonomous driving. The data are
fully annotated by a professional labeling service. In addition to AADS, they can also be
used for many perception and planning related tasks to drive further research in this area.

The technical innovations in this paper include:
 A new data-driven approach for autonomous driving simulation. By using scanned

street-view images and real trajectories, both photo-realistic images and plausible
movement patterns can be synthesized automatically. This direct scan-to-simulation
pipeline, with little manual intervention, enables large-scale testing of autonomous
cars virtually anywhere and anytime within a closed-loop simulation.

 We present a novel view synthesis method to enable view interpolation and
extrapolation with only a few images. Compared to prior approaches, it generates
better quality images with fewer artifacts.

 A new set of datasets, including the largest set of traffic trajectories and the largest 3D
street-view dataset with pixel/point level annotation. All of these are captured in
metropolitan areas, with dense and complex traffic patterns. This kind of dense urban
traffic poses significant challenges for autonomous driving.

1. 1 Previous Methods
Simulation for autonomous driving (AD) is a very huge topic. Traditionally, simulation
capabilities have been primarily used in the planning and control phase of AD, e.g., (8–
14). More recently, simulation has been used in the entire AD pipeline, from perception
and planning to control (see the survey by P. et al. (15)).

Page 5 of 24

While Waymo has claimed that its autonomous vehicle has been tested for billions of
miles in their proprietary simulation system, CarCraft (7), little technical detail has been
released to the public in terms of its fidelity for training machine learning methods.
Researchers have tried to use images from video games to train deep-learning-based
perception systems (16, 17).

Recently, a number of high-fidelity simulators dedicated to AD simulation have been
developed, such as Intel’s CARLA (4), Microsoft’s AirSim (5), and NVIDIA’s Drive
Constellation (6). They allow end-to-end, closed-loop training and testing of the entire AD
pipeline beyond the generation of annotated training data. All of these simulators are
based on current gaming techniques or engines, which generate high-quality synthetic
images in real-time. A limitation of these systems is the fidelity of the resulting
environmental model. Even with the state-of-the-art rendering capabilities, the images
produced by these simulators are obviously synthetic. Current state-of-the-art computer
graphics rendering may not provide enough accuracy and details for machine learning
methods.

With the availability of LiDAR devices and advances in structure-from-motion, it is now
possible to capture large urban scenes in 3D. However, turning the large-scale point cloud
into a CG-quality rendered image is still an on-going research problem. Models
reconstructed from these point clouds often lack details or complete textures (18). In
addition, AD simulators have to address the problem of realistic traffic patterns and
movements. Traditional traffic flow simulation algorithms mainly focus on generating
trajectories for cars and vehicles and do not take into account the realistic movements of
individual cars or pedestrians. One of the challenges is to simulate realistic traffic patterns,
particularly in complex situations when traffic is dense and involves heterogenous agents
(e.g., an intersection scenario with pedestrians in a cross walk).

Our work is related to the approach described by Alhaija et al. (19) in which 3D vehicle
models are rendered onto existing captured real-world background images. However, the
observation viewpoint is fixed at capture time and the 3D models are chosen from an
existing 3D repository that may or may not match those in the real-world images. Their
approach can be used to augment still images for training perception applications. In
contrast, with the ability to freely change the observation viewpoint, our system could not
only play a role in data augmentation but could also enhance a closed-loop simulator like
CARLA (4) or AirSim (5). Further enhanced by realistic traffics simulation ability, our
system can also be used for path planning and driving decision applications. In those
dynamic applications, our system can generation data in a loop for reinforcement learning
and learning-by-demonstration algorithms. Overall, the proposed approach is the first to
enable closed-loop, end-to-end simulation without the need for environmental modelling
and human intervention.

2. Results
Since AADS is data-driven, we will first explain the unique datasets that have collected.
Some of the datasets have already been released, while others will be released along with
this paper. We will then show results for the synthesis of virtual views and generation of
traffic flows, two key components of AADS. Finally, we will evaluate AADS’s
effectiveness for autonomous driving simulation. Specifically, we will show that the
simulated RGB and LiDAR images are useful for improving the performance of the

Page 6 of 24

perception system, while the simulated trajectories are useful for improving predictions of
obstacle movements–a critical component for the planning and control phases for
autonomous cars.

2. 1 The Dataset
When collecting a dataset, we use a hardware system consisting of two Riegl laser
scanners, one real-time line-scanning LiDAR (Velodyne 64-Line), a VMX-CS6 stereo
camera system, and a high-precision IMU/GNSS. With the Riegl scanners, our system can
obtain higher-density point clouds with a better accuracy than widely used LiDAR
scanners, while the VMX-CS6 system provides a wide baseline stereo camera with a high
resolution (3384 * 2710). With the Velodyne LiDAR, we can obtain the shapes and
positions of moving objects. To scan a scene, the hardware is calibrated, synchronized,
and then mounted on the top of a mid-size SUV that cruises around the target scene at an
average speed of 30km per hour. Note that the RGB images are taken about once every
meter.

In our labeling process, instead of fully annotating all 2D/RGB and 3D/point cloud data
manually, we developed a novel labeling pipeline to make our labeling process accurate
and efficient. Because 2D labeling is expensive in terms of time and labor, we combine
the two stages, i.e. 3D labeling and 2D labeling. By using easy-to-label 3D annotations,
we can automatically generate high-quality 2D annotations of static backgrounds/objects
in all the image frames by 3D-2D projections. Details of the labeling process can be found
in (20).

For each image frame, we annotate 25 different classes covered by five groups in both 3D
point clouds. In addition to standard annotation classes such as cars, motorcycles, traffic
cones, and so on, we added a new “tricycle” class, a popular mode of transportation in
East Asian countries. We also annotate 35 different lane markings in both 2D and 3D that
are not currently available in open datasets. These lane markings are defined based on
color (e.g., white and yellow), type (e.g., solid and broken), and usage (e.g., dividing,
guiding, stopping, and parking).

Page 7 of 24

Fig. 2. The ApolloScape dataset and its extension. The top table compares ApolloScape
with other popular datasets. The bottom left shows RGB images, annotations, and a point
cloud, from top to bottom. The bottom right shows some labeled traffic trajectories from
the dataset.

The table in Fig. 2 compares our dataset and other street-view datasets. Our dataset
outperforms other datasets in many aspects such as scene complexity, number of pixel-
level annotations, number of classes, and so on. We have released 143,906 video frames
and corresponding pixel-level annotations. Images are assigned to three degrees of
difficulty (e.g., easy, moderate, and hard) based on scene complexity, a measure of the
number of movable objects in an image. Our dataset also contains challenging lighting
conditions, such as high-contrast regions due to sunlight, as well as shadows from
overpasses. We name the dataset of RGB images ApolloScape-RGB. More importantly,

Page 8 of 24

we also provide 3D point-level annotations on corresponding point could which is not
available in ApolloScape-PC, another street-view dataset.

In addition to this article, we also announce ApolloScape-TRAJ, a new dataset of
trajectories. This dataset is a large-scale dataset for urban streets that includes RGB image
sequences and trajectory files. It focuses on trajectories of heterogeneous traffic-agents for
planning, prediction, and simulation tasks. The dataset includes RGB videos with around
100k 1920 × 1080 images and 1000km of trajectories for all kinds of moving traffic
agents. We use the Apollo acquisition car to collect traffic data and generate trajectories.
In Beijing, we collected a dataset of trajectories under a variety of lighting conditions and
traffic densities. The dataset includes many challenging scenarios including many
vehicles, bicycles, and pedestrians moving around one another.

2.2 Evaluations of Augmented Background Synthesis
An important part of our AADS system is synthesizing background images in specific
views using images captured in fixed views when running closed-loop simulations. This
ability stems from the utilization of the image-based rendering technique and avoids pre-
requisite modeling of the full environment.

There is a large literature on image-based rendering techniques, though relatively little has
been written on capturing scenes with sparse images. We focus on wide baseline stereo
image-based rendering for street-view scenes: the overlap between left images and right
images may be less than half the size of full images. Technically, obtaining reliable depth
is an important challenge for image-based rendering techniques. Thus, methods such as
(21) use the multi-view stereo (MVS) method to estimate depth maps. However, most
street-view datasets provide laser scanned point clouds, which can be used to generate
initial depth maps by rendering point clouds. As point clouds tend to be sparse and noisy,
initial estimates of depth maps are full of outliers and holes, and need to be refined before
they are passed on to downstream processing. Thus, we propose an effective depth
refinement method that includes depth filtering and completion procedures. To evaluate
our depth refinement method, we use initial and refined depth maps ((b) and (e) in Fig. 3)
to synthesize the same novel view. Results are shown in Fig. 3 (f) and (g), respectively.
Using depth maps without refinement to run image-based rendering, the results suffer
from artifacts near errors and holes in depth maps. Specifically, in Fig. 3 (f) and (h),
fluctuations appear in the green rectangle as the view changes, while window frames keep
straight when using refined depth in the yellow rectangle.

Page 9 of 24

Fig. 3. View Synthesis Result and Effectiveness of Depth Refinement. (a) and (b) The
raw RGB and depth images in our dataset, respectively. (c)~(e) The result of depth
refinement after filtering and completion. (f) and (g) The result of view synthesis using
initial and refined depths with close views in (h). (i)~(k) The final results of view
synthesis using Liu et al.’s method (22), Chaurasia et al.’s method (23), and our method,
respectively.

To evaluate our image-based rendering algorithm (specifically the novel view synthesis
algorithm) with refined depth maps, we compare our method with two representative

Page 10 of 24

approaches: the content preserving warping method (Liu et al. (22)) and Chaurasia et al.’s
method (23). Note that, in the implementation of Chaurasia et al.’s method (23), we use
the similarity of super pixels (24) to complete the depth map and perform a local shape-
preserving warp on each super pixel.

The synthesized images in Fig. 3 are generated using four reference images. As images are
captured by a stereo camera, the four reference images can be considered as two pairs of
stereo images with close to parallel views in which the angle between two optical axes of
the stereo images is small, but the baseline is relatively wide (about 1m). We compare our
view interpolation and extrapolation results with classical methods. As shown in the third
row of Fig. 3, Liu et al.’s method performs well for small changes in the novel view
compared to the input views. When the view translation becomes larger, view distortion
artifacts become apparent (like the fence in the green rectangle, the shape of which is
deformed inappropriately). For Chaurasia et al.’s method, ghost artifacts appear when
neighboring super pixels are assigned to inappropriate or incorrect depths. Our method
obtains correct depths and preserve invariant shapes of objects when the view changes,
handeling both interpolation and extrapolation. The fourth row of Fig 3 evaluates another
scene with both a wide baseline and a large rotation angle. Because of large changes in the
novel view, neither Liu et al.’s method nor Chaurasia et al.’s method aligns well with
neighboring reference views. As shown in the figure, curbstones in the green rectangle and
the white lane marker in the yellow rectangle suffer from misalignment artifacts. In
addition, due to tone inconsistencies in the input images, seams are obvious in the results
of Liu et al.’s and Chaurasia et al.’s methods. In contrast, our method can effectively
eliminate misalignment as well as seam artifacts.

To further illustrate the effectiveness of our view synthesis approach for closed-loop
simulation, we have included a video (Movie S3 in supplementary materials titled
“Synthesizing lane changes”). The video shows the synthesized front camera view from a
driving car that is changing lanes several times. Our view synthesis approach is sufficient
for handling such lane changes because it interpolates or extrapolates the viewpoint.

2.3 Evaluations of Trajectories Synthesis
Another pillar for AADS is its ability to generate plausible traffic flow, particularly when
there are interactions between vehicles and pedestrians, e.g., heterogeneous agents who
move at different speeds and with different dynamics. This topic is a full research area in
its own right, and we have developed new techniques for heterogeneous agent simulations.
For the sake of completeness, we briefly show the main result here in Fig. 4. Readers are
referred to (25) for more technical details. Specifically, Fig. 4 shows the comparison with
the ground truth from the input dataset, results of our simulation method, and results of
Chao et al.’s method (26), a state-of-the-art multi-agent simulation approach. In the
evaluation, the traffic is simulated on a straight 4-lane road. In our method, the number,
positions, and velocities of agents are randomly initialized according to the dataset. We
evaluate the comparison using the metric of velocity and minimal distance probability
distributions. The metrics are divided into 30 intervals and probabilities are calculated
over all the intervals. As shown in Fig. 4, our simulation results are closer to the input data
in both the velocity distribution and the minimal distance distribution.

Page 11 of 24

Fig. 4. Comparison of Traffic Synthesis. Velocity and minimal distance distribution of
traffic simulation using our method, Chao et al.’s method, and the ground truth.

2.4 AADS Evaluations by Autonomous Driving Applications
As shown in Fig. 1, simulation and our AADS can simultaneously produce the following
augmented data: 1) photo-realistic RGB images with annotation information such as
semantic labels, 3D bounding boxes, etc.; 2) an augmented LiDAR point cloud; 3) typical
traffic flows. In following evaluations, those data augmentations are synthesized based on
our ApolloScape dataset. We summarize the AADS synthetic data and evaluations in
terms of RGB images, point clouds, and trajectories:
 AADS-RGB: For the baseline training set of ApolloScape-RGB, we augment RGB

images with AADS and generate corresponding annotations for augmented moving
agents. This dataset is named AADS-RGB and is used to evaluate our image synthesis
method.

 AADS-PC: With our AADS system, we synthesize up to 100k new point cloud
frames by simulating the Velodyne HDL-64E S3 LiDAR sensor based on the
ApolloScape-PC dataset. The simulation dataset has the same object categories as and
numbers of objects in each category similar to ApolloScape-PC.

 AADS-TRAJ: Our AADS system can also produce new trajectories based on the
ApolloScape-TRAJ dataset. We further evaluate such augmented data using a
trajectory prediction method.

2.4.1 Object Detection with AADS-RGB
With respect to the evaluations of AADS’ capability to simulate camera images, we use
two real and three virtual datasets: ApolloScape RGB annotated images (ApolloScape-
RGB), CityScapes, virtual KITTI (VKITTI), synthesized data from the popular simulator
CARLA, and our synthesized data (AADS-RGB).

VKITTI: We use the VKITTI (2) dataset to compare our system with a fully synthetic
method. The full dataset contains 21260 images with different weather and lighting
conditions. 1600 images were randonwly selected as a training set.

CityScapes: CityScapes (27) is a dataset of urban street scenes. There are 5000 annotated
images with fine instance level semantic labels. We use the validation set of 492 images as
the testing data set.

Page 12 of 24

CARLA: CARLA(4) is the most recent and popular virtual-reality simulator for
autonomous driving. Up to now, it provides two manually built scenes with car models.
Because the size of the scene is limited, we generated 1600 images distributed as evenly
as possible in the simulated scene.

In this section, we will show the effectiveness of the AADS simulated RGB data. We use
the state-of-the-art objection detection algorithm Mask-RCNN (28) to perform
experiments. The results are compared with the standard average precision metric of an
intersection-over-union (IoU) threshold of 50% (AP50) and 70% (AP70), and a mean
bounding box AP (mAP) with an across threshold at IoU ranging from 5% to 95% in steps
of 5%. Because we mainly augment textured vehicles onto images in our object detection
evaluation, the evaluation results come from vehicles.

Fig. 5. RGB Image Augmentation Evaluations. The left four images are selected from
CARLA (a), VKITTI dataset (b), our AADS-RGB dataset (c), and the testing dataset
CityScapes (d), respectively. The right diagram is the evaluation results.

Synthetic data generation is an easy way to obtain large-scale datasets and has been
proven to be effective in autonomous driving. However, the data statistics and distribution
limit the capabilities of virtual data. When applying a model trained with synthetic data to
real images, there is a domain gap. As our simulation method is built on realistic
background, placement, and moving object synthesis, it will effectively reduce the domain
problem. From images in Fig. 5, our method produces an image (c) that is more visually
similar to a real image from CityScapes (d) than it is to the virtual-reality simulator
CARLA (a) or the fully synthetic dataset VKITTI (b), i.e. images from our system may
have small domain gap.

To quantitatively verify the effectiveness of our simulated data, we chose to train object
detectors with our data and data from CARLA and VKITTI. The trained detectors are
tested on the CityScape dataset, which has no overlap with any of the training sets.

We train models on CARLA-1600, VKITTI-1600, ApolloScape-RGB-1600, and AADS-
RGB-2400 separately, where the suffix shows the number of images used for training.
Then the object detection performance of the trained model is evaluated on the CityScapes
validation set. Results are shown in Fig. 5 (right). It can be seen that, due to the domain
gap, the metrics of ApolloScape-1600 are higher than those of VKITTI-1600 or CARLA-
1600. Note that images in VKITTI are smaller than images in other datasets. We therefore
apply the VKITTI-1600 model on downsampled CityScapes to make the comparisons fair.
Otherwise, the VKITTI-1600 model tends to miss large cars, leading to a degradation in

Page 13 of 24

detection performance. Adding 800 additional simulated images to ApolloScape-1600
(AADS-RGB-2400), our method improves the results by roughly one percentage point.
This demonstrates that our simulation data may be closer to real-world data than data from
virtual-reality.

2.4.2 Instance Segmentation with AADS-PC
To evaluate AADS point cloud simulations, we use the KITTI point cloud dataset (KITTI-
PC), the ApolloScape point cloud (ApolloScape-PC), and our simulated point cloud
(AADS-PC).

KITTI-PC: The KITTI point cloud dataset (29) consists of 7481 training and 7518 testing
frames. These real point cloud frames are labeled corresponding to captured RGB images
in the front view. This dataset provides evaluation benchmarks for 1) 2D object detection
and orientation estimation, 2) 3D object detection, and 3) bird's eye view evaluations.

Based on those datasets, we evaluate our AADS system using 3D instance segmentation.
It is a typical point cloud-based autonomous driving application, which simultaneously
runs 3D object detection and point cloud segmentation. We utilize the state-of-the-art
algorithm PointNet++ (30) to perform quantitative evaluation. The results are evaluated
using a mean bounding box AP named mAP(Bbox) and a mean mask AP named
mAP(mask).

Fig. 6. LiDAR Simulation Evaluations. (a) Evaluation on dataset’s size and type (real or
simulation) for real-time instance segmentation. (b) Evaluation results of different object
placement methods. (c) Real data boosting evaluations (mean mask AP) using instance
segmentation.

We evaluate the accuracy and effectiveness of the model trained by our simulation data
and compare it with the models trained with manually labeled real data. These simulation
and real data are randomly selected from the AADS-PC and ApolloScape-PC datasets,
respectively. The mean AP evaluation results of the instance segmentation models are
presented in Fig.6 (a). As shown in Fig. 6 (a), when trained with only our simulation data,

Page 14 of 24

the instance segmentation models produce results competitive with the precisely labeled
real data. When using 100k datapoints generated by simulation, segmentation performance
is better than a model trained on 4k real datapoints, and comes close to models trained on
16k and 100k real datapoints. In short, by using simulation to increase the size of the
training set, performance can approach that of models trained on real-world data.

Next, we use simulation data to boost the real data (i.e. pre-train the model), as shown in
Fig.6 (c). Boosting with simulation data significantly improves (by 2% ~ 4%) the
validation accuracy of the original model trained with only the real data. On the
ApolloScape-PC dataset, we find that using 100k simulated datapoints a to pre-train the
model and 1.6k real data for fine-tuning outperforms a model trained with 16k real
datapoints. When fine-tuned with 32k real datapoints, the model surpasses a model trained
on 100k real data. It means that our simulation approach could reduce up to 80% ~ 90% of
manually labeled data, greatly reducing the need to label images, saving time and money.
More details can be found in (31).

Finally, based on instance segmentation, we compare our object placement (traffic
simulation) method with alternative placement strategies, e.g. placing object randomly or
under specific rules (32). As shown in Fig.6 (c), the accuracy of models trained with
simulated data outperform (by 4 ~ 7%) those trained with the other object placement
strategies. The accuracy of models trained with our simulated data is close to that of a
model trained on real data (gap of just 1~4%, depending on the application).

2.4.3 Traffic Predict with AADS-TRAJ

To evaluate the effectiveness of synthesized traffic, i.e. trajectories of cars, cyclist and
pedestrians, we adopt Ma’s TrafficPredict method (33) for quantitative evaluation. This
method takes motion patterns of traffic-agents in the first 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 frames as input and predicts
their positions in the following 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 frames. In our evaluation, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are set to 5
and 7, respectively. We extend 20k real frames from ApolloScape-TRAJ dataset with an
additional 20k simulated frames from our AADS-TRAJ dataset to train the DNN proposed
in Ma’s method. Performance of the trained model is measured using mean Euclidean
distance between predicted positions and ground truth. In our case, average displacement
error (mean Euclidean distance of all predicted frames) and final displacement error (mean
Euclidean distance of the 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-th predicted frame) are evaluated. The results in Fig.7
show that prediction error reduces sharply when training with an additional 20k simulated
datapoints. The error rate for cars is reduced the most because cars are well represented in
the simulated trajectories.

Page 15 of 24

Fig. 7. Traffic Predict Evaluations. Comparison on trajectory prediction with 20k real
trajectory frames and an additional 20k simulation trajectory frames.

3. Conclusions
In the previous section, we showed the effectiveness of AADS for various tasks in
autonomous driving. All of these tasks are achieved by using captured scene data (location
specific) and traffic trajectory data (general). The entire AADS system requires very little
human intervention. The system can be used to generate a virtually limitless amount of
realistic training data with fine annotation or it can be used in-line to simulate the entire
AD system from perception to planning. The realism and scalability of AADS make it
possible to be widely used in any real-world scenarios, as long as the background can be
captured.

Compared to VR-based simulations, AADS’s viewpoint change for RGB data is limited.
Deviating too much from the original captured viewpoints leads to degraded image
quality. However, we believe the limited viewing range is actually acceptable for AD
simulation. For the most part, a vehicle drives on flat roads and the possible viewpoint
changes are limited to rotation and 2D translation on the road plane. There is no need to
support a bird’s-eye view or a third person perspective for RGB-based perception.
Another major limitation of AADS is the lack of lighting/environmental changes
(snow/rain) in the scene. For now, these must be captured, but there have been significant
advances in image synthesis using generative adversary networks (GANs) (34, 35).
Preliminary results synthesizing seasonal changes have been demonstrated. We believe
that enabling full lighting/environmental effect synthesis within AADS is a promising
direction and we are actively pursuing it now.

4. Materials and Methods

4.1 Data Preprocessing

Page 16 of 24

The mind behind our AADS utilizes the scanned real images for simulation. Our goal is to
simulate new vehicles and pedestrians in the scanned scene with new trajectories. To
achieve this goal, before simulating data, our AADS should remove moving objects, e.g.,
vehicles and pedestrians, from scanned RGB images and point clouds. However,
automatic detection and removal of moving objects constitutes a full research topic in its
own right. Fortunately, most recent datasets provide semantic labels of RGB images,
including point cloud. In our case, by utilizing semantic information in the ApolloScape
dataset, we remove objects of a specific type, e.g., cars, bicycles, trucks, and pedestrians.
After removing moving objects, numerous holes in both RGB images and point clouds
appear, which should be carefully filled to generate a complete and clean background for
AADS. We utilize the most recent RGB image inpainting method (36) to close the holes
in the images. This method uses the semantic label to guide a learning-based inpainting
technique, which achieves acceptable levels of quality in our case. The point cloud
completion will be later introduced in the depth processing for novel background synthesis
(Section 4.2).

Given synthesized background images, we could place any 3D CG model on the ground
and then render it into the image space to create a new, composite simulation image.
However, to make the composite image photo-realistic (look close to the real image), we
should first estimate the illumination in background images. This enables our AADS to
render 3D CG models with consistent shadows on the ground and on vehicle bodies. We
solve such outdoor lighting estimation problems according to the method in (37). In
addition, to further improve the reality of composite images, our AADS also provides an
optional feature to enhance the appearance of 3D CG models by grabbing textures from
real images. Specifically, given an RGB image with unremoved vehicles, we retrieve the
corresponding 3D vehicle models and align those models to the input image using the
method in (38). Similar to (39), we then use a symmetric priors to transfer and complete
the appearance of 3D CG models from aligned real images.

4.2 Augmented Background Synthesis
Given a dense point cloud and image sequence produced from automatic scanning, the
most straightforward way to build virtual assets for an autonomous driving simulator is to
reconstruct the full environment. This line of work focuses on utilizing geometry and
texture reconstruction methods to produce complete large-scale 3D models from the
captured real scene. However, these methods cannot avoid hand editing while modeling,
which is expensive in terms of time, computation and storage.

In this article, we propose a method to directly synthesize an augmented background in a
specific view as needed during simulation. Our method avoids modeling the full scene
ahead of running the simulation. Technically, our method creates such a scan-and-simulate
system by utilizing the novel view synthesis technique.

Page 17 of 24

Fig. 8. Novel View Synthesis Pipeline. (a) The four nearest reference images are used to
synthesize the target view in (d). (b) The four reference images are warped into the target
view via depth proxy. (c) A stitching method is used to yield a complete image. (d) Final
results in the novel view are synthesized after postprocessing, e.g., hole filling and color
blending.

To synthesize a target view, we need to first obtain dense depth maps for input reference
images. Ideally, these depth maps should be extracted from a scanned point cloud.
Unfortunately, such depth maps will be incomplete and unreliable. In our case, the
problems come with scanning: (a) The baseline of our stereo camera is too small
compared to the size of street-view scenes, and consequently, there will be too few data
points for objects that are too far from the camera. (b) The scenes are full of numerous
moving vehicles and pedestrians that need to be removed. Unfortunately, their removal
will produce holes in scanned point clouds; (c) The scenes are always complicated (e.g.
many buildings are fully covered with glasses), which leads scanning sensor failed and
thus scanned point clouds incomplete. We introduce a two step procedure to address the
lack of reliability and incompleteness in depth maps: depth filtering and depth completion.

Page 18 of 24

With respect to depth filtering, we carry out a judiciously selected combination of pruning
filters. The first pruning filter is a median filter: a pixel is pruned if its depth value is
sufficiently different from the median filtered value. To prevent removing thin structures,
the kernel size of the median filter is set to small (e.g. 5 * 5 in our implementation). Then,
a guided-filter (40) is applied to keep thin structures and to enhance edge alignment
between the depth map and the color image. After getting a much more reliable depth, we
complete the depth map by propagating the existing depth value to the pixels in the holes
by solving a first-order Poisson equation similar to the one used in colorization algorithms
(41).

After depth filtering and completion, reliable dense depth maps are produced that can
provide enough geometry information to render an image into virtual views. Similar to
(23), given a target virtual view, we select the four nearest reference views to synthesize
the virtual view. For each reference view, we first use the forward mapping method to
produce a depth map using camera parameters of the virtual view and then perform a
depth inpainting to close small holes. Then a backward mapping method and occlusion
test are used to warp the reference color image into the target view.

A naïve way to synthesize the target image is to blend all the warped images together.
However, when we blend the warped images using the view angle penalty following
article (23), there always exist obvious artifacts. Thus, we solve this problem as an image
stitching problem rather than direct blending. Technically, for each pixel 𝑥𝑥𝑖𝑖 of the
synthesized image in the target virtual view, it is optimized to choose a color from one of
those warped images. This can be formulated as a discrete pixel labeling energy function:

 arg min
{𝑥𝑥𝑖𝑖}

 �𝜆𝜆1𝐸𝐸1(𝑥𝑥𝑖𝑖) + 𝜆𝜆2𝐸𝐸2(𝑥𝑥𝑖𝑖) +
𝑖𝑖

� 𝜆𝜆3𝐸𝐸3�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 � + 𝜆𝜆4𝐸𝐸4�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 � + 𝜆𝜆5𝐸𝐸5�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �
(𝑖𝑖,𝑗𝑗)∈𝑁𝑁

(1)

Here, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖-th pixel of the target image and 𝑁𝑁 is the pixel set of 𝑥𝑥𝑖𝑖’s one ring
neighbor. 𝐸𝐸1(𝑥𝑥𝑖𝑖) is the pixel-wise data term, which is defined by extending the view angle
penalty in (42). In contrast to the scenarios in (42), depth maps of the street-view scene
always contain pixels with large depth values, which leads the angle view penalty to be
too small. To address this problem, when the penalty is close to zero, we add another term
to help choose the appropriate image by taking advantage of camera position information.
Specifically, 𝐸𝐸1(𝑥𝑥𝑖𝑖) is defined as 𝐸𝐸1(𝑥𝑥𝑖𝑖) = 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖)𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖). Here, 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖) is the
view angle penalty in (42). When 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖) is too small, it will be hooked and set to 0.01
in our implementation. This is done to balance two energy terms and make 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)
effective. 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖) is defined as 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖) = 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝(𝐶𝐶𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠)𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠), which
evaluates the difference between the reference view and the target view. Here, 𝐶𝐶𝑥𝑥𝑖𝑖 and
𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 denote the view choice for the camera for pixel 𝑥𝑥𝑖𝑖 and for the target view’s camera,
respectively. Further, 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝 represents the distance from the camera center and 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 is the
angle between the optical axes of the two cameras.

𝐸𝐸2(𝑥𝑥𝑖𝑖) is the occlusion term used to exclude the occlusion areas while minimizing the
pixel labeling energy. Most occlusions appear near depth edges. Thus, when using the
backward mapping method to render the warped images, we detect occlusions by
performing depth testing. All pixels in the reference view with larger depth values than

Page 19 of 24

those of the source depth can yield an occlusion mask, which is then used to define
𝐸𝐸2(𝑥𝑥𝑖𝑖). Specifically, when an occlusion mask is invalid, i.e. the pixel is non-occlusion, we
set 𝐸𝐸2(𝑥𝑥𝑖𝑖) = 0 to add no penalty into the energy function. When a pixel is occluded, we
set 𝐸𝐸2(𝑥𝑥𝑖𝑖) = ∞ to exclude this pixel completely.

The rest of the terms in Eq.1 are smoothness terms: color term 𝐸𝐸3�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �, depth term
𝐸𝐸4�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �, and color gradient term 𝐸𝐸5�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 �. Similar to (43), the color term 𝐸𝐸3�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 � is
defined by a truncated seam-hiding pairwise cost first introduced in (44): 𝐸𝐸3(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) =
𝑚𝑚𝑚𝑚𝑚𝑚(∥ 𝑐𝑐𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖
𝑥𝑥𝑗𝑗 ∥2, 𝜏𝜏𝑐𝑐) + 𝑚𝑚𝑚𝑚𝑚𝑚(∥ 𝑐𝑐𝑗𝑗

𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗
𝑥𝑥𝑗𝑗 ∥2, 𝜏𝜏𝑐𝑐), where 𝑐𝑐𝑖𝑖

𝑥𝑥𝑖𝑖 is the RGB value of pixel
𝑥𝑥𝑖𝑖. Similarly, the depth term 𝐸𝐸4�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 � is defined as: 𝐸𝐸4(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚(∣ 𝑑𝑑𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝑑𝑑𝑖𝑖
𝑥𝑥𝑗𝑗 ∣

, 𝜏𝜏𝑑𝑑) + 𝑚𝑚𝑚𝑚𝑚𝑚(∣ 𝑑𝑑𝑗𝑗
𝑥𝑥𝑖𝑖 − 𝑑𝑑𝑗𝑗

𝑥𝑥𝑗𝑗 ∣, 𝜏𝜏𝑑𝑑), where 𝑑𝑑𝑖𝑖
𝑥𝑥𝑖𝑖 is the depth of pixel 𝑥𝑥𝑖𝑖 and the truncation

thresholds are set to 𝜏𝜏𝑐𝑐= 0.5, 𝜏𝜏𝑑𝑑 = 5m in our implementation. Because the illumination
difference may occur between different reference images, the color difference is not
sufficient to ensure a good stitch. An additional gradient difference 𝐸𝐸5(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is used. By
assuming that the gradient vector should be similar on both sides of the seam, we define
𝐸𝐸5(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) =∣ 𝑔𝑔𝑖𝑖𝑥𝑥 − 𝑔𝑔𝑗𝑗𝑥𝑥 ∣ +∣ 𝑔𝑔𝑖𝑖

𝑦𝑦 − 𝑔𝑔𝑗𝑗
𝑦𝑦 ∣, where 𝑔𝑔𝑖𝑖𝑥𝑥 is a color space gradient of the 𝑖𝑖𝑡𝑡ℎ pixel

in the image and includes 𝑥𝑥𝑖𝑖.

The term weights in Eq. 1 are set to 𝜆𝜆1 = 200, 𝜆𝜆2 = 1, 𝜆𝜆3 = 200, 𝜆𝜆4 = 100,𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆5 = 50.
The labeling problems are solved using the TRW-S method (45). Fig. 8 shows the pipeline
and results of augmented background synthesis. Note that in Fig. 8 (c), a color difference
may exist near the stitching seams after image stitching. To obtain consistent results, a
modified Poisson image blending method (46) is performed. Specifically, we select the
nearest reference image as the source domain and then fix its edges to propagate color
brightness to the other side of the stitch seams. After solving the Poisson equation, we
obtain the fusion result shown in Fig. 8 (d). Note that when the novel view is far from the
input views, e.g., large view extrapolation, there will be artifacts due to dis-occluded
regions that cannot be filled in by stitching together pieces of the input images. We mark
those regions as holes and set their gradient value to zero. Thus, these holes will be filled
with plausible blurred color when solving the Poisson equation.

4.3 Moving Objects Synthesis and Data Augmentation
With a synthesized background image in the target view, a complete simulator should
have the ability to synthesize realistic traffics with diverse moving objects (e.g., vehicles,
bicycles, pedestrians) and produce corresponding semantic labels and bounding boxes in
simulated images and LiDAR point clouds.

We use the data-driven method described in (26) to address challenges involving traffic
generation and placement of moving objects . Specifically, given localization information,
we first extract lane information from an associated HD map. Then we randomly initialize
the moving objects' positions within lanes and ensure that the directions of moving objects
are consistent with the lanes. We use agents to simulate the moving objects' movements
under constraints such as avoiding collisions and yielding to pedestrians. The multi-agent
system is iteratively deduced and optimized using previously captured traffics following a
data-driven method. Specifically, we estimate motion states from our real-world trajectory
dataset ApolloScape-TRAJ; these motion states include position, velocity, and control

Page 20 of 24

direction information of cars, cyclists, and pedestrians. Note that such real dataset
processing is performed in advance of simulation and need be processed just once. During
simulation runtime, we use an interactive optimization algorithm to make decisions for
each agent at each frame of the simulation. In particular, we solve this optimization
problem by choosing a velocity from the datasets that tends to minimize our energy
function. The energy function is defined based on the locomotion or dynamics rules of
heterogeneous agents, including continuity of velocity, collision avoidance, attraction,
direction control, and other user-defined constraints.

With generated traffic, i.e. the object placement in each simulation frame, we render 3D
models into the RGB image space and generate annotated data using the physical
rendering engine PBRT (47). Meanwhile, we also generate a corresponding LiDAR point
cloud with annotations using the method introduced in the next section.

4.4 LiDAR Synthesis
Given 3D models and corresponding placement, it is relatively straightforward to
synthesize LiDAR point clouds with popular simulators such as CARLA(4). Nevertheless,
there are opportunities to take advantage of specific LiDAR sensors (e.g., Velodyne HDL-
64E S3). We propose a realistic point cloud synthesis method by effective modeling the
specific LiDAR sensor following a data-driven fashion. Technically, a real LiDAR sensor
captures the surrounding scene by measuring the time of flight for pulses of each laser
beam(48). One laser beam is emitted from the LiDAR and then reflected from target
surfaces. A 3D point is then generated if the returned pulse energy of a laser beam is big
enough. We model the behavior of laser beams to simulate this physical process.
Specifically, the emitted laser beam could be modeled using parameters including the
vertical and azimuth angles and their angular noises, as well as the distance measurement
noise. For example, the Velodyne HDL-64E S3 LiDAR sensor emits 64 laser beams in
different vertical angles ranging from -24.33° to 2°. During data acquisition, HDL-64E S3
rotates around its own upright direction and shoots laser beams at a predefined rate to
accomplish 360° coverage of the scenes. Ideally, such model can adaptive to other types
of LiDAR sensors. Model parameters should depend on the specific type of sensor.
However, we found experimentally that parameters vary considerably, even among
devices of the same type. To be as close as possible to reality, we fit the model from real
point clouds to statistically derive those parameters.

Specifically, we collect real point clouds from these HDL-64E S3 sensors on top of parked
vehicles, guaranteeing smoothness of point curves from different laser beams. The points
of each laser beam are then marked manually and fit by a cone with the apex located in the
LiDAR center. The half-angle of the cone minus π/2 forms the real vertical angle, while
the noise variance is determined from the deviation of lines constructed by the cone apex
and points from the cone surface. The real vertical angles usually differ from ideal angles
by 1°-3°. In our implementation, we model the noise with Standard Gaussian Distribution,
setting the distance noise variance to 0.5cm and the azimuth angular noise variance to
0.05°.

To generate a point cloud, we have to compute intersections between the laser beams and
the scene. Specifically, we propose a cubed, map-based method to mix the background of
the scenes in the form of points and meshes of CAD models. Instead of computing
intersections between beams and the mixed data, we compute the intersection with the
projected maps (e.g., depth map) of scenes, which offer the equivalent information but in a

Page 21 of 24

much simpler form. Note that our LiDAR simulation method can be easily extended for
arbitrary LiDAR sensors and to any sensor solution for different numbers and poses of
sensors. Fig. S1 shows the visual results of our LiDAR simulation.

References and Notes

1. N. Kalra, S. M. Paddock, Driving to safety: How many miles of driving would it take to demonstrate
autonomous vehicle reliability? Transportation Research Part A: Policy and Practice. 94, 182–193 (2016).

2. A. Gaidon, Q. Wang, Y. Cabon, E. Vig, Virtual Worlds as Proxy for Multi-Object Tracking Analysis.
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).

3. M. Müller, V. Casser, J. Lahoud, N. Smith, B. Ghanem, Sim4CV: A photo-realistic simulator for computer
vision applications. Int. J. Comput. Vis. 126, 902–919 (2018).

4. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: An Open Urban Driving Simulator.
Proceedings of the 1st Annual Conference on Robot Learning, 1–16 (2017).

5. S. Shah, D. Dey, C. Lovett, A. Kapoor, AirSim: High-fidelity visual and physical simulation for autonomous
vehicles. Field and Service Robotics. 5, 621–635 (2018).

6. NVIDIA, NVIDIA drive constellation: virtual reality autonomous vehicle simulator (2017).

7. A. C. Madrigal, Inside Waymo’s Secret World for Training Self-Driving Cars. the Altantis (2017).

8. M. Likhachev, D. Ferguson, Planning long dynamically feasible maneuvers for autonomous vehicles. The
International Journal of Robotics Research. 28, 933–945 (2009).

9. S. J. Anderson, S. C. Peters, T. E. Pilutti, K. Iagnemma, Design and development of an optimal-control-based
framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in
hazard avoidance scenarios. Robotics Research. 70, 39–54 (2011).

10. C. Katrakazas, M. Quddus, W.-H. Chen, L. Deka, Real-time motion planning methods for autonomous on-road
driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging
Technologies. 60, 416–442 (2015).

11. J. Ziegler et al., Making Bertha drive - An autonomous journey on a historic route. IEEE Intelligent
Transportation Systems Magazine. 6, 8–20 (2014).

12. A. Geiger et al., Team AnnieWAY’s entry to the 2011 grand cooperative driving challenge. IEEE Transactions
on Intelligent Transportation Systems. 13, 1008–1017 (2012).

13. M. Buehler, K. Iagnemma, S. Singh, The DARPA urban challenge: autonomous vehicles in city traffic. 56
(2009).

14. A. Best, S. Narang, D. Barber, D. Manocha, Autonovi: Autonomous vehicle planning with dynamic maneuvers
and traffic constraints. Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2629–2636 (2017).

15. S. D. Pendleton et al., Perception, planning, control, and coordination for autonomous vehicles. Machines. 5, 6
(2017).

16. M. Johnson-Roberson et al., Driving in the matrix: Can virtual worlds replace human-generated annotations for
real world tasks? arXiv preprint arXiv:1610.01983 (2016).

17. S. R. Richter, V. Vineet, S. Roth, V. Koltun, Playing for data: Ground truth from computer games. Proceedings
of the 2016 European Conference on Computer Vision, 102–118 (2016).

Page 22 of 24

18. H. Lin et al., Semantic Decomposition and Reconstruction of Residential Scenes from LiDAR Data. ACM Trans.
Graph. 32 (2013).

19. H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, C. Rother, Augmented reality meets computer
vision: Efficient data generation for urban driving scenes. Int. J. Comput. Vis. 126, 961–972 (2018).

20. X. Huang et al., The ApolloScape Dataset for Autonomous Driving. arXiv preprint arXiv:1803.06184 (2018).

21. E. Penner, L. Zhang, Soft 3D reconstruction for view synthesis. ACM Trans. Graph. 36, 235 (2017).

22. F. Liu, M. Gleicher, H. Jin, A. Agarwala, Content-preserving warps for 3D video stabilization. ACM Trans.
Graph. 28, 44 (2009).

23. G. Chaurasia, S. Duchene, O. Sorkine-Hornung, G. Drettakis, Depth synthesis and local warps for plausible
image-based navigation. ACM Trans. Graph. 32, 1–12 (2013).

24. R. Achanta et al., SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34, 2274–2282 (2012).

25. J. Ren et al., Heter-Sim: Interactive data-driven optimization for simulating heterogeneous multi-agent systems.
arXiv preprint arXiv:1812.00307 (2018).

26. Q. Chao, Z. Deng, J. Ren, Q. Ye, X. Jin, Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis.
IEEE Trans. Vis. Comput. Graph, 1167–1178 (2018).

27. M. Cordts et al., The Cityscapes Dataset for Semantic Urban Scene Understanding. Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (2016).

28. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn. Proceedings of the 2017 IEEE International Conference
on Computer Vision, 2980–2988 (2017).

29. A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite.
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3354–3361 (2012).

30. C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep hierarchical feature learning on point sets in a metric
space. Proceedings of the 2017 Advances in Neural Information Processing Systems, 5099–5108 (2017).

31. J. Fang et al., Simulating LIDAR Point Cloud for Autonomous Driving using Real-world Scenes and Traffic
Flows. arXiv preprint arXiv:1811.07112 (2018).

32. X. Yue, B. Wu, S. A. Seshia, K. Keutzer, A. L. Sangiovanni-Vincentelli, A lidar point cloud generator: from a
virtual world to autonomous driving. Proceedings of the ACM International Conference on Multimedia
Retrieval, 458–464 (2018).

33. Y. Ma et al., TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents. arXiv preprint
arXiv:1811.02146 (2018).

34. P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, Image-to-image translation with conditional adversarial networks.
arXiv preprint (2017).

35. T.-C. Wang et al., High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs.
Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (2018).

36. Y. Song et al., SPG-Net: Segmentation Prediction and Guidance Network for Image Inpainting. arXiv preprint
arXiv:1805.03356 (2018).

37. Y. Liu, X. Qin, S. Xu, E. Nakamae, Q. Peng, Light source estimation of outdoor scenes for mixed reality. The
Visual Computer. 25, 637–646 (2009).

Page 23 of 24

38. M. Corsini, M. Dellepiane, F. Ponchio, R. Scopigno, in Computer Graphics Forum (Wiley Online Library,
2009), vol. 28, pp. 1755–1764.

39. N. Kholgade, T. Simon, A. Efros, Y. Sheikh, 3D object manipulation in a single photograph using stock 3D
models. ACM Trans. Graph. 33, 1–12 (2014).

40. K. He, J. Sun, X. Tang, Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013).

41. A. Levin, D. Lischinski, Y. Weiss, Colorization using optimization. ACM Trans. Graph. 23, 689–694 (2004).

42. C. Buehler, M. Bosse, L. McMillan, S. Gortler, M. Cohen, Unstructured lumigraph rendering. Proceedings of the
28th annual conference on computer graphics and interactive techniques, 425–432 (2001).

43. P. Hedman, S. Alsisan, R. Szeliski, J. Kopf, Casual 3D photography. ACM Trans. Graph. 36, 1–15 (2017).

44. V. Kwatra, A. Schödl, I. Essa, G. Turk, A. Bobick, Graphcut textures: image and video synthesis using graph
cuts. ACM Trans. Graph. 22, 277–286 (2003).

45. V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern
Anal. Mach. Intell. 28, 1568–1583 (2006).

46. P. Pérez, M. Gangnet, A. Blake, Poisson image editing. ACM Trans. Graph. 22, 313–318 (2003).

47. M. Pharr, W. Jakob, G. Humphreys, Physically based rendering: From theory to implementation (Morgan
Kaufmann, 2016).

48. S. Kim, I. Lee, Y. J. Kwon, Simulation of a Geiger-mode imaging ladar system for performance assessment.
sensors. 13, 8461–8489 (2013).

Acknowledgments

Author contributions: The project was conceived by Rg. Y.. W. L. and Cw. P. developed
the concept and systems. Jp. R. developed the trajectory synthesis framework. R. Z. and
Qc. G. performed synthesized RGB image evaluations. Xy. H. helped collect RGB and
point cloud datasets. J. F. and Fl. Y. performed synthesized LiDAR point cloud
evaluations. Yx. M. helped collect the trajectories dataset and performed simulated
trajectory evaluations. Gp. W., Ww. X., and Hj. G. discussed the results and contributed to
the final manuscript. The paper was written by W. L., D. M., and Rg.Y..

Competing interests: The authors declare that they have no competing interests.

Data and materials availability: The RGB and point cloud datasets (ApolloScape-RGB
and ApolloScape-PC) are hosted with the web link http://apolloscape.auto/scene.html. The
trajectory dataset (ApolloScape-TRAJ) announced along with this paper can be freely
downloaded through the link http://apolloscape.auto/trajectory.html. The high-resolution
video can also be watched through https://youtu.be/NEt0d_hhb6k.

http://apolloscape.auto/scene.html
http://apolloscape.auto/trajectory.html
https://youtu.be/NEt0d_hhb6k

Page 24 of 24

SUPPLEMENTARY MATERIALS

Figures

Fig. S1. Visual Evaluations of Point Cloud Simulation. Top row shows the ability of our
system to simulate different types of LiDAR sensors: 128 channel VLS-128 (a), 64 channel HDL-
64E (b), and 16 channel VLP-16 (c) sensor from Velodyne LIDAR, Inc. Note the red rectangles,
which are projected 3D bounding boxes of cars and pedestrians. The bottom row shows the
comparison of our method (e) for simulating 64 channel LiDAR with captured real data (d) and
data simulated by CARLA (f).

