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ABSTRACT

Vehicle re-identification (re-id) is a promising topic, which
focuses on retrieving the same vehicles across different cam-
eras. It is challenging due to the variations of illumination
and camera viewpoints. To solve these problems, we present
a multi-attribute driven vehicle re-id approach to learn dis-
criminative representations. The proposed approach consists
of a multi-branch architecture and a re-ranking strategy. The
multi-branch architecture extracts color, model, and appear-
ance features, which explicitly leverages the vehicle attribute
cues to enhance the generalization ability, especially for the
different vehicles with similar appearance and the same vehi-
cles with different orientations. The re-ranking strategy intro-
duces the spatial-temporal relationship among vehicles from
multiple cameras to construct the similar appearance sets and
utilizes Jaccard distance between these similar appearance
sets to re-rank. Extensive experimental results demonstrate
that our proposed approach significantly outperforms state-
of-the-art re-id methods on the popular VeRi-776 dataset and
VehicleID dataset.

Index Terms— Vehicle Re-Identification, multi-attribute
driven architecture, spatial-temporal re-ranking.

1. INTRODUCTION

Vehicle re-identification (re-id) refers to retrieving the same
vehicles from large-scale surveillance videos. In current ap-
plications of traffic management, license plate recognition
plays an important role to provide vehicle identify for ve-
hicle re-id. However, it is difficult to capture license plates
in many surveillance cameras due to viewpoint, occlusion
and illumination. What’s more, the criminals often use fake
license plates to escape search. Vehicle re-id bases on appear-
ance features, therefore, becomes the effective way to solve
such problems and quickly becomes a research focus in field
of computer vision. It is challenging due to the orientation
variations, illumination changes, and amounts of similar ve-
hicle models. As shown in Fig. 1, Fig.1 (a) represents the
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Fig. 1. Some hard examples of vehicle re-identification

same vehicle model with different color, Fig.1 (b) shows the
two different vehicles with similar color and model, Fig.1(c)
and Fig.1 (d) are the same vehicle identify with different
orientations. In the face of these images, the performance
of traditional methods have dramatic decline, and even the
observation ability of humans is also prone to generate the
wrong classifications.

Inspired by the person re-id [1, 2, 3], some success deep
learning frameworks [4, 5, 6, 7] that have make great break-
throughs in computer vision are introduced into vehicle re-id
to extract appearance features[8, 9]. However, these existing
methods still often fail in the cases displayed in Fig.1. The
main reason is that they only focus on extracting appearance
features [10, 11, 12], while ignore to explore the attribute cues
and spatial-temporal relationships of vehicles. To make up for
this deficiency, we proposed a novel multi-attribute architec-
ture that exploits attributes to improve the feature representa-
tions of raw vehicle images.

The architecture consists of a backbone network and two
branch networks. The backbone is responsible for extracting
appearance features. The two branches extract color and vehi-
cle model features respectively. Two attribute branches drive
the backbone to extract more discriminative representations,
which can alleviate the variations of illumination and orien-
tation. Furthermore, we also design a spatial-temporal re-
ranking strategy to optimize the vehicle re-id algorithm. The
strategy makes full use of the spatial-temporal relationship
between every image pairs to generate similar appearance sets
for re-ranking by Jaccard distance. To evaluate the proposed
method, we conduct multi-group comparative analysis exper-
iments on VeRi-776 dataset and VehicleID dataset. Experi-
mental results demonstrate that our method outperforms most
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Fig. 2. Outline of our proposed method

state-of-the-art methods. On VeRi-776 dataset, our proposed
method achieves 2.84% improvements in mAP and 5.71% in
Rank-1. On VehicleID dataset, we also get various degrees of
improvements for three different scale subsets.

2. OUR APPROACH

In this section, we demonstrate the outline of our proposed
method in Fig.2. Meanwhile, we also introduce the multi-
attribute architecture designed for learning feature represen-
tations and the spatial-temporal re-ranking strategy.

2.1. Multi-Attribute Architecture

Existing methods of person re-identification and vehicle re-
identification usually extract appearance features for similar-
ity metric. Although appearance features extracted from ex-
cellent deep learning frameworks can describe the majority of
the appearance information, erroneous classifications are still
inevitable. Inspired by multi-branch networks from person
re-id, we find that extracting various features can improve the
discrimination and robustness of feature representations. We
immediately think of the vehicle model attribute to drive the
backbone network. Different from non-rigid persons, vehi-
cles are rigid objects whose shapes and models are very sta-
ble. The model attribute can be employed to learn the cor-
responding relationships of the same vehicle model with dif-
ferent orientations. Unfortunately, model attribute features
are easily to lead to the incorrectly associations displayed in
Fig.1 (a), due to ignoring the color. Therefore, the color at-
tribute should also be consider for vehicle re-id.

As shown in Fig.2,we propose a multi-attribute architec-
ture with different convolutional blocks to learn different la-
bels. It consists of a stem block, a backbone network and
two branch networks. The stem block contains two normal
CNN layers and one Pooling layer. They share the parameter
weights, which is beneficial to back propagation and reduce
computing resources. Due to different labels, the backbone

network has different convolutional blocks with two attribute
branches. Analysis the existing deep learning structures, we
find that various deep learning structures have different sen-
sitivities to every attributes. The simple CaffeNet is sensi-
tive to the colors and the GoogleNet[5] is more concerned
about the vehicle model attributes. The latest DenseNet [7]
can achieve discriminant appearance features by reusing low-
level features. To this end, we exploit dense blocks to de-
sign the backbone network, modify inception blocks to build
the model branch network, and choose CaffeNet as the color
branch network. The details of multi-attribute architecture are
described in Table 1.

Table 1. Sketch map of our network structure
Branch Module Name Output Size

Appearance

Stem Block 64x57x57
Dense block2 128x29x29
Dense block3 256x15x15
Dense block4 512x8x8
Dense block5 1024x1x1

FC 512x1x1

Color

Conv2 256x57x57
pool2 256x29x29
Conv3 384x29x29
Conv4 384x15x15
Conv5 256x8x8
Pool5 256x1x1
FC6 512x1x1
FC7 512x1x1

Model

Inception Block2 256x57x57
Inception Block3 256x29x29
Inception Block4 512x14x14
Inception Block5 1024x7x7

Pool 1024x1x1
FC 512x1x1

In the training phase, we adopt two-stage training strat-
egy. In the first stage, three softmax loss functions are used
to train the backbone and two branch networks. In the second
stage, we exploit softmax loss function, improved triplet loss
function, and hard example mining strategy [13] to jointly
train the backbone network. Compared with the original
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triplet loss function, our improved triplet loss function in-
troduces the intra-class constraint.The original triplet loss
function Lid(I

a
i , I

p
i , I

n
i ) is defined as follow:

Lid(I
a
i , I

p
i , I

n
i ) =

N∑
i=1

[d(f(Iai ), f(I
p
i ))−d(f(I

a
i ), f(I

n
i ))+α]+

(1)
where Iai represents the anchor image in a triplet input, Ipi
denotes the positive sample of anchor image, Ini expresses
the negative sample of the anchor image.[x]+ = max(x, 0).
d(x, y) represents the L2-norm distance between x and y. α
is a margin between positive and negative samples, and N is
the number of triples. On this basis, the introduced intra-class
constraint is defined as follows:

Lin(I
a
i , I

p
i ) =

N∑
i=1

[d(f(Iai ), f(I
p
i )) + β]+ (2)

where β is a threshold of intra-class similarity constraint. The
improvement makes the features from different cars farther
away from each other, meanwhile features from the same car
closer.

In the testing phrase, the achieved color and model at-
tribute features are set as the filter conditions. Only when an
image has similar attributes with the probe image, we calcu-
late their appearance feature distances for vehicle re-id. This
retrieval mode implicitly improves the rank-k accuracy of our
proposed algorithm by reducing the number of the gallery set.

2.2. Spatial-Temporal Re-Ranking

In the real monitoring environments, each independent vehi-
cle image not only provides appearance information, but also
provides spatial-temporal information. Attribute driven ap-
pearance features only describe the appearance information
of each independent vehicle image. To exploit the spatial-
temporal information, we explore the spatial-temporal rela-
tionships between every image pair. As shown in Fig.3, we
draw the statistics of spatial-temporal information from VeRi-
776 dataset. The blue lines represent the statistical results of
the same vehicles, and the green lines denote the results of
random different vehicles. It is obvious that the number of
the same vehicles with small space or time distance is more
than the same vehicles with large space or time distance.

According to the observation, we design a spatial-temporal
re-ranking strategy to further optimize the vehicle re-id.
Firstly, we achieve the initial retrieval results by Euclidean
distance. Then, we define S(I, k) as the top-k similar ap-
pearance set of image I , which depends on the associated
score. The associated score considers the spatial-temporal
relationship and the appearance similarity simultaneously. It
can be calculated by Eq.3.

C(Ii, Ij) =
‖Ti − Tj‖
Tmax

× δ(Di −Dj)

Dmax
×d(f(Ii), f(Ij)) (3)

(a) (b)

Fig. 3. Statistics of spatial-temporal information

where Ti and Tj are the timestamps of Ii and Ij . Tmax is the
max time difference between every probe image and gallery
images. Dmax denotes the max spatial distance among all
cameras provided images. δ(Di−Dj) is the smallest distance
between Ii and Ij . The image pairs with small associated
score have high spatial-temporal relationship and appearance
similarity.

Following Eq.3, we can achieve the similar appearance
sets of the probe image and retrieval results. Taking them as
inputs, the distance between the probe image and the retrieval
results can be re-calculated by Jaccard distance. It is defined
as follow:

dJ(p, ri) = 1− S(p, k)
⋂
S(ri, k)

S(p, k)
⋃
S(ri, k)

(4)

where S(p, k) denotes the similar appareance set of the probe
image p, S(ri, k) represents the similar appareance set of the
results ri. In this paper, the k is empirically set to 6.

3. EXPERIMENTS

To verify the proposed algorithm, we conduct comparative ex-
periments on VeRi-776 dataset[8] and VehicleID dataset[11].
The implement details of experiments are described in Sec.
3.1 and the results are demonstrated in Sec. 3.2.

3.1. Implement Details

The selected VeRi-776 dataset provides 37781 images for
training and 13257 images for testing. VehicleID dataset
contains data captured during daytime by multiple real-world
surveillance cameras distributed in a small city in China.
There are 26267 vehicles in the entire dataset. Due to the
ratio imbalance between different classes, we eliminate the
vehicles with fewer than six images. In the comparative ex-
periments, we perform our algorithm on Caffe platform and
define a data layer using Python interface to support multi-
attribute inputs. For data augmentation, we resize all images
to 256*256 and crop them into 224*224 with horizontal flip.
During the joint training process, initial learn rate is set to
0.01 and maximum number of iterations is set to 30 epoches.
At the evaluation stage, we adopt mean average precision
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(mAP) and Rank-1 to compare our proposed algorithm with
the state-of-the-art approaches.

3.2. Analysis of Contribution Effectiveness

In this section, we design the following experiments on VeRi-
776 dataset to analyze the effectiveness of contributions. The
experimental results from different optimizations are shown
in Table 2.

Table 2. Analysis results of our method with different settings
Setting mAP(%)

Appearance 54.94
Appearance+Color 56.92

Appearance+Color+Model 58.05
Appearance+Color+Model+Re-Ranking 61.11

In Table 2, appearance represents that results are from the
backbone structure. Based on it, we add the color branch,
model branch, and re-ranking strategy one by one. As is
shown in Table 2, the color features and the model features
improve the mAP by 1.98% and 3.11% compared with the
appearance results, respectively. Meanwhile, the spatial-
temporal re-ranking strategy further improves the algorithm
performance. The effectiveness of contributions can also be
seen in Cumulative Match Characteristic (CMC) curves (see
Fig. 4).

Fig. 4. CMC on VeRi-776 Dataset

As shown in Fig.4, our proposed complete architecture
with re-ranking strategy achieves the best performance, which
proves the contributions of attribute branches and spatial-
temporal relationship again.

3.3. Performance Comparison on Popular Datasets

The proposed method is compared with recent state-of-the-
art algorithms on two popular datasets. The experiments are
repeated for 10 times and the average results are described in
Table 3 and Table 4.

Table 3. Comparison with state-of-the-art approaches on
VeRi-776 dataset

Method mAP(%) Rank-1(%) Rank-5(%)
FACT[8] 18.49 50.95 73.48

FACT+Plate-SNN-STR[8] 27.77 61.44 78.78
Siamese-CNN[9] 54.21 79.32 88.92

Siamese-CNN-Path-LSTM[9] 58.27 83.49 90.04
Our Method 61.11 89.27 94.76

In Table 3, the FACT and FACT+Plate-SNN-STR com-
bine appearance features learned by GoogLeNet, SIFT tex-
ture features and color features extracted by Color Name(CN)
model. The Siamese-CNN not only extracts the appearance
features from CNN framework with Siamese loss function,
but also exploits the license plate information. On the basis,
the Siamese-CNN+Path-LSTM introduces LSTM units to uti-
lize the spatial-temporal paths. Even so, compared with them,
our proposed method still achieves excellent performance on
both Rank-1, Rank-5 and mAP.

Table 4. Comparative results of mAP on VehicleID dataset
Method Small Medium Large

Mix Diff+CCL[11] 0.546 0.481 0.455
HDC+Contractive[14] 0.655 0.631 0.575

DJDL[15] 0.786 0.747 0.720
Our Method 0.820 0.759 0.728

As shown in Table 4, we also perform contrast experi-
ment on VehicleID dataset with different scales testing set.
Although [11, 15] exploit multiple loss functions to jointly
train network and [14] uses hard-aware cascade to enhance
network, our method still outperforms them on mAP. It is
worth noting that VehicleID dataset does not provide the path
information. Our performance improvement displayed in the
Table 4 only owes to the combination of attribute and appear-
ance features, which strongly proves the validity of the multi-
attribute architecture.

4. CONCLUSION

In this paper, we proposed a multi-attribute deep learning ar-
chitecture and a spatial-temporal re-ranking strategy for vehi-
cle re-id. The architecture can extract appearance features,
color features, and model features to improve the discrim-
inative representations of raw vehicle images, which effec-
tively incorporates the vehicle attribute information to dis-
tinguish similar vehicles. The re-ranking strategy introduces
time and location to calculate the spatial-temporal relation-
ships between vehicle pairs, which can assist appearance fea-
ture distances to re-rank the retrieval results. Extensive ex-
periments and analysis on VeRi-776 dataset and VehicleID
dataset demonstrate that our proposed approach is superior to
most state-of-the-art methods. In future work, we will pay
attention to vehicle re-id based on video sequences.
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