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Abstract. Image captioning is a challenging task involving computer vision
and natural language processing. In recent works, visual attention mechanisms
have been extensively used. However, they consider little about the correlations
among different regions and the attention on regions. This paper is try to make
up for the deficiencies in existing approaches and propose a novel captioning
model, which extracts the salient region correlations from the image feature,
synthesizes intra-image regions’ context, and automatically distributes an
appropriate attention over regions. The Intra-Image Region Context (IIRC)
model proposed in this paper jointly learns regions’ semantic correlations in one
image. It consists of two main parts. The first is to extract feature vectors of
image through convolutional neural work (CNN) and get correlations among
regions from feature vectors by recurrent neural network (RNN). The second is
to generate the caption according to the synthesis of region contexts from the
first network with attention on different region contexts. The model and baseline
are evaluated on MSCOCO test server. The experimental results have illustrated
that the model is superior over many outstanding models on the metrics of
BLEU, METEOR, ROUGE-L and CIDEr. Moreover, the model excels in
describing details, especially those related to position and action.
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1 Introduction

Image captioning is a fundamental research issue which aims at automatically gener-
ating a natural description of an image. It has received a significant amount of attention
in both computer vision and natural language processing research communities [1, 2].
The image captioning’s task is to generate semantically and syntactically appropriate
target sentence with consecutive words to represent the image content, which can be
quite challenging in two ways. First of all, the model needs to learn and capture the
semantic information of image with great precision. Secondly, the generation of the
target sentence must take into account both the correctness of the syntax and the
correlation between the semantics and the image content, which thus requires complex
interactions among them.

In recent years, many approaches which achieve impressive results on image
captioning [10, 11, 22] have been raised with the availability of larger datasets [3, 4, 9].

© Springer Nature Switzerland AG 2018
R. Hong et al. (Eds.): PCM 2018, LNCS 11166, pp. 212–222, 2018.
https://doi.org/10.1007/978-3-030-00764-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00764-5_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00764-5_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00764-5_20&amp;domain=pdf


Particularly, a strong and effective approach was proposed to generate captions in high
quality [11]. The image features are encoded by the input image with a deep convo-
lutional neural work (CNN), then the encoded feature is used to generate the output
caption by the Long Short Term Memory (LSTM) recurrent neural network
(RNN) decoder. This encoder-decoder model becomes the baseline of recent research
methods.

To improve the quality of the output captions and help the decoder focus on the key
image information, the model needs to perform some fine-grained visual processing.
Therefore, visual attention mechanisms have been widely applied in image captioning
tasks [12, 17, 22]. Most traditional visual attention mechanisms used in image cap-
tioning are the top-down variety. These mechanisms are generally trained to selectively
attend to the output of one or more layers of a CNN [16, 22]. However, they give little
consideration to how the image regions which are subject to attention are selected, and
how those different image regions are related with each other.

In this paper we propose a model based on encoder-decoder architecture, which
allows the network to generate captions by the correlation of context among image
regions. Our mechanism extracts several major regions of the image feature as region
features, with each region feature represented by a pooled feature vector. Then we form
a sequence including these features in order, and use RNN encoder to read each region
feature sequentially. That is encoder maps these image regions sequence into a con-
tinuous feature vectors. We call this intra-image region context modelling, which
considers the correlations among image regions. After that, the decoder transforms the
continuous feature vectors from the encoder to a sequence as the output sentence. Both
the encoder and the decoder adopt the LSTM as recurrent neuron. This process with
sequence-to-sequence encoding and decoding enables correlation learning of region
features in the model. Allowing the decoder units to determine which region features is
more helpful and important for each time step, we introduce the non-visual attention
mechanism into this framework. In this way, the model can use the context to predict
the attention distribution over regions.

In order to evaluate the performance of our method, our model is trained and tested
on MSCOCO caption dataset [9] and MSCOCO test server. MSCOCO is a large and
popular dataset containing more than 120,000 images. Our results on the test server not
only achieve remarkable performance at CIDEr, METEOR, ROUGE-L and BLEU
scores, but also outperform current baseline. The scores of evaluation metrics thor-
oughly reflect the effectiveness of our model.

2 Proposed Model

Our Intra-Image Region Context model consists of two major subnetworks compo-
nents: intra-image region context (Fig. 1(a)) and language decoder (Fig. 1(b)). The
attention module is used between subnetworks. Different from CNN-RNN encoder-
decoder architecture like show-and-tell model [11], we use the RNN-RNN encoder-
decoder just like sequence-to-sequence model [2]. When our model gets the target
image, it will first extract an image feature by the deep CNN model. The center region,
top left region, top right region, bottom left region, bottom right region and entire
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region of the image feature map are serialized, and then they are put into the LSTM
encoder to extract the correlations of different region features. After that, the region
context feature which is produced at the last time step of LSTM encoder will be put
into the first time step to LSTM decoder to generate the caption for the image. To
overcome the loss of regional semantic information without fine-grained localisation,
we introduce an attention mechanism to our model. Attention mechanism can focus on
the most relevant sections of the input region feature vectors sequence and guide our
decoder to those sections for feature extraction. An illustration of our complete model
for image captioning is provided in Fig. 1.

2.1 Intra-Image Region Context Subnetwork

The Intra-Image Region Context subnetwork includes a deep CNN (e.g. Inception-v4
[7]) and a RNN with LSTM recurrent neuron, as illustrated in Fig. 1(a). The CNN has
already been well pre-trained on ImageNet [5] which is a large dataset for image
classification mission. The pre-trained network which has a well generalization capa-
bility, has already learnt the ability of how to get some useful features. The transfer
learning is widely used in lots of computer vision tasks. In our method, we use the well
pre-trained CNN to extract the semantic feature of the full image. We get the feature
from the last layer before pooling layer and full-connected layer. The feature map Vi

will be with the shape like (Vh, Vw, Vc), where Vh, Vw, Vc represents height, width, and
channel of the feature separately.

Then we divide the feature map into 5 pieces, which have same shapes of (Vh/2, Vw/
2, Vc). We get 5 different important regions of feature map as illustrated in Fig. 2. Their
directions are: center, top left, top right, bottom left, bottom left and bottom right.
These parts map the semantic information of the corresponding areas of the source
image. The attention in the human visual system is able to be focused automatically by
top-down and bottom-up signals [18, 19]. When a person wants to observe what the
picture is talking about, he usually focuses his attention on the center area of the image
first to get the main semantics information of the image. Then he will look at the
remaining area of the image to obtain some scene of other semantic information, so that
he can provide the caption for the image. Drew on the experience of the method of
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Fig. 1. An overview of the proposed model for image captioning by intra-image region context.
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human observation, we simplify the surrounding area as four corners of image feature
map, and center area as the center of image feature map. For keeping the full image
semantic information joining the generation of caption, we pool the whole feature map
to the size of 5 splits of image feature map. For each feature vector of 6 regions which
are mentioned above, we flatten and full-connect them to the m-dimensional feature
vector with the length as the number of hidden units. Then, we form the region feature
vectors xn sequence X ¼ x1; . . .; x6ð Þ in order: center, top left, top right, bottom left,
bottom right, full.

LSTM encoder reads region features sequentially, and gives final output zout which
represents the context of 6 region semantic features. Recurrent neural network is
effective for modeling sequence data. In theory [6], RNN could handle long-term
dependencies, but actually it can only remember the limited contents of time steps due
to problems of gradient vanishing and explosion. To address this problem, a special
RNN neuron called LSTM is proposed and it establishes the state-of-the-art for the
sequence task. Therefore, we feed region features sequence X into LSTM. Particularly,
at each time step t, the LSTM updates states using the input xt, previous status ht-1 and
ct-1, as follows:

ft ¼ r Wfhht�1 þWfxxt þ bf
� � ð1Þ

it ¼ r Wihht�1 þWixxt þ bið Þ ð2Þ

ot ¼ r Wohht�1 þWoxxt þ boð Þ ð3Þ

gt ¼ tanh Wghht�1 þWgxxt þ bg
� � ð4Þ
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Fig. 2. Intra-Image Region Context Subnetwork. It utilizes the regions of image feature to
extract the contexts and connection between them, then puts the region feature into LSTM to get
hidden status and the output of our encoder.
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ct ¼ ft � ct�1 þ it � gt ð5Þ
ht ¼ ot � tanh ctð Þ ð6Þ

where all of r(�) refer to the sigmoid function, tanh(�) the hyperbolic tangent function,
⊙ the operator of element-wise product. The LSTM has five components, four gates
and one memory cell: forget gate f, input gate i, output gate o, input modulation gate g,
memory cell ct, with the learned parameters Ws, bs. The cell ct depends on ct-1 which is
the previous memory cell, adjusted by forget gate ft, and gt adjusted by input gate it.
Therefore, LSTM not only can solve the problems of gradient vanishing and explosion,
but also is able to capture complex and long-term dynamics or dependency in sequence
data. Importantly, this allows the model to selectively extract and encode the spatial
and semantical dependency among different regions of the image feature. As Fig. 1(a)
shown, the LSTM take sequentially an element xt of X at each time step t. Then, it
updates its single hidden state ht of step t as:

ht ¼ fk ht�1; xtð Þ ð7Þ

where fk represents the non-linear activation function of parameter k. After six time
steps we will have ht t ¼ 1; . . .; 6ð Þ, the hidden states, and zout, the comprehensive of
region contexts of the image feature.

2.2 Language Decoder Subnetwork

To model the potential high-level region semantic correlation subject to learning a
caption sequence generator, we construct a LSTM decoder. Specifically, the LSTM
decoder aims at modeling sequential recurrent regions correlation within both intra-
image region context z and the comprehensive of region contexts zout and generation
dynamic length output as predicted sequence of words yt over time step t. This is our
purpose because of varying co-occurring semantic attributes among regions of the
feature. The appropriate caption of the image will be generated from pretreatment list of
words. The Language Decoder subnetwork is shown in Fig. 1(b), which consists of one
LSTM decoder and attention module. In order to obtain the initial hidden state h1

2 of
decoder, we use the comprehensive of region contexts vector zout to initialize it. This
step is for the purpose of incorporating the intra-image region context correlation into
the decoding procedure. Different from the encoder, when we infer a caption, the
output word and hidden state of time step t, yt-1 and ht

2 rely on the previous ht-1
2 and zt-1,

which is initialized by the start token of words (e.g. “<S>”). In fundamental, our model
is able to mine the potential high-level region semantic correlation of dynamic
sequence precisely because of this recurrent feedback connection in sequence. Different
from Eq. (7), ht

2 is update as follows:

h2t ¼ fk h2t�1; zt�1
� � ð8Þ
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Similar to Eq. (1)–Eq. (6), the gates and cells of the decoder LSTM update as
following:

ft ¼ r Wfhh
2
t�1 þWfzzt�1 þ bf

� � ð9Þ

it ¼ r Wihh
2
t�1 þWizzt�1 þ bi

� � ð10Þ

ot ¼ r Wohh
2
t�1 þWozzt�1 þ bo

� � ð11Þ

gt ¼ tanh Wghh
2
t�1 þWgzzt�1 þ bg

� � ð12Þ

ct ¼ ft � ct�1 þ it � gt ð13Þ

h2t ¼ ot � tanh ctð Þ ð14Þ

The decoder LSTM is also updated by previous states and some parameters as the
encoder LSTM did before. Notation y1:T refers to a sequence of words (y1; . . .; yT ). The
conditional distribution over possible result at each time step t, given by:

pðytjy1:t�1Þ ¼ softmax Wph
2
t þ bp

� � ð15Þ

where Wp and bp are learned matrixes. The complete sequence is calculated as:

p y1:Tð Þ ¼
YT

t¼1

pðytjy1:t�1Þ ð16Þ

Recurrent Region Attention. Regional correlation patterns in images of real world
can have many significant and complex changes. A considerable amount of image
semantic information might not be well encoded, because each region context vector
could only hold its limited information of semantics. In order to overcome this limi-
tation, we introduce the attention mechanism into our model to improve its perfor-
mance. So that it will automatically locate at the most relevant sections of the input
region feature vector sequence and focus on these sections, when the model is pre-
dicting the current words. This is actually a standard sequence-to-sequence alignment
mechanism which is different from the attention mechanism in [22]. We implement the
mechanism by importing a special structure between the encoder output and refor-
mulated decoder inputs.

Given the output h of the encoder LSTM, at each time step t we generate an
attention weight ai,t for each encoder hidden state hi as:

ui;t ¼ h2
>

t Wuhi ð17Þ
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at ¼ softmax utð Þ ð18Þ

zt ¼
XL

i¼1
ai;thi ð19Þ

where Wu is learned parameters, ui,t is the score at i-th hidden state of time t,
i ¼ 1; . . .; L L ¼ 6ð Þ, and n is the splits number of image features we discussed before.
Similar to [8], our approach of attention gets the decoder hidden state at time step
t. Then we calculate attention scores, and from the calculated scores, we get the context
vector zt which will be concatenated with hidden state ht

2 of the decoder. After that, we
can predict a word of the caption sequence by Eqs. (15) and (16).

At last, the objective of our method is to minimize the cross entropy loss LCE by
given target ground truth sequence y�1:T and captioning model with parameters h, as
follows:

LCE hð Þ ¼ �
XT

t¼1
log ph y�t jy�1:T

� � ð20Þ

We use the stochastic gradient descent (SGD) with gradient decay to optimize the
goal function, which is efficient for optimizing our model, and the comprehensive of
region contexts just feed at the beginning of the decoder LSTM only once at training
time.

3 Experiments

3.1 Dataset

To evaluate our proposed model, a large and high-quality dataset is necessary. In view
of this, we use the Microsoft COCO (MSCOCO) 2014 caption dataset [9]. For vali-
dation of model parameters and offline evaluation, we use the data splits from the
method of ‘Karpathy’ [10]. These splits have been widely used to demonstrate results
of models in the previous woks. The training split contains 113,287 images with five
captions each, 5 K images for validation, and 5 K images for testing as well. We also
submit our results to MSCOCO test server to get how effective our model is. Following
other practicing standard, we slightly filter the model vocabulary. We keep words that
appear above five times, convert all captions to lower case and tokenize on space. We
end up with a vocabulary of length 10,116. We report results with seven extensively
used evaluation metrics: BLEU (1, 2, 3, 4) [23], METEOR [25], ROUGE-L [24], and
CIDEr [21].

3.2 Implementation Details

Our proposed IIRC subnetwork consists of two components, CNN and LSTM encoder.
Particularly, in this work, we use Inception-v4 [7] CNN model which is well pre-
trained on ImageNet [5] to extract the semantic feature of the image for image
embedding. We elicit the feature from the layer after Inception-C blocks as our image
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feature VI which has the shape of 8 � 8 � 1536 i.e. Vh � Vw � Vw. Cutting out from
VI, our each region feature vector has the shape of 4 � 4 � 1536. Then region feature
vectors are pooled, flattened and full-connected to the 512-dimensional feature vector
i.e. m = 512. Determined by experience of others works, both the encoder and the
decoder LSTM of our model has 512 hidden state units (neurons). Similarly, word and
attention embedding dimension are fixed to 512. Empirically, we set the initial learning
rate as 0.5 with learning rate decay factor of 0.5 per 8 epochs for our SGD optimizer,
and we find that it is a suitable way for our model optimizing. We initialize our model
by the fixed pre-trained parameters of the CNN with given hyperparameters. After the
model converges (i.e. we have a nice set of parameters), we unfix parameters of
Inception-v4 and fine-tune the model to get the better performance on MSCOCO
dataset. The learning rate is fixed to value of 5 � 10−4.

To quantify the effectiveness of our approach, similar to model in [11], our baseline
model uses CNN as encoder and LSTM as decoder in encoder-decoder architecture.
The difference is that we upgrade its CNN encoder from Inception-v3 to Inception-v4.
The shape of CNN net’s last layer output as image feature is 8 � 8 � 1536. This is
equivalent to the original net’s last layer output in [11] which has the shape of
8 � 8 � 2048. The number of LSTM hidden state units is similarly set to 512.
Moreover, we set another model called All Regions Context (ARC) for comparative
experiment. The ARC model is similar to our proposed IIRC model. However, it uses
64 regions of size 1 � 1 � 1536 as input region features in Sect. 2.1. To be fair, we
trained both the baseline model and the ARC model in the same way as our IIRC
model.

3.3 Results and Discussion

To evaluate the effectiveness of our approach, we evaluate our model against prior
works as well as our comparative models including baseline and ARC model. The
evaluation results of comparison are illustrated in Table 1, where row IIRC is the

Table 1. Results on the online MSCOCO test server.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCA-CNN [16] 71.2 89.4 54.2 80.2 40.4 69.1 30.2 57.9 24.4 33.1 52.4 67.4 91.2 92.1

NIC [11] 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6

Review Net [12] 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9

ATT_VC [13] 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8

MSM [14] 73.9 91.9 57.5 84.2 43.6 74.0 33.0 63.2 25.6 35.0 54.2 70.0 98.4 100.3

PG-BCMR [15] 75.4 91.8 59.1 84.1 44.5 73.8 33.2 62.4 25.7 34.0 55.0 69.5 101.3 103.2

Ours: baseline 71.7 88.9 54.5 79.2 40.1 67.5 29.2 55.9 25.3 33.5 52.9 67.1 94.4 96.9

Ours: ARC 71.8 89.2 54.7 79.8 40.3 68.4 29.4 56.7 25.5 33.9 53.1 67.3 95.4 98.4

Ours: IIRC 74.9 92.0 58.5 84.4 44.8 74.3 34.2 63.5 27.0 36.3 55.5 70.8 105.7 105.5
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results of our model. The results in the table show that, our IIRC model has achieved
better performance at BLEU (1, 2, 3, 4), METEOR, ROUGE-L as well as CIDEr
metrics, and exceeded our baseline and ARC in all metrics. Obviously, the scores of
our IIRC model is higher than other models in Table 1 on all metrics only except c5 of
BLEU-1 metric. The gap between ARC and IIRC shows the superiority of our
approach in choosing salient regions. The approach in [14] utilizes both attributes
information and image feature encoding to decode captions, but we only use the image
feature from the picture. The approach in [15] uses reinforcement learning in opti-
mizing metrics of its model, and it gives a higher weight on ROUGE metric. The
CIDEr metric is different from other evaluation metrics, because it is proposed to aim at
image abstract issues and have high matching rate of artificial consensus [21]. Spe-
cially, SCST model [17] has an optimizing target of CIDEr score with reinforcement
learning, and it has established a state-of-the-art on the caption task. Therefore, the
scores of our model on the CIDEr metric are more sufficient to prove the effectiveness
of our approach. Simultaneously, the METEOR and ROUGE-L scores can also
demonstrate that than BLEUs [20]. The score gap between our model and other models
in Table 1 is sufficient to illustrate the validity of our model.

We also conduct a qualitative analysis on the role of intra-image region context in
caption generation. We compare our model with baseline, which has similar archi-
tecture as [11]. Some samples of the caption generated by our approach method and
baseline method are shown in Fig. 3. Our model can get details of position and action
from perception of intra-image region context. Moreover, it achieves a well perfor-
mance relative to our baseline. As examples 1, 2, 5 and 6 in Fig. 3, our model generates
captions from the intra-image region context, which are more accurate at action details
(e.g. in example 1, baseline just gives ‘standing in front a tv holding a wii remote’ but
ours gives ‘playing a video game’ which shows intra-image region context information

baseline: a man standing in front of 
a tv holding a wii remote.

ours: two people playing a video 
game in a living room.

baseline: a woman in a bikini 
holding a surfboard.

ours: a man and a woman are riding 
a wave on a surfboard.

baseline: a woman holding a 
doughnut with sprinkles on it.

ours: a woman with glasses eating a
chocolate donut.

baseline: a little girl holding a teddy 
bear in her arms.

ours: a young girl holding a teddy 
bear in front of a wall.

baseline: a man holding a pizza in a 
box .

ours: a man holding a pizza in his 
hands .

baseline: a man is standing in front 
of a stove.

ours: a woman is putting something 
into an oven.

1. 2.

3. 4.

5. 6.

Fig. 3. Qualitative analysis on impact of our IIRC model. In the examples above our method
can give more precise details of the picture such as positions, number of objects and the color
detail, which baseline fail to do. The red and underlined words are caption details given by our
model.
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between TV and remote.). As example 3 and 4, our model shows more position details
in caption results (e.g. in example 3, from the perception of region context, we get ‘in
his hands’ rather than ‘in a box’, and the location of pizza is more appropriate). In
addition, we can also give a more accurate number of objects in the caption (e.g.
example 1 and 5).

4 Conclusion

In this paper, we present an approach that generates captions of images from intra-
image region context. Our approach enables the salient region context to be effectively
extracted from the image semantic feature, and it is able to automatically perceive the
correlation among regions. Applying this approach, we can generate the description of
an image based on the fusion of intra-image region contexts. The method is tested on
MSCOCO test server. The experiment results demonstrate its superiority on all general
caption metrics over other models and its effectiveness of perceiving the intra-image
region context. Meanwhile, the IIRC model is able to generate captions with more
details on position and action.
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