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Abstract— This paper presents a unified probabilistic frame-
work to tackle two closely related visual tasks: pedestrian seg-
mentation and pose tracking along monocular videos. Although
the two tasks are complementary in nature, most previous
approaches focus on them individually. Here, we resolve the
two problems simultaneously by building and inferring a single
body model. More specifically, pedestrian segmentation is per-
formed by optimizing body region with constraint of body pose
in a Markov Random Field (MRF), and pose parameters are
reasoned about through a Bayesian filtering, which takes body
silhouette as an observation cue. Since the two processes are
inter-related, we resort to an Expectation-Maximization (EM)
algorithm to refine them alternatively. Additionally, a template
matching scheme is utilized for initialization. Experimental
results on challenging videos verify the framework’s robustness
to non-rigid human segmentation, cluttered backgrounds and
moving cameras.

I. INTRODUCTION

Pedestrians, as the principal actors in daily life, have
been widely studied in computer vision. Pedestrian seg-
mentation and pose tracking are among the most active
research topics for the last decade. This is partly due to
their wide applications in video editing, human-computer
interaction, surveillance etc., and partly due to their inherent
difficulties caused by articulated bodies, occlusion, cluttered
backgrounds and camera motions. Although the two prob-
lems have been extensively studied in the fields of object
segmentation and object tracking, few work has be done
on combining them together to improve each other, and the
solutions for simultaneous object segmentation and tracking
are hard to be applied directly to non-rigid humans.

Basically, the solutions for simultaneous object segmen-
tation and tracking can be classified into three categories:
MRF-based methods [1][2][3][4], level-set based methods
[5][6] and template matching based methods [8][9]. Methods
of the first category extract objects by optimizing a global
cost function in a MRF. They either involve cumbersome
interactions for indicating figure and ground regions, such as
[1][2], or are sensitive to large deformation, such as [3][4].
Methods of the second category extract objects by tracking
object boundaries. For highly-articulated pedestrians, the
human boundaries tend to disappear in the case of self-
occlusion, and hence this category has the drift problem. The
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third category extracts objects by matching the edge maps of
the frames with shape templates. Therefore, a set of templates
are required to be stored. Furthermore, considering the high
variability in the shape and appearance of pedestrians, it is
impossible for the limited templates to capture all detailed
information for a particular pedestrian.

The difficulty of pedestrian segmentation lies in the non-
rigid characteristic of human limbs. In the past decades,
pose estimation for still images and pose tracking for videos
have received extensive attention, both of which aim at
estimating kinematic parameters of human body. Realizing
the complementary merits of pose estimation and pedestrian
segmentation, several authors [10][11][12] have combined
them together and solved them simultaneously. However,
these methods are limited to still images. In this paper,
we extend them to handle video pedestrian segmentation
and pose tracking using an EM algorithm within a unified
framework. Basically, the framework belongs to MRF-based
video object extraction. The main difference compared with
other MRF-based methods [3][4] is the utilization of pose in-
formation to constrain human regions along videos, thus the
framework can automatically extract human bodies, avoiding
the commonly existing drift problem.

In general, the EM-based framework performs pose track-
ing in a physical-based Bayesian filtering, and pedestrian seg-
mentation in a pair-wise Markov random field. The silhouette
produced by segmentation is utilized as an observation cue
in the pose tracking stage, and the skeleton produced by pose
estimation is taken for establishing a distance penalty of the
energy function in the segmentation stage. For initialization,
we employ an Chamfer matching scheme [7] to infer the
pose parameters. The major contribution of this paper is the
proposed EM-based framework. The main advantage of the
framework is being tolerant to large deformation because the
adopted pose tracking can directly simulate realistic pedes-
trian walking. Meanwhile, the available silhouette provided
by pedestrian segmentation serves as a useful cue for our
pose tracker, which enables our framework more robust to
moving cameras compared with the background subtraction
methods, e.g. [13][14], which assume the cameras are sta-
tionary.

The remainder of this paper is organized as follows. After
presenting the framework overview in section II, we describe
the stages of segmentation and pose tracking in section
III and section IV respectively. Experimental results are
demonstrated in section V, and we conclude the paper in
section VI.
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II. FRAMEWORK OVERVIEW

We handle the case of human walking along the arbi-
trary trajectory. The inputs to the framework are pedestrian
windows corresponding to an individual human, which may
be the outputs extracted by a human tracking-by-detection
method [15] or manually. The task of our work is to derive
spatial-temporal body poses and regions. Firstly, we divide
the pedestrian windows into sequences, each of which is a
walking cycle. Then we deal with each sequence individually
as follows.

A. Problem Formulation

Defining the sequence of pedestrian frames by It, t =
1, . . . , T , T is the frame number, we formulate the task as
computing the maximum a posterior (MAP) in a first-order
MRF, such that :

Φ∗t = arg max
Φt

p(Φt|I1, . . . , It,Φ∗1, . . . ,Φ
∗
t−1)

= arg max
Φt

p(Φt|I1, . . . , It,Φ∗t−1) (1)

where the observation data It is a multi-cue composition that
combines color cue Ic

t and motion cue Im
t . The parameter

set Φt is composed of three parts, Φt = {Ωt,∆t,Θt}, in
which Ωt specifies the segment matte, ∆t denotes the pose
parameters, and Θt involves two sets of latent parameters,
Θt = {Θc

t ,Θ
m
t }, which are used in the segmentation stage

to model the color and motion distributions.
Maximizing the above posterior with respect to all param-

eters is intractable as the state space is expensively huge.
Instead, we sequentially optimize them along the sequence
using an EM algorithm. The E-Step is used to estimate
the pose and latent parameters {∆t,Θt}, and the M-Step
is used for pedestrian segmentation, i.e., obtaining matte
Ωt. As shown in Fig. 1, the algorithm consists of four
main stages and is performed as: E-Step I → M -Step →
E-Step II → E-Step III → M -Step → E-Step II →
· · · → E-Step III → M -Step.

1) Initialization (E-Step I): the initial pose and latent
parameters {∆1,Θ1} at the first frame are estimated with
an improved Chamfer matching scheme [7].

2) Updating the segmentation (M-Step): the segment
matte Ωt is derived by optimizing a global MRF energy
function under the constraints of {∆t,Θt}.

3) Updating the latent parameters (E-Step II): the latent
parameters Θt are re-estimated with the refined segment Ωt.

4) Pose tracking (E-Step III): we predict the pose and
latent parameters {∆t+1,Θt+1} at frame t + 1 through a
Bayesian filtering process using the previous segment matte
Ωt and parameters {∆t,Θt}.

B. Initialization (E-Step I)

At the beginning of each walking cycle, an improved
chamfer matching [7] is employed to extract human silhou-
ette and skeleton. As shown in Fig. 2(a), we require that the
human legs are furthest apart in the first frame. The reasons
are two folds: first, the furthest apart legs preserve least
occlusion; second, the walking step length obtained under

Fig. 1. The framework overview which consists of four kinds of steps: at
E-Step I, pose and latent parameters {∆1, Θ1} are initialized by Chamfer
matching; at M-Step, foreground body region Ωt are extracted based on
{∆t, Θt} at the current frame; at E-Step II, parameters are re-estimated
under the refined segmentation; E-Step III is used to infer subsequent human
pose using previous segmentation result and human pose.

Fig. 2. (a) The derived silhouette (in blue) and skeleton (in yellow) are
overlaid in the human body. (b) The four separators (in yellow) separate
human body into three blobs, i.e., head, torso and legs.

this condition is served as a main parameter in the pose
tracking stage (see Section IV).

Under the assumption that human body often consists of
three main appearance regions, i.e., head, torso and leg, we
decompose human body into three blobs to build appearance
models. We divide the three blobs with four horizontal
separators, in which the top and bottom separator are directly
determined by the highest and lowest pixel in the silhouette,
while the head-torso and torso-leg separators are estimated
by minimizing the error in color classification. Supposing A,
B and C are the head, torso and leg blobs respectively, we
estimate the A-B separator as well as the B-C separator as
a MAP(see Fig. 2(b)):

(h∗AB , h∗BC) = arg min
(hAB ,hBC)

(‖σLab(RA(hAB)) +

σLab(RB(hAB , hBC)) + σLab(RC(hBC))‖+
α0(|hAB − µAB |+ |hBC − µBC |)) (2)

where RA(·), RB(·, ·) and RC(·) denote the head, torso
and leg blobs which are encircled by the silhouette and the
separators, σLab(·) is the color variance of the region, µAB

and µBC are the mean separator locations derived from the
skeleton, α0 is a weighting value (set to 0.15 in our work).
Given the separators (h∗AB , h∗BC), the color distributions
Θc

1(·) for the three blobs are established independently. The
color model Θc

1 in pixel (px, py) is taken by:

Θc
1(px, py) =





Θc
1(RA), if py < h∗AB

Θc
1(RC), if py > h∗BC

Θc
1(RB), otherwise

(3)

Besides, in the learning phase, we have manually clicked
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joints of all templates, which can be directly transferred to
the frame for initializing the pose model ∆1.

III. MRF FOR SEGMENTATION (M-STEP)

In this section, we utilize a pair-wise MRF to tackle the
problem of pedestrian segmentation. Given the collection
of pixels X = {xi} in the human window and the binary
variant set {Ω(xi)} associated with X , if xi belongs to the
human region, Ω(xi) = 1, otherwise Ω(xi) = 0, the human
segmentation can be formulated as inferring a MAP-MRF
across all configurations of Ω at the current frame, i.e.,

Ω∗ = arg max
Ω

p(Ω|It,∆t,Θt) (4)

The posterior distribution p(Ω|It,∆t,Θt) follows the
Gibbs distribution[17]: p(Ω|It,∆t,Θt) = exp(−E(X))/Z.
Here, Z is a normalization factor. The term E(X) is known
as an energy function which can be written as the sum of
unary potentials and pair-wise potentials:

E(X) =
∑

i

ϕ(xi) +
∑

i,j

ψ(xi, xj) (5)

The pair-wise potential ψ(xi, xj), as a smooth term,
represents the penalty for assigning two neighboring nodes
to any labels. In our work, it is given by:

ψ(xi, xj) =
{

max(ğ(xi), ğ(xj)), Ω(xi) = Ω(xj)
1−max(ğ(xi), ğ(xj)), Ω(xi) 6= Ω(xj)

(6)
Here, ğ(x) is the normalized magnitude value in the Pb edge
map [16]. This definition suggests that the neighboring nodes
should be assigned with different labels if one node has a
large magnitude value since the node with a large magnitude
value tends to lie in the figure-ground boundaries.

The unary potential, ϕ(xi) = − log(p(Ω(xi)|It,∆t,Θt)),
is a negative log likelihood. It allows us to utilize multiple
cues for human segmentation. In this work, we integrate
four cues into the unary potential, referring to: 1) color term
ϕc(x), 2) motion term ϕm(x), 3) pose term ϕp(x), and 4)
segment coherence term ϕs(x), thus the unary potential can
be rewritten as:

ϕ(x) = λcϕc(x) + λmϕm(x) + λpϕp(x) + λsϕs(x) (7)

where {λc, λm, λp, λs} are the weighting values.
Color term. The color distribution across one blob (e.g.,

torso) is typically compact, thus is considered as a vital cue
for segmentation. We define the color model as K-Means
clusters : Θc

t = {µc,J
k,t |k = 1, . . . , Kc, J ∈ {B,F}}, in which

Kc is the color cluster number (set to 3 in experiments) and
µc,J

k,t is the mean color of the cluster (k, J), B indicates the
background while F indicates the foreground. The color term
is defined by:

ϕc(x) =
{

dF
c (x)/(dF

c (x) + dB
c (x)), Ω(x) = 1

dB
c (x)/(dF

c (x) + dB
c (x)), Ω(x) = 0 (8)

Here, dJ
c (x) = mink ‖Ic

t (x)−µc,J
k,t ‖, Ic

t (x) denotes the color
data in Lab color space.

Fig. 3. The human segmentation results. (a) the input frame; (b) the
confidence map produced by the pose term; (c) the initial segmentation
result; (b) the final refined segmentation result.

Motion term. Pedestrians typically preserve relative mo-
tion with the static background scene. Motion cue, which
is invariant to illumination changes, seems to be a more
natural and robust cue. For building the motion models, we
first obtain the motion field [18] by comparing the current
frame with the subsequent frame, and then estimate the mean
motion values within the foreground and background regions,
obtaining the motion model Θm

t = {µm,J
t |J ∈ {B,F}}, in

which µm,J
t is the mean motion value. The motion term is

calculated as:

ϕm(x) =
{

dF
m(x)/(dF

m(x) + dB
m(x)), Ω(x) = 1

dB
m(x)/(dF

m(x) + dB
m(x)), Ω(x) = 0 (9)

Here, dJ
m(x) = ‖Im

t (x)−µm,J
t ‖, Im

t (x) involves the motion
vector in pixel x.

Pose term. The pose cue ensures that pixels falling near
to the skeleton would more likely be assigned with object
label and vice versa. In our case the skeleton is modeled as
a puppet of skeleton lines. As shown in Fig. 3(b), we use the
distance field along the skeleton to represent the pose term.
The pose term takes the form:

ϕp(x) = min(‖x− q∗‖/(ri|Lq∗ |), 1.0) (10)

Here q∗ = arg minq∈{Li} ‖x − q‖. {Li|i = 1, . . . , 6}
are skeleton lines, indicating head, torso, two upper
legs and two lower legs. |Li| is line length, {ri} is
width/height ratio for skeleton region, empirically set to
{1.0, 0.5, 0.34, 0.34, 0.3, 0.3} in our experiments.

Segment coherence term. This term is used to main-
tain temporal coherence of segmentation along the video
sequence, which is defined by:

ϕs(x) =
{

cs, Ω(x) = Ω(x′)
1− cs, Ω(x) 6= Ω(x′) (11)

where x′ is the matched pixel of x in the previous frame,
cs is a constant value(empirically set to 0.3). Note that the
coherence term ϕs(x) at the first frame is unavailable.

An energy minimization solver - mincut [19] is run to op-
timize Ω∗ = arg maxΩ p(Ω|It,∆t,Θt) to obtain the refined
pedestrian segmentation. Then at E-Step II, we re-estimate
the mean values Θt = {µc,J

k,t , µ
m,J
t |k = 1, . . . , Kc, J ∈

{B,F}} within the segment matte Ω. The re-estimated
parameters Θt are further used to refine segmentation. In this
way, the two complementary steps (M-Step and E-Step II)
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are repeated several iterations. For further refining the final
extracted silhouette, we invoke the Bayesian matting [19] to
soft-segment an eroded narrow region along the silhouette
boundaries. Fig. 3(c) and Fig. 3(d) show the initial and
refined segmentation results respectively.

IV. BAYESIAN FILTERING FOR POSE TRACKING
(E-STEP III)

Pose tracking is to sequentially estimate pose states along
the video using available observed data and prior knowledge.
With the Markov properties of human dynamic, pose tracking
is often formulated as a Bayesian filtering problem:

p(∆t|I1:t) ∝ p(It|∆t)
∫

p(∆t|∆t−1)p(∆t−1|I1:t−1)d∆t−1

(12)
where p(It|∆t) is the observation likelihood and p(∆t|∆t−1)
is the prior. Particle filter is mostly implemented to approx-
imate the complicated infinitesimal calculus in the above
formula with a set of weighted particles. In particle fil-
ter, the posterior is generated in three steps: 1) sample
particles ∆(i)

t ∝ p(∆t|∆(i)
t−1); 2) adjust weights π

(i)
t =

π
(i)
t−1p(It|∆(i)

t ); 3) normalize π
(i)
t to make sure

∑
i π

(i)
t = 1.

Various methods have been presented for pose tracking
using the above general inference procedure. They differ in
the definitions of the pose state, or the observation likelihood,
or the dynamic prior. In our work, we build the prior mainly
on the bipedal walking motion [21], while presenting a novel
observation likelihood in conjunction with a physical-based
pose representation.

A. Pose Representation

This physical-based pose is 2.5D, modeled with 6
rigid body regions, including head, torso, upper/lower
stance/swing legs, and parameterized with ∆ = {∆f ,∆v}.
∆f = {sl, rp1, rp2, lu, ll}, as a fixed model, is set according
to the skeleton at the first frame, in which sl indicates the
walking step length, rp1 and rp2 are the relative positions of
the head and neck joints with respect to the body center, lu
and ll are the upper and lower leg lengths. ∆v is a variation
model, ∆v = {v, θhb, θut, θuw, dθut, dθuw, θlt, θlw}. It is
used to simulate human walking, in which v denotes the
walking speed, θhb is the turning angle of the body, θut

and θuw are the angles for the upper stance and swing legs
respectively, dθut and dθuw are the corresponding angular
velocities for θut and θuw respectively, θlt and θlw are the
angles for the lower stance and swing legs.

Using the variation model ∆v , we build a dynamic process
to simulate human walking, i.e., sampling particle state ∆(i)

t

based on prior p(∆t|∆(i)
t−1). We build the prior mainly on

the 2D physical formulations [21], in which v and θhb both
follow the normal distributions, that is, vt ∼ N(vt−1, σv),
θhb,t ∼ N(θhb,t−1, σhb). (θut, θuw, dθut, dθuw, θlt) are in-
duced by sl and v according to the physical Motion Laws
[21]. The lower swing leg angle θlw is initialized by the
skeleton at the first frame and modeled as:

θlw,t ∼ N(θlw,t−1 + ε(θlw,t−1 − θlw,t−2), σθwl
) (13)

Fig. 4. The pose tracking results. The top row shows the input frames,
and the second row demonstrates the corresponding poses.

Here, we use σv = 7.0, σhb = 3.0, ε = 0.3, σθwl
= 8.0.

B. Observation likelihood

The observation likelihoods are derived with multiple cues,
including color cue Ic

t , motion cue Im
t and silhouette cue Is

t .
We build an independent likelihood for each cue and combine
all likelihoods together to form the final likelihood:

p(It|∆t) = wcp(Ic
t |∆t)+wmp(Im

t |∆t)+wsp(Is
t |∆t) (14)

Here, wc, wm and ws are weighting values. We describe the
likelihoods according to the cue type in the following.

Color likelihood. The color likelihood is evaluated with
a stable component and a wandering component. The like-
lihood for a new observation conditioned on the previous
observation is formulated by:

p(Ic
t |∆t) = λs exp(−χ2(Ic

t , Ic
1)) + λw exp(−χ2(Ic

t , Ic
t−1))

(15)
where χ2(·, ·) is the χ2 distance, Ic

1 and Ic
t−1 are the color

histograms of the leg regions which are determined by ∆1

and ∆t−1 respectively.
Motion likelihood. The motion likelihood is built on the

motion field obtained by [16], which can provide the motion
information about the tracked limbs between two successive
frames. The likelihood of the motion cue is given by the
mean square distance (MSD) of the projected positions {psi}
and hypothesized position {hsi} for a set of sample points:

p(Im
t |∆t) ∝ exp(−

∑

i

‖psi − hsi‖/Ñ) (16)

Here Ñ is the number of sample points.
Silhouette likelihood. Silhouette is a binary map indi-

cating human foreground region, which is derived from
the projection of previous obtained silhouette Ωt−1 (see
Section III) with optical flow [16]. The negative likelihood
for silhouette cue is calculated as the mean square error
(MSE) of the predicted values {ssi} and the observed values
{bsi} for a set of sample points inside the limb region.

p(Is|∆t) ∝ exp(−
∑

i

‖ssi − bsi‖/Ñ) (17)

Here Ñ is the number of sample points.
Based on the above definitions, we use particle filter to

sequentially estimate pose states. Fig. 4 demonstrates the
tracking results for a walking cycle.
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TABLE I
THE EMPIRICAL VALUES SET FOR THE INVOLVED PARAMETERS.

Formula No. Parameter Name Parameter Value
(7) {λc, λm, λp, λs} {0.3,0.3,0.2,0.2}

(14) {wc, wm, ws} {0.3,0.3,0.4}
(15) {λs, λw} {0.8,0.2}

V. EXPERIMENTAL RESULTS

Experimental setting: The proposed framework is im-
plemented in a personal computer with a 2.26 GHz CPU
and 3 GB RAM. We made experiments on Ethz dataset [23]
(5 sequences), Weizmann dataset [24] (15 sequences), and
several sequences we captured using a hand-hold camera.
In those sequences, all human windows have been resized to
320 × 240. We use the Ethz dataset as the template set in the
initialization stage. For the weighting parameters involved in
this framework, we empirically set them in Table I, in which
Formula No. refers to where the parameters exist.

Quantitative evaluation. For quantitative evaluation, we
obtain the segmentation accuracy in form of F -measure1.
F -measure = 2×precision×recall/(precision+recall),
precision is the ratio of the true positive pixels (i.e., the
pixels labeled as foreground actually belong to foreground)
to the all labeled foreground pixels, and recall is the ratio of
the true positive pixels to the ground truth pixels. The pose
accuracy is estimated by the Mean Square Distance (MSD)
between the lower body joints and the corresponding hand-
marked joints.

To verify the influence of pose cue in the segmentation
stage, we measure the F-measures with and without pose
information on an Ethz sequence. The corresponding F-
measure results are illustrated in Fig. 5(a), which shows that
the segmentation accuracies with pose cue are obviously
higher than the results without pose cue. Meanwhile, we
estimate the influence of silhouette cue in the pose tracking
stage (E-Step II). The comparison results on the same
sequence are shown in Fig. 5(b), which verifies that the pose
can be estimated more precisely with silhouette cue.

We also compare the segmentation accuracy with the
template matching method [8] for Ethz dataset [23] and
Weizmann dataset [24]. The template matching method [8]
achieves an average F-measure of 82.2% for Ethz dataset,
and 76.5% for Weizmann dataset. Using our algorithm, the
accuracies are improved to 89.6% and 88.1% respectively.

Qualitative evaluation. We demonstrate the segmenta-
tion results for four sequences in Fig. 6. The front image
of each sequence is the first input frame, indicating the
background environment where the pedestrian locates. For
saving space, we omit the remaining frames. Following up
is the segmentation results for the input sequence. As can
be seen, although the human poses in the walking cycle
are continuous varying, the coherent optimization of our
framework ensures the accurate segmentation across time.

1http://www.dcs.gla.ac.uk/Keith/Preface.html

Fig. 5. (a) The segmentation accuracies (F-measure) with and without pose
cue. (b) The pose tracking errors (MSD) with and without silhouette cue.

Fig. 6. Segmentation results for four pedestrian sequences.

We attribute this to the utilization of pose information and
pixel correspondence (i.e., motion field) along the sequence.

In order to further demonstrate the performance of our
framework, we compare our segmentation results with those
obtained by Grabcut [25] and template matching[8]. Grabcut
is an interactive MRF-based object cutout method, which
commonly requires users to indicate figure and ground
regions. Fig. 7(b) demonstrates some figure and ground
scribbles we drew on the frames, and Fig. 7(c) shows
the corresponding results obtained by Grabcut. Obviously,
Grabcut requires cumbersome interactions, and its results are
sensitive to the interactions. Comparably, our framework can
automatically extract human silhouettes (see Fig. 7(f)) based
on the inferred pose (see Fig. 7(e)). Template matching [8] is
also an automatic foreground segmentation method, yet the
segmentation results are sensitive to local variations since it
does not consider the local appearance. As can be seen in
Fig. 7(d), the head regions, the hip regions are inaccurately
segmented by template matching. The average F-measures
for Fig. 7(c)(d)(f) are 0.86, 0.64 and 0.91 respectively.

Time cost. The implementation with Matlab takes about
30 seconds per frame. One third of that time is taken by body
segmentation, and two thirds are taken by pose tracking.
The reasons for the expensive computation are two folds.
First, in the MRF-based segmentation, the adopted mincut
solution [19] involves time-consuming α-β swapping and
α-expending. Second, in pose tracking stage, the employed
particle filter requires to predict many particles’ observation
likelihoods.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we address the problem of simultaneous
pedestrian segmentation and pose estimation from natural
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Fig. 7. Comparison results with Grabcut [25] and template matching [8].
(a) the input frames; (b) the foreground (yellow) and background (blue)
scribbles drew on the frames; (c) the results obtained by Grabcut based on
the scribbles in (b); (d) the silhouettes obtained by template matching are
overlaid on the frames; (e) the poses inferred by our framework; (f) the
extracted pedestrians by our framework based on the poses in (e).

videos. The problem is formulated in a Bayesian framework
in which the two tasks interact closely to provide loop feed-
backs for each other to improve estimation quality. As the
experiments have shown, our framework can automatically
achieve promising results for each walking cycle. We feel this
is due to the combination of the high accuracy of MRF with
the robustness of physical-based Bayesian pose estimation.
The major limitation of the framework is the computation
time. To develop a real-time dynamic system, we plan to
adopt more efficient optimization solutions or re-design some
processes for implementation in parallel graphics hardware.
In addition, the framework is currently sensitive to occlusion
since the observation cues(color and motion) are unreliable
in this case, thus another possible direction is to extend the
framework to deal with partial occlusions.
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