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Abstract

Due to occlusions and objects’ non-rigid deformation in
the scene, the obtained motion trajectories from common
trackers may contain a number of missing or mis-associated
entries. To cluster such corrupted point based trajectories
into multiple motions is still a hard problem. In this paper,
we present an approach that exploits temporal and spatial
characteristics from tracked points to facilitate segmenta-
tion of incomplete and corrupted trajectories, thereby ob-
tain highly robust results against severe data missing and
noises. Our method first uses the Discrete Cosine Trans-
form (DCT) bases as a temporal smoothness constraint on
trajectory projection to ensure the validity of resulting com-
ponents to repair pathological trajectories. Then, based on
an observation that the trajectories of foreground and back-
ground in a scene may have different spatial distributions,
we propose a two-stage clustering strategy that first per-
forms foreground-background separation then segments re-
maining foreground trajectories. We show that, with this
new clustering strategy, sequences with complex motions
can be accurately segmented by even using a simple trans-
lational model. Finally, a series of experiments on Hopkins
155 dataset and Berkeley motion segmentation dataset show
the advantage of our method over other state-of-the-art mo-
tion segmentation algorithms in terms of both effectiveness
and robustness.

1. Introduction

Motion segmentation is not only an important prepro-

cessing step for many computer vision applications, but also

an essential issue in dynamic scenes understanding. In this

paper, we focus on sparse methods in motion segmentation.

That is, given a set of feature point trajectories tracked from

a video, one seeks to cluster the trajectories according to

their corresponding motions.

Due to containing long-term motion cues, feature trajec-

tories are very suitable to be used to partition video into

∗Corresponding author. E-mail: zz@vrlab.buaa.edu.cn.

temporally consistent clusters [3]. However, their long du-

ration also leads their sensitivity to object occlusions and

tracking error. Therefore, the input trajectories to motion

segmentation algorithm are often contaminated by missing

and corrupted entries. How to get robust results from the

low quality input is still a challenge in the field of mo-

tion segmentation. For solving this problem, some methods

[7, 10, 13] are proposed to repair the pathological trajecto-

ries by computing their sparse or low-rank representation

with respect to a dictionary formed by all other trajectories.

However, this kind of algorithms has an inherent drawback

that requires a sufficiently large set of complete and uncor-

rupted trajectories, thus it becomes unsuitable for the real

sequences which may have a large number of missing and

corrupted data. Another kind of motion segmentation al-

gorithms [8, 4, 3, 9, 12, 11, 6] which does not require any

completion of trajectories is recently proposed, where cer-

tain motion models are used for trajectory clustering. Thus,

although it has significant advantage in handling incomplete

trajectories, they may still fail on the sequences when the

objects motion deviates the employed motion models in the

algorithms.

Obviously, there is a need to develop a motion segmen-

tation algorithm that can handle not only the missing and

corrupted data but also complex motions both typically of

real tracking process. The main contribution of this paper

is a trajectory clustering algorithm that can achieve this ob-

jective in a consistent manner. The effectiveness and ro-

bustness of our method are mainly attributed to the prop-

er exploitation of temporal and spatial characteristics from

feature point trajectories. We notice that trajectories of fea-

ture points from most nature deforming objects are smooth

and continuous. Therefore, it implies that such temporal

smoothness of feature trajectories can be compactly repre-

sented by predefined basis vectors. Based on this analy-

sis, we select DCT as predefined bases to approximate fea-

ture trajectories, and then design a non-linear optimization

scheme that can effectively decompose the input trajecto-

ries into a set of DCT basis vectors and corresponding co-

efficients. The introduction of DCT results in a significant

reduction in unknowns during the estimation with little in-
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formation loss, and thus ensures the ability of estimated co-

efficients to capture inherent similarities between trajecto-

ries even with a large amount of missing data and corrupted

noises.

We also notice that trajectories of foreground and back-

ground may have different characteristics in spatial distri-

bution, that is, background trajectories (i.e. static parts of a

scene) are usually dispersed all over the scene while fore-

ground trajectories (i.e. moving objects) of the same mo-

tion are usually compact. Based on this observation, we

present a two-stage clustering strategy which first separates

foreground trajectories from background trajectories based

on motion subspaces constraints and then divides the fore-

ground trajectories into different partitions using spectral

clustering. By this way, our method can even use a simple

translational model to obtain highly robust segmentation re-

sults for those sequences with complicated rigid or nonrigid

object motions.

Finally, we evaluate our method and state-of-the-art

trajectory clustering algorithms on both the Hopkins 155

dataset [16] and the Berkeley motion segmentation dataset

[3]. The experimental results demonstrate that our method

significantly outperforms state-of-the-art methods in terms

of both effectiveness and robustness. It is worth noting that

our work is the first in trajectory clustering to conduct ex-

periments on both Hopkins and Berkeley datasets that have

quite different characteristics.

2. Related Work
During the past two decades, numerous trajectory clus-

tering algorithms have been proposed for motion segmen-

tation. In this field, the most important class of algorithms

is multi-body factorization methods [5, 17, 13, 7, 10], and

their underlying idea is using motion subspaces constraints,

where the trajectories of the same motion can span a low-

dimensional linear subspace and of different motions may

distribute in different subspaces. Based on this, segmenting

a video sequence containing various types of motion (e.g.
independent, articulated, rigid, non-rigid or any combina-

tion of them) can be cast as a subspace separation prob-

lem to be solved. Most early subspace-based methods, such

as [5, 17], assume that all input trajectories are complete

and do not contain gross errors. However, the tracking fail-

ure of feature points is very common in real-world auto-

matic tracking, causing trajectories to have missing entries

(incomplete trajectories) or some entries with gross errors

(corrupted trajectories). To handle the two kinds of patho-

logical trajectories, Rao etal. [13] proposed Agglomera-

tive Lossy Compression (ALC) that repairs a trajectory with

missing or corrupted entries prior to subspace separation by

computing its sparse representation with respect to all other

trajectories. The method proposed by Elhamifar and Vidal

[7], known as sparse subspace clustering (SSC), uses a sim-

ilar strategy as ALC to handle pathological trajectories, and

uses the sparse coefficients of trajectories to build the affini-

ty matrix for spectral clustering. Liu etal. [10] proposed an

alternative approach that uses low-rank representation in-

stead of sparse representation to correct the corruption in

trajectories. The three methods, although have been suc-

cessfully used to segment sequences with a certain amount

of missing and corrupted data, have an inherent drawback,

which requires an assumption that each motion should have

a sufficiently large subset of complete and uncorrupted tra-

jectories. If input data is highly fragmented or grossly cor-

rupted, which are common phenomena in real-world track-

ing, the performance of this kind of methods will deteriorate

drastically.

In recent years, a few trajectory clustering methods

[8, 4, 3, 9, 12, 11, 6] which do not rely on motion subspaces

constraints are proposed for motion segmentation. These

methods usually utilize a motion model to measure similar-

ities between all trajectories, and then perform a common

clustering technique to segment trajectories. Among them,

[4, 3, 9, 11] use the velocity information to represent trajec-

tories similarities, thus are translational model-based meth-

ods. [8, 12, 6] use higher order motion models to measure

trajectories similarities. Compared to multi-body factoriza-

tion methods, the motion model-based methods have signif-

icant advantage in handling incomplete trajectories because

they do not require any completion of the input trajecto-

ries. In [8, 3, 9, 12, 6], similarities between trajectories are

computed only using their available entries. In [4, 11], an

iterative optimization algorithm is proposed to decompose a

velocity matrix computed from the incomplete trajectories,

and the resulting components are used as representations

of trajectories for clustering. A limitation of this kind of

method is that it can only compute the similarity of trajec-

tories based on the underlying motion model. As a result, it

will often lead to poor performance when they were applied

to segment sequences containing motions that deviate from

their motion models.

3. Proposed Algorithm

In this paper, we suppose that trajectories of P feature

points have been obtained by running some existing track-

ers, e.g. the KLT tracker [14], on a video with F frames.

Let T (p) = (xp
1, y

p
1 , ..., x

p
F , y

p
F )

T denotes the pth trajecto-

ry, where xp
f and ypf are the X and Y coordinates of the pth

point at frame f . Our goal is to partition the P trajectories

into different groups according to their corresponding mo-

tions. Broadly, our algorithm proceeds as summarized in

Algorithm 1. We next discuss each step of our algorithm in

detail.
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Algorithm 1 Trajectory Clustering for Motion Segmentation

1.Project T (p), p = 1, ..., P to low-dimensional

representation C(p), p = 1, ..., P .

2.Exploit motion subspaces constraints to perform

foreground-background separation on C(p).
3.Apply spectral clustering to C(p), p ∈ foreground
to generate clusters in foreground.

4.Label T (p), p = 1, ..., P according to the

clustering result of C(p), p = 1, ..., P .

3.1. Matrix Factorization with Temporal
Smoothness Constraint

To project the trajectory data into a lower dimensional

space, where trajectories belonging to different motions can

be distinguished more easily, we first form a measurement

matrix W ∈ RF×2P by arranging the X and Y coordinates

of all trajectories vertically:

W =

⎛
⎜⎝

x1
1 y11 · · · xP

1 yP1
...

...
. . .

...
...

x1
F y1F · · · xP

F yPF

⎞
⎟⎠ (1)

Assume rank(W ) = r, W can be decomposed as: W =
BC, where the columns of B ∈ RF×r are the bases of the

column space of W , and the 2pth − 1 and 2pth columns

of C ∈ Rr×2P are the corresponding coefficients of the X
and Y coordinates of T (p). We then denote the pth colum-

n of C by cp, and form the low-dimensional representation

of T (p) with C(p) = ((c2p−1)T , (c2p)T )T . As discussed

in the next subsection, when appropriate bases are chosen,

C(p) can offer a reliable way to measure the similarity of

trajectories. So, in the next subsection, we are going to per-

form clustering on C(p), p = 1, ..., P , and then to label the

trajectories accordingly.

Generally speaking, the difficulty of obtaining desirable

results by factorizing a matrix depends heavily on the qual-

ity of this matrix, which can be measured by the amount of

its missing and corrupted data. Specific to our method, in

the presence of considerable quantities of incomplete and

corrupted trajectories from automatic feature tracking, it is

challenging to decompose W into components to capture

the inherent similarity of trajectories. To solve this prob-

lem, we propose to exploit an inherent property of most nat-

ural deforming objects, temporal smoothness, to introduce

a constraint on the bases of trajectories.

In our setup, the temporal smoothness of T (p), p =
1, ..., P suggests that the values in each column of W vary

smoothly over time, thus can be considered as samples of

a smooth signal. There are a number of predefined bases

which can approximate smooth signals compactly, and a-

mong them, the DCT bases have been proved to be partic-

ularly suitable for motion trajectories [1, 2]. Figure 1 also

shows that the trajectory bases learned from Hopkins 155

Figure 1. Comparison of the DCT bases (red) with the PCA-

learned trajectory bases (blue) of the Hopkins 155 dataset. The

first 8 DCT and PCA bases (ordered left-to-right, top-to-bottom)

are plotted, and some of the bases are multiplied by -1 for better

visual comparison.

dataset1 very closely resemble the DCT bases. We there-

fore use a linear combination of d(r < d � F ) DCT vec-

tors to approximate the column bases of W . Then W can

be factorized as:

W = BC = ΩdXC =
(
θ1 · · · θd

)
XC (2)

where θj denotes the jth DCT basis, and the unknown fac-

tor X describes the bases of trajectories in DCT domain.

Obviously, the introduction of the DCT basis vectors re-

sults in a significant reduction in unknowns with almost no

loss in representation when estimating C(p), and thus cor-

responding numerical stability.

We denote the pth column of W by wp ∈ RF , and use a

F p-dimension vector w̃p (F p ≤ F ) to denote the observed

entries in wp. Then, we define Πp ∈ RFp×F as a row-

amputated identity matrix such that ΠpΩdX has the rows

in ΩdX that correspond to the rows of entries in w̃p. Next,

based on the L-2 distance between the observed and esti-

mated trajectories, the following error function on the DCT

coefficients matrix X and the trajectories coefficients ma-

trix C is obtained:

f(X,C) =
1

2

2P∑
p=1

‖w̃p −ΠpΩdXcp‖22 (3)

For computing X and C, we design an iterative non-

linear optimization algorithm as described in Algorithm 2

to minimize Eq. (3). The optimization strategy of Algorith-

m 2 is: alternately update C with least squares method and

X with Gaussian-Newton method until convergence. Eq.

(4) and (5) in Algorithm 2 are of the form (see complete

derivation in Appendix):

vec(C) = (ΨTΨ)−1ΨT vec(W̃ ) (4)

1In the test, we choose sequences longer than 24 frames from the Hop-

kins 155 dataset, and perform PCA on the first 24 frames of these se-

quences to compute the trajectory bases.
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Algorithm 2 Matrix Factorization with Temporal Smoothness

Constraint

1: Input: δ = 10−4, X = [Ir, 0]
T .

2: Repeat
3: Compute C with Eq. (4).

4: Compute gradient (g) and Hessian (H) with Eq. (5).

4: Repeat
5: δ = δ × 10.

6: Compute ΔX with vec(ΔX) = (H + δI)−1g.

7: Until f(X −ΔX,C) < f(X,C)
8: X = X −ΔX , δ = δ × 10−2.

9: Orthogonalize the columns of X .

10: Until convergence.

where Ψ is a block diagonal matrix which is formed by

ΠpΩdX, p = 1, ..., 2P , vec(W̃ ) = ((w̃1)T , ..., (w̃2P )T )T ,

vec(C) = ((c1)T , ..., (c2P )T )T .

g = −
2P∑
p=1

(Jp)T rp, H =

2P∑
p=1

(Jp)TJp (5)

where Jp = (cp)T ⊗ (ΠpΩd), r
p = w̃p − ΠpΩdXcp, ⊗ is

the Kronecker product.

3.2. Two-Stage Clustering

After the matrices X and C are computed, we intend to

perform cluster analysis on C(p), p = 1, ..., P , and then to

label T (p), p = 1, ..., P accordingly.

Let S denote the product of X and C, and si ∈ R2P

denote the ith row of S. From Eq. (2), we have:

( sT1 · · · sTd )T = ( θ1 · · · θd )TW (6)

Then, the first row of S equals to

s1 = (θ1)TW =
√
F

(
w1, w2, · · · , w2P−1, w2P

)
(7)

where (w2p−1, w2p) = (
∑F

f=1 x
p
f ,

∑F
f=1 y

p
f )/F is the cen-

troid of T (p). Thus, s1 can represent the average spatial

location of T (p), p = 1, ..., P .

Subsequently, combining Eq. (7) with (2), we have:

d∑
j=2

θjsj = W − θ1s1 = 1
F⎛

⎜⎜⎜⎜⎜⎜⎝

F∑
j=1

−→x 1
j1

F∑
j=1

−→y 1
j1 · · ·

F∑
j=1

−→x P
j1

F∑
j=1

−→y P
j1

...
...

. . .
...

...
F∑

j=1

−→x 1
jF

F∑
j=1

−→y 1
jF · · ·

F∑
j=1

−→x P
jF

F∑
j=1

−→y P
jF

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where −→x p
ij = xp

j − xp
i ,
−→y p

ij = ypj − ypi are respectively

the displacements in X and Y coordinates of point p from
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Figure 2. The intermediate results of our method on the sequence

‘cars2 06’. (a)&(c) Original trajectories & trajectories with 50%

missing and 100% corrupted entries (adding Gaussian noise with

zero mean and variance 0.1‖W‖F ). Three colors are employed

to illustrate ground-truth segmentation of the trajectories. (b)&(d)

Visualization of two-dimensional Laplacian eigenmaps projection

of C(p) of the trajectories in (a)&(c) respectively.

frame i to j. Thus,
∑d

j=2 θ
jsTj , and hence (s2, ..., sd)

T , can

capture the translational information of T (p), p = 1, ..., P .

Next, utilizing SVD, we decompose S into U ∈ Rd×r,
D ∈ Rr×r and V T ∈ Rr×2P , and reset the matrix B and C
into ΩdUD and V T , respectively. From C = (D−1UT )S,

it can be deduced that C(p) = ((c2p−1)T , (c2p)T )T is the

weighted sum of spatial and translational information of

T (p), thus can be used to distinguish trajectories belong-

ing to different translational motions. Figure 2 illustrates

the computed S and C(p), p = 1, ..., P in our method

for the sequence ‘cars2 06’ from the Hopkins 155 dataset.

The sequence contains three translational motions. It can

be seen from Figure 2 that, by performing clustering on

C(p), p = 1, ..., P , the three translational motions can be

separated from each other clearly even with severe data

missing and noises.

Now a question arises naturally: how to utilize

C(p), p = 1, ..., P to distinguish trajectories belonging to

different non-translational motions?

To answer this question, we need to classify trajectories

as foreground and background, which are respectively in-

duced by the motions of camera and objects in the scene.

Note that foreground and background trajectories have d-

ifferent spatial characteristics, that is, background trajec-

tories are usually distributed over the scene while fore-

ground trajectories belonging to the same motion are usu-

ally spatially close to each other. To show the differences

of foreground and background trajectories resulted from

their spatial characteristics, we plot the computed S and

C(p), p = 1, ..., P for the sequence ‘1R2RCR’ of Hop-

kins 155 dataset in Figure 3. This sequence contains three
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Figure 3. The intermediate results of our method on the sequence

‘1R2RCR’ of Hopkins 155 dataset. (a) Input trajectories and

ground-truth segmentation, red and green denote foreground clus-

ters while blue denote background cluster. (b) Visualization of

s1 for all trajectories. (c)&(e) Visualization of (sT2 , ..., s
T
d )

T

for foreground trajectories & foreground trajectories and back-

ground trajectories in rectangle ‘A’, ‘B’, and ‘C’. (d)&(f) Visu-

alization of two-dimensional Laplacian eigenmaps projection of

C(p), p ∈ foreground & C(p), p = 1, ..., P .

rotational motions which come from the camera and two

foreground objects. It can be seen from Figure 3(b) and

3(c) that the spatial and translational information both ex-

hibit tight and well-separated clusters for foreground trajec-

tories. Consequently, as Figure 3(d) shows, clustering on

C(p), p = 1, ..., P can easily distinguish trajectories be-

longing to different non-translational foreground motions.

In [3], Brox etal. also indicated that translational model can

offer a good approximation for spatially close points of the

same non-translational motion. However, this argument is

unsuitable for background trajectories since they are usual-

ly distributed in space. From Figure 3(e), we can see that

the translational information of background trajectories in

rectangle ‘A’, ‘B’, and ‘C’ approaches that of foreground

trajectories. As a result, as Figure 3(f) shows, it is difficult

to directly use C(p), p = 1, ..., P to cluster trajectories in a

video sequence with non-translational background motion.

To circumvent this problem, we have developed the

following two-stage clustering, which first separates fore-

ground from background based on motion subspaces con-

straints then segments foreground using spectral clustering,

to segment C(p), p = 1, ..., P :

1. Compute affinity matrix A for C(p), p = 1, ..., P :

A(i, j) = exp(−‖C(i)− C(j)‖2) (9)

2. Apply spectral clustering to A to segment all trajec-

tories into 2 clusters, and choose the one with lower

dimension as background2.

3. Iterate the following two steps until convergence:

(a) Compute the bases of background subspace

by performing SVD on the matrix formed by

C(p), p ∈ background : N = (μ1, μ2, μ3, μ4).

(b) Compute projection error of all trajectories

to background subspace: ε(p) = ‖(I2r −
N(N)+)C(p)‖F , then apply K-means to ε(p)
to repartition all trajectories into foreground and

background.

4. Compute projection error of foreground trajectories to

foreground subspace, and reject the trajectories with

projection error greater than a threshold λ as outliers.

5. Compute affinity matrix for C(p), p ∈ foreground
with Eq. (9), and apply spectral clustering to the affin-

ity matrix to generate clusters in foreground.

In our two-stage clustering, step 2 provides a good ini-

tialization for the following iteration, thus leads to a superi-

or convergence performance of the foreground background

segmentation (usually needs less than 10 iterations to con-

verge). Figure 4 illustrates the segmentation results of our

two-stage clustering on the sequence ‘1R2RCR’ from Hop-

kins 155 dataset.

4. Experiments

In this section, we evaluate our method on both the Hop-

kins 155 dataset [16] and the Berkeley motion segmenta-

tion dataset [3] by comparing with state-of-the-art trajecto-

ry clustering algorithms. As most trajectory clustering al-

gorithms [4, 7, 11, 13], we assume the cluster number is

given. For the Berkeley dataset, the number is fixed to 5.

In all runs of our experiments, we set the number of DCT

bases d = min(max(0.1 × F, 15), 5), λ = 0.5. As to the

rank of W , we first attempt different values of r ∈ {2, ..., d}
in our method, and use sum of projection error of each tra-

jectory to its motion subspace, which is computed by SVD

on all trajectories in the cluster it belonged, to measure seg-

mentation quality and choose one with the fewest error as

the best.

2The dimensions of the clusters are computed by SVD.
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Figure 4. The segmentation results of our method on the sequence

‘1R2RCR’. (a) Input trajectories and ground-truth segmentation,

red and green denote foreground clusters while blue denote back-

ground cluster. (b)&(c) Results of step 2&3 of our two-stage clus-

tering algorithm. (d) Final result of our clustering algorithm.

Table 1. Misclassification rates (%) for the sequences with three

motions in Hopkins 155 dataset.

Method ALC SSC NNMF MSMC Ours’

Checkerboard, 26 sequences

Mean 5.20% 2.97% 19.38% 8.30% 2.44%
Median 0.67% 0.27% 18.08% 0.93% 1.29%
Traffic, 7 sequences

Mean 7.75% 0.58% 0.10% 0.17% 0.05%
Median 0.49% 0.00% 0.00% 0.00% 0.00%
Articulated, 2 sequences

Mean 21.08% 1.42% 15.00% 2.13% 1.60%
Median 21.08% 0.00% 15.00% 2.13% 1.60%

4.1. Clean Data

First, we perform experiments on the full original Hop-

kins 155 dataset. The dataset consists of 120 sequences with

2 motions and 35 sequences with 3 motions which can be

divided into three categories: checkerboard, traffic, and ar-

ticulated. For each sequence, feature trajectories are ob-

tained using an automatic tracker, and errors in tracking are

manually corrected. Therefore, the motion sequences in this

dataset can be considered as clean data without any corrup-

tion or missing entries. We run our method on all sequences

of Hopkins 155 dataset and compute the average and medi-

an misclassification rates for each category of sequences.

Our results are listed in Tables 1 and 2. For the purpose of

comparison, we also list in Tables 1 and 2 the corresponding

results of state-of-the-art motion segmentation algorithms:

ALC [13], SSC [7], Non-Negative Matrix Factorization (N-

NMF) [4] and Multi-Scale Motion Clustering (MSMC) [6].

As Tables 1 and 2 show, among all of the algorithm-

s compared, the overall performance of ours is the best.

To be specific, our algorithm gives the most accurate seg-

Table 2. Misclassification rates (%) for the sequences with two

motions in Hopkins 155 dataset.

Method ALC SSC NNMF MSMC Ours’

Checkerboard, 78 sequences

Mean 1.55% 1.12% 11.60% 3.62% 0.71%
Median 0.29% 0.00% 3.08% 0.00% 0.00%
Traffic, 31 sequences

Mean 1.59% 0.02% 0.10% 0.66% 0.05%
Median 1.17% 0.00% 0.00% 0.00% 0.00%
Articulated, 11 sequences

Mean 10.70% 0.62% 10.00% 2.66% 0.96%
Median 0.95% 0.00% 10.00% 0.00% 0.00%

Table 3. Misclassification rates (%) for the checkerboard se-

quences in Hopkins 155 dataset.

Method NNMF MSMC Ours’

All, 104 sequences

Mean 13.54% 4.79% 1.14%
Median 7.17% 0.00% 0.00%
Sequences without or with only translational

Mean 5.70% 1.86% 0.63%
Median 0.95% 0.00% 0.00%
Sequences with non-translational

Mean 21.69% 7.84% 1.68%
Median 19.36% 0.00% 0.00%

mentation results for checkerboard sequences with two and

three motions and traffic sequences with three motions. For

other sequences in this dataset, our results are just slightly

inferior to the best performing algorithm, i.e. SSC. We also

note that NNMF and MSMC perform comparably to ALC,

SSC, and our method for traffic and articulated sequences

but significantly worse for checkerboard sequences, which

are the most important components of the Hopkins dataset.

We further divide the checkerboard sequences into two part-

s: 51 sequences without or with only translational back-

ground motions (e.g. ‘1RT2TC’)3; 53 sequences with non-

translational background motions (e.g. ‘1R2RCR’).We then

compute the average and median misclassification rates of

our method, NNMF, and MSMC for the whole and the t-

wo parts of checkerboard sequences, and list these values

in Table 3. From Table 3, it can be observed that non-

translational background motion leads to significant dete-

rioration of the performance of translational model-based

NNMF. In MSMC, the use of a higher order motion model

(homography matrix) can only help alleviate this problem

to some extent, but cannot solve it completely. In contrast,

our method, although also based on the translational motion

model, can achieve low misclassification rates for the se-

quences with non-translational background motion as well,

showing the effectiveness of foreground-background sepa-

ration in our clustering algorithm.

3For sequences without background trajectories (e.g. ‘1R2RCR g12’),

only step 4 of our two-stage clustering is performed on.
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4.2. Missing and Corrupted Data

In this subsection, two experiments are conducted to test

the robustness of our method to missing and corrupted da-

ta in motion sequences. The first experiment is designed

to examine how the segmentation accuracy of our method

changes with increasing percentage of missing or corrupt-

ed entries in a sequence. In this experiment, we compare

the performance of our method with that of ALC and N-

NMF, which both can deal with incomplete and corrupt-

ed trajectories. We refer to ALC designing to handle in-

complete and corrupted trajectories as ALC-miss and ALC-

corrupted, respectively. We choose three representative se-

quences from Hopkins 155 dataset for testing: ‘1RT2TC’

(checkerboard), ‘arm’ (articulation), and ‘cars2 06’ (traf-

fic). For each sequence, we remove a portion (from 0% to

80%) of the entries by randomly fixing the start and duration

of each feature point’s successful tracking window, and run

our method, ALC, and NNMF on the resulting sequences.

Then, in Figure 5(Top), the misclassification rates of our

method, ALC, and NNMF on each sequence are plotted as a

function of percentage of missing entries. Next, for each se-

quence, we randomly select a portion (from 0% to 100%) of

the entries, and corrupt each selected entry by adding Gaus-

sian noise with zero mean and variance λ‖W‖F (λ is ran-

domly valued from 0.01 to 0.1). We then run our method,

ALC, and NNMF on the resulting sequences, and plot their

misclassification rates as a function of percentage of cor-

rupted entries in Figure 5(Bottom).

From Figure 5, it can be seen that for clean sequences

without any corruption or missing entries, all of the three al-

gorithms can give near-perfect segmentation results. How-

ever, when increasing amounts of missing or corrupted data

are introduced to a given sequence, the performance of AL-

C and NNMF degrades much faster than ours. Especially

in the case of more than half of trajectories being aban-

doned or corrupted, our method significantly outperforms

other methods. The different performances of the three al-

gorithms are mainly due to the different ways of dealing

with incomplete and corrupted trajectories. To ALC, the re-

quirement of enough complete and uncorrupted trajectories

for repairing the pathological trajectories limits its ability

to robustly segment the sequences with a large number of

missing or corrupted entries. As for our method and NNMF,

although both use matrix factorization to handle patholog-

ical trajectories, our method exploits temporal smoothness

of feature trajectories to compactly represent the bases of

trajectories with the DCT basis vectors, resulting in a signif-

icant reduction in unknowns and corresponding robustness

of handling missing and corrupted data.

In the second experiment, we use Berkeley motion seg-

mentation dataset to test the performance of our method on

motion sequences with real incomplete and corrupted tra-

jectories. This dataset contains 26 video sequences. For

Table 4. Evaluation on the Berkeley motion segmentation dataset.

Density EOverall EAverage O.S. E.O.

All available frames

Our method 3.31% 4.72% 23.82% 1.35 33
Brox&Malik 3.31% 6.82% 27.34% 1.77 27

Max-project 3.22% 4.48% 22.34% 1.84 31

SNMF 3.30% 7.41% 23.79% 7.34 23

ALC-miss 3.29% 14.93% 43.14% 18.80 5

each sequence, feature trajectories are obtained using track-

er in [15], and no manual effort is made to correct or remove

incorrect tracks. Therefore, the sequences in this dataset

contain considerable quantities of missing and corrupted

entries. Another feature of each sequence in this dataset is

that the background area either remains static or undergoes

mainly translational motion. An evaluation tool including 5

metrics: density (%), overall error (EOver,%), average er-

ror (EAve,%), over-segmentation error (O.S.) and number

of extracted objects (E.O.) was also provided by authors of

this dataset. We compare our method with Brox&Malik [3],

Max-Project [12], Semi-Nonnegative Matrix Factorization

(SNMF) [11] and ALC, and show results in Table 4. As the

results show, our method achieves the best overall perfor-

mance among all of the compared methods. More specifi-

cally, we obtain the lowest over-segmentation error and can

extract the most objects in the dataset (62 in total). For

overall error and average error, our method is slightly in-

ferior to the best performing state-of-the-art algorithms, i.e.
Max-project, but significantly superior to others. The supe-

rior performance on Berkeley motion segmentation dataset

again demonstrates the robustness of our method to missing

and corrupted data.

5. Conclusion
This paper proposes a new trajectory clustering algorith-

m for motion segmentation which is highly robust to the

missing and corrupted data typical of real-world tracking

process. Differing from previous works, we propose us-

ing the DCT basis as temporal smoothness constraint to

facilitate segmentation of incomplete and corrupted trajec-

tories. Due to the optimality of DCT basis for represent-

ing motion trajectories, our method can estimate reliable

low-dimensional representation of trajectories even with a

large amount of missing data and corrupted noises. We next

present a two-stage clustering strategy, which first separates

foreground from background based on motion subspaces

constraints and partitions the foreground trajectories into

different clusters using spectral clustering, to segment the

low-dimensional representation, and then label the trajecto-

ries accordingly. The advantage of the proposed two-stage

clustering is that we can use a simple translational model to

effectively handle sequences containing complex motions.

Experiments on both Hopkins and Berkeley datasets show
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Figure 5. Top: The misclassification rates of our method, ALC, and NNMF on ‘1RT2TC’ (a), ‘arm’ (b), and ‘cars2 06’ (c) when percentage

of missing entries in the sequence increases from 0% to 80%. Bottom: The misclassification rates of our method, ALC, and NNMF on

‘1RT2TC’ (d), ‘arm’ (e), and ‘cars2 06’ (f) when percentage of corrupted entries in the sequence increases from 0% to 100%.

the advantage of our method over other state-of-the-art tra-

jectory clustering algorithms in terms of both effectiveness

and robustness.
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