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Abstract—In panoramic videos, the object movement between 
adjacent side images leads to deformation and discontinuity, 
which makes the traditional video tracking approaches 
insufficient. An effective static object tracking algorithm is 
proposed in this paper to resolve the tracking problems from 
the deformation and discontinuity in cubic panorama. The 
algorithm extends the relevant side images with boundary 
consistency, and then conducts a background eliminated mean-
shift algorithm to track objects on the extended images. 
Experiment results show that the algorithm can track static 
objects correctly in reasonable situations in real-time. 

Keywords-panoramic video, object tracking, panorama 
expansion, Mean-Shift 

I.  INTRODUCTION 
Object tracking in video is a challenging task with many 

applications such as surveillance, automatic video-indexing 
and traffic monitoring. According to the camera motion, the 
object tracking is classified into stationary camera-based 
tracking and ground-vehicle based tracking. The most 
common method from the stationary camera is to make a 
statistical model for the background. Stauffer et al. [1] is the 
first to use a mixture of Gaussians model the background, 
which is able to adapt to background changes such as 
swaying trees and flickering lights. Regions extracted as 
foreground is tracked between frames using Kalman filters. 
Object tracking from moving camera is more difficult 
because of the complex outdoor scenes which are always 
combined with rapidly changing illumination and blur effects. 

It is not possible for a single camera to observe a large 
area in detail because of its finite field-of-view. Then the 
interests of using multiple cameras to track arise to get the 
depth information or extend the scope of view area. An 
important issue in using multiple cameras is the relationship 
between the different camera views which can be manually 
defined [2] or computed automatically [3] from the 
observations of the objects moving in the scene. 

This paper focuses on the algorithm for tracking objects 
in panoramic video. The panoramic video covers 360°×180° 
view of scenes, and image deformation makes it difficult to 
track objects in sphere-based panoramic videos. However, 
the cubic panorama is suitable for tracking as it consists of 
six side images that are regular planar as shown in Fig. 1. 
Unfortunately little work has been done of tracking in such 
panoramic videos with dynamic background as road 
panorama. 

This paper is organized as follows: the second section 
describes related work of object tracking in large area; the 
third part introduces the algorithm of tracking with the 
improved mean-shift on expanded cubic panorama; the next 
section describes the experiments and results analysis; and 
the last part is conclusion. 

II. RELATED WORK 
Several algorithms for object tracking from multiple 

stationary cameras have been proposed. Common methods 
emerged such as constructing blobs in 3D space using short-
base line stereo matching with multiple stereo cameras [4], 
or using volume intersection [5]. Lee et al. [6] align the 
ground plane across multiple views to build common 
coordinates for multiple cameras. An automated surveillance 
system proposed by Lim et al. uses multiple PTZ (pan-tilt-
zoom) cameras to track object in a wide scene [7]. But these 
approaches are suitable for moving object surveillance with 
stationary cameras. Patil et al. [8] made use of a combination 
of frame differencing, face detection and adaptive color blob 
tracking based on mean shift analysis to detect and track 
people in the panoramic image. But the algorithm is aiming 
at usage in meeting environments, and requires static 
background. 

The aforementioned multi-camera tracking methods 
assume stationary cameras. Kang et al. [9] use a combination 
of stationary and pan-tilt-zoom cameras with overlapping 
views for tracking. However, it is not possible to have 
overlapping camera views due to orthogonality of the 
adjacent side images in cubic panorama. Methods for 
tracking without overlapping views in such a scenario 
inherently have to deal with sparse object observations. 

 
Figure 1. Six Side Images of Cubic Panorama 
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Therefore some assumptions are made about the object speed 
and the path in order to obtain the correspondences across 
cameras [10]. The performance of these algorithms depends 
greatly on how much the objects follow the established paths 
and expected time intervals across cameras. For scenarios the 
spatio-temporal constraints cannot be used. 

However, current tracking approaches do not have 
solution to tracking the object in cubic panoramic video 
when it moves between side images. When the object moves 
between adjacent side images, the deformation will occur 
(Fig. 2(a)). It is even worse when the movement affects three 
side images that some discontinuities may appear (Fig. 2(b)). 
The deformation and discontinuities lead to inefficiency of 
tracking in common situations or failure at the worst. 

This paper presents an effective object tracking algorithm 
for cubic panoramic videos in order to solve these 
deformation and discontinuity problems. According to the 
features of the object motion in panoramic videos, the side 
images are expanded with boundary consistency. Upon the 
expanded image, an improved mean-shift algorithm is 
proposed to track the object.  

III. ALGORITHM 

A. Main Idea 
The panoramic video covers 360°×180° view of scenes 

where the vehicle-mounted camera follows the road, moving 
in the direction from the back side to the front. Considering 
the object movement between adjacent sides, this particular 
motion can be utilized for the tracking. The epipolar lines of 
the panoramic video of static scenes [11] can be obtained as 
shown in Fig. 3, which describe the motions of static scene 
pixels. They radiate at the epipole on the front side image, 
move approximately in the horizontal direction in the top, 
bottom, left and right side images and finally converge at the 
epipole on the back side image. The movement of the 
epipolar lines reflects the motion of the panoramic camera. 
Between adjacent frames, the motion of the camera is mostly 
horizontal. 

The movement of an object beside the road is 
exemplified in Fig. 4, which follows the directions of the 
epipolar lines. Assume tracking target is the line segment 
AB. Unfortunately, when the camera goes further, part of the 
target AB gets a transition and consequently is bent to be 
perpendicular to the boundary between the front and the top 
image. This deformation affects the object subsequent 
tracking. To reduce this distortion, AB will be curved appro- 

 Figure 2. The deformation and discontinuity: (a) The deformation between 
the two adjacent images (b) The discontinuity at the corner of three side 

images 

 
Figure 3. Epipolar lines of the cubic panoramic video 

ximately along OC as much as possible. So an algorithm is 
proposed in this paper which conducts background 
eliminated mean-shift method on an expansion of cubic 
panorama. The proposed algorithm is summarized as 
follows: 

Step 1) In the initial frame, manually select the region of 
the target or automatically detect the object to be tracked. 
The motion vector of the object is initialized as 0. 

Step 2) Acquire a new frame. According to the epipolar 
lines and the motion vector of the target, expand the 
reference side image with the adjacent images on the cube. 

Step 3) The background eliminated mean-shift algorithm 
starts on the expanded images, and the motion vector of the 
object is updated. 

Step 4) If the object still moves on the boundaries 
between side images, go to Step 2); otherwise, utilize the 在
improved mean-shift algorithm on the ordinary side images 
of the subsequent frame. 

B. Side Expansion for Cubic Panorama 
Unlike the regular videos, cubic panorama has several 

side images. Therefore the tracking needs to know where an 
object goes to from one image. An expansion is designed for 
cubic panorama to benefit the image continuity for tracking 
as Fig. 5. Both of the top and the bottom images are split into 
four triangle parts as S1-S4 and S5-S8 in Fig. 5 respectively. 
We would like the expansion to preserve the consistency of 
object shape after the padding. We define " "⇒ as the 
expansion operator which means the left region of the 
operator is expanded to fill the right one. Side expansion for 
cubic panorama is defined as: 

     
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S1 NPQF, S2 PBSQ, S3 ANFE, S4 BRTS
S5 B RTS , S6 AN FE , S7 PBQS , S8 N PQF
⇒ ⇒ ⇒ ⇒
⇒ ⇒ ⇒ ⇒

(1) 

An example is illustrated of triangle parts S1 and S2 of 
the top image. The S1 part of the top image is stitched to the  

 
Figure 4. Algorithm Motivation 
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Figure 5. Side expansion for cubic panorama 

edge FQ and is expanded to fill the area NPQF. Similarly, 
the S2 part of the top image is stitched to the edge QS and is 
expanded to fill the area PBSQ. Geometrically, the edge QO1 
and the edge QO3 are contiguous. Consequently, the 
expansion of the area NPQF and area PBSQ preserves the 
pixel continuity on their edges. 

To present the procedure of the expansion, we have six 
side images pixel sets Top, Left, Front, Right, Back, and 
Bottom as shown in Fig. 5. 

( ) ( ){ }3LL L LTop ( x, y ) | x y2 2 2 2= − ≤ ≤ ∧ < ≤  

( ) ( ){ }3L L L LLeft ( x, y )| x y2 2 2 2= − ≤ ≤ − ∧ − ≤ <  

( ) ( ){ }L L L LFront ( x, y )| x y2 2 2 2= − ≤ ≤ ∧ − ≤ <      (2) 

( ) ( ){ }3LL L LRight ( x, y )| x y2 2 2 2= ≤ ≤ ∧ − ≤ <  

( ) ( ){ }3L 5L L LBack ( x, y )| x y2 2 2 2= ≤ ≤ ∧ − ≤ <  

( ) ( ){ }3LL L LBottom ( x,y )| x y2 2 2 2= − ≤ ≤ ∧ − ≤ < −  

In (2) L indicates the edge size of the cubic panorama. Let 
Surrounding be the union of Left, Right, Front and Back: 

Surrounding Left Front Right Back= ∪ ∪ ∪        (3) 
In order to illustrate the transition of the expansion, we 

define a function F : Cubic Re ct→ , where a pixel C(xc,yc) 
is in the set Cubic and a pixel K(xk,yk) is in the set Rect. 

Cubic Top Surrounding Bottom= ∪ ∪                    (4) 

( ) ( ){ }k k k k
3L 5LRect (x ,y )| x L y L2 2= − ≤ ≤ ∧ − ≤ ≤    (5) 

The following shows the derivation of the function F: 
1) Obviously, the function F for c c( x ,y ) Surrounding∈ is 

given by: 
[ ] [ ]     c c k k c c c cF(x ,y ) x ,y x ,y (x ,y ) Surrounding= = ∈         (6) 

2) For c c( x ,y ) Top∈ , our method utilizes a triangle area to 
fill a rectangle area by padding the rectangle with pixels 
from the triangle. Each vertical line of the rectangle is 
padded with pixels in an oblique edge of the triangle. This 

pixel padding is exemplified by the condition c c( x ,y ) S1∈  
and c c( x ,y ) S2∈ , as shown in Fig. 6. 

a) In the case of c c( x ,y ) S1∈ , a pixel K(xk, yk) of the 
rectangle area NPQF is filled with a pixel C(xc,yc) of 
triangle part S1 of the top image, as shown in Fig. 6(a). The 
perpendicular projection of K(xk, yk) to X axis intersects the 
boundary FQ at H(xk, L/2). The pixel C(xc,yc) is on the line 
HO1 and yc = yk, so the equation of a straight line HO1 is 
calculated by 

c

c

y Ly L
x x

−− =                                    (7) 

From (7), the coordinate of the pixel K(xk, yk) is given by 

,    
c

k
c c

k c

xLx ( )
2 L y y L

y y

⎧ = ⋅⎪ − ≠⎨
⎪ =⎩

                         (8) 

In (8) L is also the edge size of the side image. Hence we can 
write 

[ ]
[ ]

   
 ,    

                      

c
c c

cc c k k c c

c

xL ( ),y y L
2 L yF( x ,y ) x ,y ( x ,y ) S1

0,L y L

⎧⎡ ⎤
⋅ ≠⎪⎢ ⎥−= = ∈⎨⎣ ⎦

⎪ =⎩

   (9) 

b) For c c( x ,y ) S2∈ , K’(xk’, yk’) is on the line HO3 and  
yk’ = yk, as shown in Fig. 6(b). In accordance with the 
expansion of S1, K(xk, yk) is calculated by 

k ' k '
k

k '

k k '

x 2 y LLx ( )
2 L y

y y

− +⎧ = ⋅⎪ −⎨
⎪ =⎩

                    (10) 

Let G be the transformation group of translation and 
rotations, such that the point C can be transformed from the 
point K’ by (11) in Fig. 5. 
[ ] [ ]

[ ]
                 

                            
                                        

c c k' k'

o o

o o
k' k'

x ,y ,1 x ,y ,1 G

cos( 90 ) sin( 90 ) 01 0 0 1 0 0
x ,y ,1 0 1 0 sin( 90 ) cos( 90 ) 0 0 1 0

0 L 1 0 0 1 L L 1

= ⋅

⎡ ⎤− −⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥= − − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣⎣ ⎦

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (11) 

By imposing (10), we obtain 

    c c
c c c c c

c

y 2x 2LLF( x , y ) ( ),x ( x , y ) S2
2 L x

⎡ ⎤− += ⋅ ∈⎢ ⎥−⎣ ⎦
  (12) 

X
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Figure 6. The pixel calculation in the expansion: (a) expansion of the 

front image (b) expansion of the right image 
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c) In the same way, the function F is respectively 
calculated by Equation (13) and (14) on the condition that 

c c( x ,y ) S3∈

 

and c c( x ,y ) S4∈ : 

  c c
c c c c c

c

y 2x 2LLF( x , y ) ( ), x ( x , y ) S3
2 L x

⎡ ⎤− −= ⋅ − ∈⎢ ⎥+⎣ ⎦
    (13) 

[ ]

  
 , 

                                          

c c
c c

cc c c c

c

x 4y 4LL ( ),2L y y L
2 y LF(x ,y ) (x ,y ) S4
0,L y L

⎧⎡ ⎤− + −⋅ − ≠⎪⎢ ⎥−= ∈⎨⎣ ⎦
⎪ =⎩

    (14) 

d) In similarity, we obtain the function F for 
c c( x ,y ) S5,S6,S7,S8∈ , as follows: 

[ ]

  
 , 

                                          

c c
c c

cc c c c

c

x 4y 4LL ( ),2L y y L
2 y LF(x ,y ) (x ,y ) S5
0, L y L

⎧⎡ ⎤− − −⋅ + ≠−⎪⎢ ⎥− −= ∈⎨⎣ ⎦
⎪ − =−⎩  

  (15) 

  c c
c c c c c

c

y 2x 2LLF( x , y ) ( ), x ( x , y ) S6
2 L x

⎡ ⎤− − −= ⋅ − ∈⎢ ⎥+⎣ ⎦
  (16) 

   c c
c c c c c

c

y 2x 2LLF( x , y ) ( ),x ( x , y ) S7
2 L x

⎡ ⎤− − += ⋅ ∈⎢ ⎥−⎣ ⎦
  (17) 

[ ]

   
   ,  

                      

c
c c

cc c c c

c

xL ( ), y y L
2 L yF(x ,y ) ( x ,y ) S8

0, L y L

⎧⎡ ⎤
⋅ − ≠ −⎪⎢ ⎥+= ∈⎨⎣ ⎦

⎪ − =−⎩          

(18) 

Fig. 7(a) and Fig. 7(b) show the front and the right side 
image after expanding respectively. The expansions for 
cubic panorama rectify the deformation when objects move 
between adjacent side images and recover the 
discontinuousness at the corner of the cube. 

C. Background Eliminated Mean-Shift Tracking 
Mean-shift is a semiautomatic tracking algorithm that 

needs an automated detection or a manual method to localize 
the objects in the initial frame. It applies a rectangle or 
circular template to label the objects in the tracking process. 
However, this rectangle or circular template would introduce 
the color of background region into the calculation of 
histograms when it comes to dynamic background without 
subtraction. It will affect the correctness of object tracking in 
road panorama. A background eliminated mean-shift 
tracking is presented in this part. 

To represent the target model, the mean-shift tracking 
method [12] defines {xi

*}i=1...n as the locations of the target 
model and a function b:R2→{1...m}. The function associates 
the pixel at location xi

* and the corresponding index b(xi
*) of 

the histogram bin to the color of the pixel. The algorithm 
applies the Epanechnikov profile for the histogram 
computation. The probability of the color u in the target 
model is calculated by 

 ,  
n^

* 2 *
i iu

i 1

q C k(|| x || ) [b( x ) u] u 1...mδ
=

= − =∑                (19) 

In (19) δ is the Kronecker delta function and C is the 
normalization constant derived by imposing the condition 

m ^

u
u 1

q 1
=

=∑ ; from where 

 
Figure 7. The expanded side images: (a) The expansion of the front side 
image (b) The expansion of the front image and the right image with a 

corner inside 

( )n 2*
i

i 1

1C
k x

=

=
∑

                                     (20) 

Our approach involves learning a statistical color model 
of the background, which is used for segmenting the object 
that appears in foreground [13]. Each background pixel value 
is modeled as a multi-dimensional Gaussian distribution in 
HSV space, characterized by its mean value μ

 
and standard 

deviation σ . Each color component colorx is compared to the 
current distribution in order to mark foreground colors: 

( ) ( )2 2
xcolor 2μ σ− >                            (21) 

The Gaussian distribution is updated for each color as 
follows: 

( )
( ) ( )( )

x

22 2 2
min x

color 1

max , color 1

μ α α μ

σ σ α μ α σ

← ⋅ + −

← − + −
         (22) 

After the foreground colors have been marked, the colors 
of the target object, color1, color2, … colorm, have been 
determined. Then m kinds of target colors are defined as 
from 1 to m. Consequently, the background colors from cb1
，cb2，…，cbM-m are all set to be 0 to eliminate the impact 
of background color on the statistics histogram. The 
definition of target colors and background colors is 
formulated as: 

  =                
      

              
i

k

color i 1 i m
cb 0 1 k M m

≤ ≤⎧
⎨ = ≤ ≤ −⎩               

 (23) 

The elimination of background colors changes the M-
dimension histogram into an (m+1)-dimensional histogram 
from 0 to m. The probability of background colors are set to 
0 by 

   ,  
k

^

cbq 0 k 1,2,...M m= = −                        (24) 
So the following equation is used for new quantization: 

( ) ( )       
       

i k*
i

k b x color
b x

0 else
=⎧⎪=⎨

⎪⎩                     (25) 
The zero probability of background colors is equal to the 

elimination of background colors from the search window. 
An irregular shaped search window can also be extracted 
along the target contour. This background color elimination, 

which preserves the probability condition
m ^

u
u 0

q 1
=

=∑ , would 
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reduce the influence of dynamic background in the object 
tracking. 
D. Discussion 

For the expansion of S1, as shown in Fig. 8, the epipolar 
line OU and VU are bent on the boundary of the top side and 
the front side images. The proposed expansion method 
rectifies this swerve of epipolar lines and keeps the boundary 
consistency. Generally speaking, the closer the expanded K 
is to the line OW, the smaller the object deformation. The 
expanded points of UV construct a curve which starts from U. 
The accuracy of the rectification depends on the difference 
between the gradient of OU and the gradient of K on the 
curve. 

From Fig. 8, the curve f(y) is rectified by the epipolar line 
UV, and the equation of the curve is calculated by 

   ,         k'Lx 1f ( y ) y L
2 ( L y )

= ⋅ ≠
−

              (26) 

And the derivative of (26) is 

  ,          k'
2

Lx 1f '( y ) y L
2 ( L y )

= ⋅ ≠
−

            (27) 

In (26) and (27) K’(xk’, yk’) denotes a pixel of triangle the 
part S1 of the top image. The gradients of the line UO is 

UO k'k 2x / L= , so we obtain 
 k ' UOy L / 2

lim f '( y ) 2x / L k
→

= =                        (28) 

 As shown in (22), the closer K is to FQ, the more 
accurate the rectification. In Fig. 8, W(xw, yw) is on the 
epipolar line UO and yw = yk. We calculate the Euclidean 
Distance in pixels between the expanded K and the point W 
as the accuracy of the rectification. In our experiment, the 
resolution of one side image of the cubic panorama is 
512×512 and the expanded area NPQF includes 512×256 
pixels. The experiment computed the sums of points of 
different accuracies, as shown in Table I. 

In Table I, the points with the accuracy less than or equal 
to 5 pixels covers the 22.3% of the expanded area NPQF and 
the accuracy distribution of this area is illustrated in Fig. 9. 
In the expanded area, different colors denote points of 
different accuracies and the points with the accuracy more 
than 5 pixels are represented by black. In the expanded 
images, the closer the pixel is to the boundary, the more 
accurate the rectification. When a target moves onto the 
boundaries of the cube, the proposed algorithm can reduce 
the object distortion and track the target effectively. 

TABLE I.  STATISTICS OF POINTS WITH DIFFERENT ACCURACY 

Statistics 
Accuracy (In Pixels) 

1  2 3 4 5 

Sums of 
Points 

17392 4098 3100 2532 2152 

Total 
Points 256×512=131072 

Ratio 13.3% 3.1% 2.4% 1.9% 1.6% 

X

Y

Front Image

F Q

O1(0,L) PN

O(0,0)

K’(xk’,yk’)

U(xk’,L/2)

Top Image

K(xk,yk)

V

W(xw,yw)

S1

 
Figure 8. The rectification of the epipolar line 

IV. EXPERIMENT ANALYSIS 
The panoramic video used in our experiment is captured 

by Ladybug3 panoramic device along the campus road of 
Beihang University. The resolution of each side image in a 
frame is 512×512 and frame rate is 15 fps. The experiment 
expands the top side image of the cubic panorama for 
example. 

The experiment host is with CPU Intel core2 duo 
2.66GHz with memory 2G. The average tracking time is 
31.26 milliseconds per frame. We can have real-time object 
tracking for panoramic videos with the algorithm. 

We have 8 panoramic video sequences and use 10 clips 
in them as samples. 10 static objects of different shapes and 
colors, includes 5 traffic signs (TS), 2 cars, 2 billboards (BD) 
and 1 building. The details of the tracking object information 
are shown in Table II, where “Affecting Side Images” 
illustrates the set of side images on which the object moves. 
In the initial frame, the locations of all traffic signs in the 
panorama are automatically selected by the detection 
algorithm discussed in reference [14] and others are selected 
manually. We use the Hue component in HSV color space 
and 64 levels for quantification. 

In Fig. 10, several tracking results are displayed to 
compare. Fig. 10(a) shows the tracking results on the original 
sequence. The left image illustrates that the rectangle 
template should be extended to label the target due to the 
deformation, but it also introduces non-target area. The right 

 
Figure 9. The rectification accuracy distribution of the area NPQF 
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TABLE II.  OBJECT INFORMATION 

Object 
Accuracy (In Pixels) 

Object Color  Object Shape Affecting Side 
Images 

TS1 Blue Rectangle Front, Right, Top 

TS2 Yellow Triangle Front, Top 

TS3 Blue Rectangle Front, Right 

TS4 Red Circle Front, Right, Top 

TS5 Blue Circle Front, Left, Top 

Car1 Red Irregular Front, Right 

Car2 Red Irregular Front, Right 

BD1 Red Rectangle Front, Right, Top 

BD2 Yellow Rectangle Front, Left, Top 

Building Grey Irregular Front, Right, Top 

image shows the result of the tracking failure when the 
object moves at the corner of the cube. Fig. 10(b) presents 
the results on the expanded panoramic video. Compared to 
the Fig. 10(a), the proposed algorithm can effectively reduce 
the object distortion and successfully track the target. 

To evaluate the performance of the algorithm, we choose 
Precision Ratio and Hit Ratio as the main experiment 
indices. The experiment counts the number of pixels that are 
both in the tracked region run by our algorithm and the hand-
labeled ground truth of the target region. The ratio of tracked 
pixels to the ground-truth pixels is defined as the Precision 
Ratio, which reflects the accuracy of tracking results. 

So Precision Ratio = j/i, where j is the number of actually 
tracked pixels and i is that of the target region. Considering 
the tracking is not for contour labeling but for object finding, 
60% is chosen as the threshold whether the object is 
correctly tracked. 

We have Hit Ratio as Hit Ratio=m/n, where m denotes 
the number of frames that are correctly tracked and n denotes 

 
Figure 10.    Comparison of the tracking results on the cubic panorama 

without expansion and with expansion  (a) tracking on the 56th frame of 
the billboard sequence and the 74th frame of the traffic sign sequence  

(b) tracking on the expanded ones 

the number of total frames. The panorama video clip is 
selected randomly, so the object maybe vanishes in the 
frames. Although being already vanished, we define the 
following frames non-hit. 

The average Precision Ratio and Hit Ratio are shown in 
Fig. 11. For most samples, Precision Ratio are higher than 
60%. The Hit Ratio seems to be high, but need further 
analysis because the non-hit frames may have vanishing 
target region or occlusions. 

The samples have frames between 80 and 200. We have 
every five frames of the sequences manually for a 
quantitative assessment. As to these 1/5 frames, Fig. 12 
presents the total frame number of the sample frames and the 
number of non-hit frames in it. The experiment totally 
samples 252 frames of 10 samples and the total number of 
non-hit frames is 82. 

Furthermore, we analyze the non-hit reasons to find out 
how many is correct and how many is not, as shown in Fig. 
13. The frame statistics is divided into 5 categories in the 
end. As to the total 82 non-hit frames, we have: 

1) Class A means Vanishing: the size of the boundary 
box of the object is less than 5×5. Total 16 frames in Class 
A; 

2) Class B means color mixture: the object goes into the 
background with similar color. Total 22 frames in Class B; 

3) Class C means object missing because of the frame 
dropping. The frame drop occurs randomly during the 
Ladybug capture because of the resolution and laptop 
ability. Total 20 frames in Class C;  

4) Class D means object missing for the occlusion. Total 
10 frames in Class D;  

5) Class E means the Hue component of color changes 
too quickly to more than 4 units. Totally 14 frames are in 
Class E. 

0%
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40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10

Precision Ratio

Hit Ratio

 
Figure 11. Average Precision Ratio and Hit Ratio 
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Figure 12. Total tested frames vs. Non-hit frames 
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Figure 13. Non-hit category analysis 

Fig. 13 shows the reason of non-hit frames classified by 
different categories. We think for the five classes, class A, B, 
D is reasonable for the non-hit. Class C may be improved to 
use high performance computer instead of the laptop for 
panorama recording. For class D, extra detection may help to 
find the object again to some extent if the object appearance 
does not change much. Class E frames may be the actual 
failure of object tracking. 

Some tracking results are illustrated in appendix. 
Experiment results show that the algorithm can track the 
static objects correctly in cubic panoramic videos. 

V. CONCLUSION 
A static object tracking algorithm for cubic panoramic 

video is presented in this paper. The main contributions of 
the proposed algorithm are the cubic panorama expansion 
and the background eliminated mean-shift algorithm for 
object tracking. The side image is expanded according to the 
features of the object motion in panoramic video. Upon the 
expanded panorama, the background eliminated mean-shift 
algorithm is applied to track the static object based on the 
color information in the sequence. The experiment results 
illustrate that the proposed algorithm can track static objects 
correctly in reasonable situations in real-time. 
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APPENDIX 

                  

Figure 14. TS1 Sequnece                                          Figure 15. TS2 Sequence                                      Figure 16. TS3 Sequence 

                                       

Figure 17. Car1 Sequence                                     Figure 18. BD1 Sequnece                                         Figure 19. Building Sequence 
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