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Abstract 

Time management is a key group of services in HLA (High Level Architecture) which has prevailed in distributed 
simulation and distributed virtual environment. Different from the traditional centralized mechanism, a hierarchical time 
management is presented in this paper. The lower level named FederateGroupLayer is made up of several FederateGroups. 
Each FederateGroup is comprised of several federates and deploys an upper time manager among them. In this way, the 
mechanism can process the time advancement hierarchically in two levels. Experiment results show that it can enhance the 
performance of time management for HLA-based system with more federates.  
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1. Introduction 

With the improvement of networking technology and the requirement for collaboration, the importance of 
technology in distributed virtual environment is recognized by more and more people, and the technology is 
applied in many fields including collaboration design, collaboration training and network games, etc. The 
problem of time synchronization in it is still being discussed by the researchers in this field. Lots of 
methods were used to resolve this problem, including HLA (High Level Architecture).  

HLA is an open, supporting object oriented architecture proposed by United States Department of 
Defense. The key component is the interface specification, which defines six groups of services, including 
time manager service. The HLA time management services define a mechanism for federates to advance 
logical time, and enable federates to send and receive time stamped data. It also allows federates to be time 
synchronized, an important feature for distributed virtual environment. Runtime Infrastructure (RTI) is the 
software that provides HLA services used by federates to coordinate their operations and data exchange 
during an HLA federation execution. Xiaojun Shen introduces a HLA based collaborative environment for 
electronic commerce on Internet [1]. Tainchi Lu implements a distributed interactive collaboration war 
simulation game, using HLA technology [2]. Ta Nguyen Binh Duong uses multi-server architecture and 
HLA to model and simulate a distributed virtual environment, and study the problem of load balance in the 
system [3]. 

2. Related Work 

HLA time management is based on the PDES (Parallel Discrete-Event Simulation) time management [25]. 
[11] and [12] proposed the first algorithm to compute LBTS [9] in PDES. It assumes each LP (Logical 
Process) sends a non-decrement time stamped message, and the communication network promises the 
messages would be received in the order they sent, which ensures the messages could reach the LP in the 
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time stamp order. The received messages are stored in a first-in-first-out link by time stamp order. There is 
a clock in each link, whose value is the time stamp of the first message in the link. LP chooses the 
messages in the link whose clock’s value is the least to process. If the link is empty, LP blocks it. So the 
protocol ensures the LP processes the messages in non-decrement time stamp order. 

Although the approach can ensure that the local causality constraint will never be violated, it is prone to 
a deadlock. Therefore, a null message mechanism is used to avoid the deadlock. A null message with time 
stamp T from LPA to LPB ensures that the LPA won’t send any message to B, whose time stamp is less 
than T. Null message does not mean any activity in simulation system, which is only used to avoid the 
deadlock. The approach introduces a key property utilized by virtually all conservative synchronization 
algorithms: lookahead. If a LP with logical time T ensures that it won’t send any messages with time stamp 
less than T+L, then the LP is said to have a lookahead of L. The main flaw of null message mechanism is 
the excess messages generated in the system. The principal problem is that the algorithm uses only the 
current logical time and lookahead to predict the minimum time stamp it would generate in the future. In 
the worst situation, every LP can send any other LP. This will cause an excessive number of null messages, 
and degrade the system. Besides that, Chandy, Misra proposed to detect the deadlock and break it [13]. 

Mattern introduces an algorithm to compute LBTS using a distributed snapshot. In his algorithm, each 
simulator maintains a message counter whose value is the result of subtracting the number of the messages 
sent from the number of the messages received. When the sum of the entire counter’s value is zero, it 
indicates all the messages sent have reached their destination, and it’s the time to compute LBTS. If the 
sum is not zero, they should wait until the next cycle to compute [14]. 

Besides that, some researchers have studied how to improve the performance of the system by relaxing 
ordering constraints. An approach is just ignoring the out of order messages [15] [16]. Richard Fujimoto 
introduces the concept of approximate time, the principal of which is to use the time intervals to replace the 
precise time stamps, in order to increase the degree of parallel and improve the efficiency of the system 
with the lookahead of zero or small lookahead [17]. But the drawback is the length of the time intervals 
would change in different simulation models. Bu-Sung Lee proposes a causal order based time 
management model to improve the efficiency of the distributed simulation system [18]. But in the HLA, the 
causal order is not defined. 

At present, some institutions are using the algorithm referred by Fredrick in [26], which uses the output 
time of each federate in different time state to compute their LBTS. The computation of LBTS in [26] is as 
follows: 

 
 
                                                                                 (1) 
Fi is the federate in system, and Fj is the federate who can send messages to Fi. Tj is the logical time of 

federate Fj, and Lj is the lookahead of federate Fj. 
[27] and [28] both use the concept of “the greatest lower bound of TSO messages federate can send”, 

which is the output time referred by Frederick in [26]. In [28] it is called ELT (effective logical time), and 
in [27] it is called output time. Both of them compute LBTS as following: 

 
                                                                                (2) 
When computing the output time of the federate, which is in NER/NERA state, the latter uses the 

following equation: 
                                                                                (3) 
And the former proposed two methods: the first is as following: 
                                                                                (4) 
The other is: 
                                                                          (5) 
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3. Output time based time management algorithm 

3.1. LBTS of federate 

For each federate Fi, the equation to compute his LBTS is as following: 
                                           (6) 

The LBTS of federate is the minimum of the other federates’ output time, so the key is how to compute 
the federate’s output time, which is decided by the factors such as time state, logical time, lookahead, et al. 

3.2. OutputTime of federate 

There is no need to compute the output time of the federate which is not time regulating, because their 
logical time wouldn’t influence the other federates to advance their time. The output time of the time 
regulating federate is computed as follows: 

When the federate is in the Time Advance Request or Time Advance Request Available pending state, 
                                    (7) 
T(i) is the time that federate i wants to advance to. L(i) is the value of his current lookahead. 

When the federate is in Next Event Request or Next Event Request Available pending state,  
                                                 (8) 
T(i) is the time which the federate i plans to advance to. L(i) is the value of his current lookahead. LETS(i) 
is the value of the minimum time stamp of the messages in this message queue. LBTS(i) is the value of his 
LBTS. 

When the federate is in the time granted state, 
                                   (9) 

T(i) is the value of his logical time. L(i) is the value of his current lookahead. 
Since the above equations may cause deadlock [23], we replace (9) with (10). 
                                               (10) 

4. Two-level time management 

4.1. FederateGroup 

In traditional time management, RTI collects the value of all the federates’ logical time, then computes 
each one’s LBTS, and then manages the time in the system, as figure 1 shows. But since RTI should 
communicate with all the federates and compute their LBTS, it may cause RTI to be the bottleneck of the 
system in two ways. Firstly, as the number of federates in the system grows, the complexity of computing 
would also grow, and may reach or even exceed the limit that RTI can bear. The result would be degrading 
the system. Secondly, since all the output time of the federates should be sent to RTI in time, the messages 
received by RTI would grow quickly in a short time, when more federates join in the system. It also might 
cause the RTI unable to bear the overload in communication and degrade the system. 

 
Fig. 1 Traditional time management 
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Fig. 2 Two-level time management 

 
We propose the two-level (FG and LRC) time management mechanism based on the traditional time 

management. As shown in figure 2, the federates are divided into several FG (FederateGroup), in which 
there is an FGTimeManager, who is responsible for the time of the federates in the FG. And the 
FGTimeManagers communicate with each other by RTI. The FGTimeManager compute the first and 
second minimum value of the federates’ output time in the FG, and send the result to the others. The 
mechanism has the following advantages: a) the jobs of computing by RTI are now distributed to the 
FGTimeManagers, so it decreases the load of RTI, and the probability of degrading the system; b) the 
messages sent to RTI are divided to groups, and each group of messages are just sent to the 
FGTimeManager in the FG, so there are no intensive communication in RTI. 

4.2. LBTS computation 

The equations and denotations in computing LBTS in the mechanism is described below: 
FG(i) denotes the FederateGroup i, i∈[1,m], and m is the number of FG. The FGTimeManager in FG(i) 

is denoted as FGTimeManager(i). F(i) denotes federate i, i∈[1,n], and n is the number of federates. 
Federation is denoted as {F(1), F(2), ... , F(n)}. The set of the federates in the FG(i) is denoted as 
SubFederation(i). T(i) denotes the current logical time of F(i), whose lookahead is denoted as L(i), and his 
output time is denoted as OutputTIme(i). LBTS(i) denotes his LBTS. RMOT(i) denotes the minimum 
output time in FG(i), and RSMOT(i) denotes the minimum output time in FG(i), besides RMOT(i). FMOT 
denotes the minimum output time in federation, and FSMOT denotes the minimum output time in 
federation, besides FMOT. 

1. Equation for RMOT(i) 
   

 
                                     (11) 

2. Equation for RSMOT(i) 
                        (12) 

3. Equation for FMOT 
                     (13) 

4. Equation for FSMOT 
                     (14) 

5. Equation for LBTS(i) 
                      (15) 

4.3. Algorithm of time advancing 

In the algorithm, the requested time advance type of F(i) is denoted as FR(i), and FR(i) ∈{RT(j) | j∈
[1,5]}. RT(1) denotes invoking timeAdvanceRequest() to advance time, RT(2) denotes invoking 
timeAdvanceRequestAvailable(), RT(3) denotes using nextMessageRequest(), RT(4) denotes using 
nextMessageRequestAvailabe(), and RT(5) denotes using flushQueueRequest(). The time which F(i) wants 
to advance is denoted as requestTime(i). TimeAdvanceGrant(i) means RTI grants F(i) to advance his time, 
requestPending(i) means F(i)’s request to advance time is pending, broadcast(i, A, B, …) means 
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FGTimeManager(i) sends messages A, B, … to the other FGTimeManagers and upTransfer(i, A, B, …) 
means FGTimeManager(i) sends the messages A, B, … to the LRC. 

When FGTimeManager receives the request to advance time of F(i), he would compute the F(i)’s output 
time depending on the request type. If the output time of F(i) before sending the request is equal to RMOT(i) 
or RSMOT(i), FGTimeManager updates the two values, and requests the ones of the other 
FGTimeManagers. If the output time is at the minimum of all the values, he would update FMOT and 
FSMOT. Then he request F(i)’s LBTS, and compares it with requestTime(i). The result and the RT(i) 
would determine whether F(i) could advance his time or be pended. After that, he sends RMOT(i) and 
RSMOT(i) to the other FGTimeManagers. The algorithm is described below: 

1. Compute F(i)’s output time according equation(7), (8), OutputTime(i)’ is the updated output time of 
F(i). 

 
 
 
 
 

  (16) 
2. Update the value of output time the FGTimeManager holds. 
if OutputTime(i)∈{RMOT(j), RSMOT(j) | F(i)∈SubFederation(j)} 
 { refreshFederateOutputTimeList(j); } // Update RMOT(j)’ and RSMOT(j)’  
if OutputTime(i) ∈{FMOT, FSMOT | F(i) ∈SubFederation(j)} 
 { refreshRtiOutputTimeList(j);} // Update FMOT’ and FSMOT’ 
3. Decide whether F(i) could advance time. 
if ((F(i) ∈SubFederation(j)) && (FR(i) == RT(5))) 
 { TimeAdvanceGrant(i);} 
if ((F(i)∈SubFederation(j)) && ((FR(i)== RT(1)) || ((FR(i)== RT(3))) && (LBTS(i) > requestTime(i))) 

{ TimeAdvanceGrant(i);} 
else 
 {requestPending(i);} 
if ((F(i) ∈SubFederation(j)) && ((FR(i)==RT(2)) || (FR(i)==4)) && (LBTS(i)≥requestTime(i))) 
 { TimeAdvanceGrant(i);} 
else 

{requestPending(i);} 
4. Send his RMOT and RSMOT. 
broadcast(j, RMOT(j)’, RSMOT(j)’). 

4.4. Algorithm of requesting LBTS 

As logical time advancing in federation, the LBTS of each federate is updated continually. There are two 
ways to update the LBTS. First, the FGTimeManager is responsible for each federate’s output time, and 
compute their LBTS. Second, the federate is responsible for telling FGTimeManager his output time. It 
means once the output time of federate is changed, he should send the value to the FGTimeManager. Then 
the FGTimeManager compute the LBTS. 

Because the applications of simulation are different, the frequency of advancing time and updating LBTS 
is different too. Even if the application is the same, the result would be different in different computers and 
networks. So it is difficult to choose a proper frequency to request the output time. If the frequency is less 
than the actual one, the system would be degraded. If the frequency is larger than the actual one, it will 
increase the nonsense overload in computing and communication, and it will degrade the system. So it is 
wise to choose the latter way to update LBTS, which could avoid the problems in the former one. 

( ) '
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4.1.1. Alogrithm in FG layer 

When R(j) receives output time of F(i): 
 1. if OutputTime(i) ∈{RMOT(j), RSMOT(j) | F(i) ∈SubFederation(j)} 
  {OutputTime(i)’=T; 

RMOT(j)’ is updated according equation(11); 
RSMOT(j)’ is updated according equation(12);} 

else 
 {OutputTime(i)’=T;} 

 2. if OutputTime(i) ∈{ FMOT, FSMOT | F(i) ∈SubFederation(j)} 
  { FMOT’ is updated according equation(13); 

FSMOT’ is updated according equation(14);} 
3. upTransfer(j; FMOT, FSMOT). 
4. if (OutputTime(i)==RMOT || OutputTime(i)==RSMOT) 
     { RMOT and RSMOT are updated according equation(11),(12); 

Send results to the other FGTimeManagers;} 
   if (OutputTime(i)==FMOT || OutputTime(i)==FSMOT) 

   { FMOT and FSMOT are updated according equation(13), (14); 
Send the results to LRC;} 

   else 
  {record OutputTime(i);} 

4.1.2. Algorithm in LRC layer 

When LRC(i) received the messages from FGTimeManage: 
1. if OutputTime(i) > FMOT 

{LBTS(i) = FMOT;}  
else  

{LBTS(i) = FSMOT;} 
2. if OutputTime(i) > minValue 
   {LBTS(i) = minValue;} 
 else  
   {LBTS(i) = maxValue;} 
The minValue is the minimum value in the message from FGTimeManager to LRC, and the maxValue is 

the maximum value in the message from FGTimeManager to LRC. 

5. Test results and analysis 

We implement time management service in BH RTI 2.2 [24], with the two-level time management 
mechanism referred above, and design some cases to test the function and performance. 

The test environment from 5.1 to 5.3 is described as followed: 
2 PCs: CPU Pentium 2.4G Hz, 512 MB-Ram memory, Windows XP Professional. There are 2 federates, 

and each of them is running in one of these two PCs. The network is 100 Mb/s Ethernet. 

5.1. Time Advance Request Service 

This case is to test the function of Time Advance Request service in time synchronization and the 
relationship among the service, lookahead and LBTS. There are only 2 federates A and B, which are both 
time regulating and time constrained, and with lookahead of 1. They invoke the Time Advance Request 
service to advance time to logical time 40. Then B invokes Time Advance Request service to request to 
advance time of 50. After that, A increases his lookahead from 1 to 2, 3… 11. The result in figure 3 shows 
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that the federates could invoke the Time Advance Request service to advance time synchronously.Because 
the frequency to advance time in the system reflects the execution efficiency of the whole system, then it 
can reflect the time management efficiently We use the granted times per second to evaluate the 
performance of the time management.  

Fig. 3  Lookahead and LBTS when invoking TAR 

5.2. Next Event Request Service 

This case is to test the function of Next Event Request service in time synchronization and the relationship 
among the service, TSO messages and LBTS. There are only 2 federates A and B, which are both time 
regulating and time constrained, and with lookahead of 0.1. They invoke Time Advance Request service to 
advance time to logical time 20. Then B invokes Next Event Request service to request to advance time of 
30. After that, A sends TSO messages with lookahead from 29 to 21 step by step. The result in figure 4 
shows that the federates could invoke Next Event Request service to advance time synchronously. 
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Fig. 4 TSO messages and LBTS when invoking NER 

5.3. Performance analysis 

Because the frequency to advance time in the system reflects the execution efficiency of the whole system, 
then it can reflect the time management efficiently We use the granted times per second to evaluate the 
performance of the time management. 

We test BH RTI 2.2, DMSO RTI 1.3NGv6 and pRTI 1516 LE in the same environment: 
2 PCs (A, B): CPU Pentium 2.4G Hz, 256 MB-Ram memory, Windows 2000. Network: 100 Mb/s 
Ethernet. 

RTI starts on Machine A, and the federates are running on Machine B. The step of the federates are 10, 
and the lookahead is 1. They invoke Time Advance Request to advance time. We use the following method 
to compute granted times per second. We get the logical time T1 before time advancing, and after the 
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simulation finished, we get the logical time T2, and the time granted times N. Then we can calculate the 
granted times per second n by equation: 

n = N/(T2-T1)  (17) 
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Fig. 5 Granted time per second of BH RTI, DMSO RTI and pRTI LE 

The result is shown as figure 5, from which we can see, that the granted times per second of BH RTI are 
greater than DMSO RTI 1.3NGv6 and pRTI LE. And with the increase of the federates, the burden on RTI 
increases, so the value of granted times per second drops. But for the two-level time management, the 
performance of BH RTI is better than DMSO RTI 1.3NGv6 and pRTI LE. 

6. Conclusions and future work 

This paper proposes two-level time management in HLA-based collaborative environment. In the 
mechanism, the federates are divided into numbers of groups, so the communication and computation in 
RTI previously are now distributed in the FGTimeManagers. Each FGTimeManager is responsible for the 
time management of the federates on its FederateGroup, and sends the messages containing RMOT and 
RSMOT in its group to each other via RTI. And they could compute the LBTS of the federates in its group 
by the messages, which decreases the burden on the RTI. The result shows that the efficiency of BH RTI is 
greater than that of DMSO RTI 1.3NGv6 and pRTI LE, which is implemented by two-level time 
management mechanism. 

We will also be investigating the time management of HLA 1516 standard, and the compatibility 
between HLA 1516 and HLA 1.3. Because there have been lots of systems which were developed by the 
HLA 1.3 draft, it’s more convenient to make it compatible between the two, without transplanting the 
systems from HLA 1.3 to HLA 1516. 
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