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ABSTRACT

Though the variety of desktop real time stereo vision systems

has grown considerably in the past several years, few make any

verifiable claims about the accuracy of the algorithms used to

construct 3D data or describe how the data generated by such

systems, which is large in size, can be effectively distributed. In

this paper, we describe a system that creates an accurate (on the

order of a centimeter), 3D reconstruction of an environment in

real time (under 30 ms) that also allows for remote interaction

between users. This paper addresses how to reconstruct, com-

press, and visualize the 3D environment. In contrast to most

commercial desktop real time stereo vision systems our algo-

rithm produces 3D meshes instead of dense point clouds, which

we show allows for better quality visualizations. The chosen

representation of the data also allows for high compression ra-

tios for transfer to remote sites. We demonstrate the accuracy

and speed of our results on a variety of benchmarks.

Keywords— 3D video, compression, real time, teleimmer-

sion

1. INTRODUCTION

3D display technology has improved considerably both in qual-

ity and popularity in recent years. Unfortunately, the develop-

ment of technology to generate 3D content has lagged behind

the development of such displays. Most of the content we now

enjoy on stereo displays is either generated off line as in 3D

movies or is synthetically generated as in video games. Accu-

rate real-time generation of 3D data from real-life scenes has

proved extremely difficult.

Approaches to real-time 3D content generation can be di-

vided into two categories, those with active and those passive

sensors. The active sensors incorporate laser or infrared de-

vices as in time-of-flight cameras like the ZCam or Canesta [1].
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Fig. 1. Two users interacting with a virtual car model each cap-

tured with a different stereo camera and rendered inside a shared

virtual environment using the stereo vision system presented in

this paper.

However, such devices have significant shortcomings, such as

low resolution, limited range, high noise, and albedo sensitiv-

ity [2]. Passive sensors, generally cameras, observe existing

electromagnetic information and use that information to infer

about the 3D world. Approaches to extract 3D content from

cameras usually take three forms: visual-hull extraction, volu-

metric reconstruction, or image-based reconstructions. Of these

approaches, the image-based one, where 3D information is ex-

tracted by comparing rectified images, can achieve much higher

accuracy with less noise (see [3] a more extensive review of

these three approaches). Though image-based stereo algorithms

have been studied extensively (see [4] for a review of such al-

gorithms), they have struggled to simultaneously achieve accu-

racy and real-time performance. We employ the image based

approach and overcome its associated difficulties by proposing
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a real-time region-based algorithm via a multi-scale scene rep-

resentation. In addition to achieving high accuracy and speed,

this representation of the data allows for better visualization via

texture mapping and high compression ratios for transfer of the

data to remote sites.

In this paper, we present a real-time portable stereo vision

system that creates accurate 3D reconstruction of users via a

mesh with high-resolution dynamic texture mapping. We make

two major contributions: first, a novel multi-scale representa-

tion that allows for the highly accurate reconstruction of a scene

which is described in Section 4; second, a real-time texture

compression and decompression technique that allows for high-

quality visualization which is described in Section 5. The rest

of the paper includes a brief overview of related work in Section

2 and an overall description of the various system components

in Section 3. An example of the results achieved by our system

presented in this paper can be found in Figure 1.

2. RELATED WORK

In this section, we briefly review related research efforts in gen-

erating real-time 3D video for desktop teleimmersion. The first

such teleimmersive system was presented by researchers at the

University of Pennsylvania [5] who used several stereo cam-

era triplets for image-based reconstruction of the upper body.

A local user was able to communicate to a remote user while

preserving gaze. Another desktop teleimmersive system based

on reconstruction from silhouettes was proposed by Baker et

al. who used five different views to obtain a 3D model of the

user via a visual-hull approach [6]. The system employed a sin-

gle PC which performed 3D reconstruction and rendering of the

users in a simple virtual meeting room. The compact system

showed limited accuracy and speed. A similar system was pro-

posed by Kauff and Schreer [7] who obtained the 3D video data

by merging depth maps generated by multi-baseline algorithm

from four views. The system featured a custom-built multi-

processor board. To generate a arbitrary virtual view of the re-

mote user in virtual environment, view synthesis by 3D warping

was utilized. The later approach was extended and presented by

Schreer et al.[8] as part of a multi-user 3D conferencing system.

Their algorithm combined volumetric reconstruction with depth

estimation to balance the low accuracy. The system, however,

required a large number of cameras to generate a 3D model of

the user.

In this paper, we describe a desktop teleimmersive system

that employs image-based reconstruction on a stereo pair to get

accurate results in real-time. We combine local and global ap-

proaches for disparity calculation in a novel way to generate an

accurate 3D mesh and apply high-resolution texture mapping

to improve the final visual quality. We compare our approach

against various benchmarks [9, 10] to illustrate the strength of

our method. We also develop a compact representation of the

texture information, the Border-Descriptor Inter-Frame Com-

pression (BIFC) scheme, to achieve real-time performance with

high compression ratios.

Fig. 2. Flow chart describing the algorithmic pipeline of the

desktop system.

3. SYSTEM OVERVIEW

In this section, we provide an overview of the algorithmic

pipeline of our platform which allows for collaboration between

geographically distributed users by seamlessly integrating their

3D representation and virtual objects within a shared virtual

environment. All users interact in the virtual environment via

their local stations. In order to properly model interaction be-

tween objects in the shared virtual environment and allow for

flexibility during visualization, each station maintains a local

copy of the entire virtual space. Model manipulation and post-

processing of data can then be performed locally. With these

requirements in mind, each station must perform three tasks:

compute a 3D reconstruction of the local environment, commu-

nicate this 3D data to other stations, and visualize the virtual

environment.

In our system, we employ a Bumblebee 2 camera (1024x768

resolution) developed by Point Grey, Inc., whose internal and

external parameters are calibrated prior to use [11]. The images

are resized to 320x240 and rectified. The 3D reconstruction is

performed on these rectified resized images, and the dynamic

texture is applied via the high resolution images. As we show in

the next few sections, this decision does not have a detrimental

effect on the accuracy of the reconstruction while guaranteeing

high quality visualizations. Next, one of the images to be used

for reconstruction is background subtracted and then meshed.

Using this mesh, a 3D reconstruction is computed. This data is

then post-processed to improve the accuracy. Finally the origi-

nal color image is compressed using our compression technique

which employs motion residuals for inter-frame compression.

This package is then sent to the remote location where it is de-

compressed in real-time and passed to the rendering loop, which

visualizes the depth information and texture maps the decom-

pressed data. Figure 2 illustrates this algorithmic pipeline.
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4. STEREO ALGORITHM

In this section, we describe a 3D reconstruction algorithm that

first segments an image into regions and matches these regions

rather than perform pixel by pixel matching which is gener-

ally inaccurate. This segmentation of the image has two ben-

efits when compared to the traditional pixel matching approach.

First, the segmentation into regions is done according to a crite-

rion that complements the matching step. Namely, the matching

step has the benefit of the knowledge of the scale at which to

perform matching, which is unavailable while performing pixel

by pixel matching. Second, the segmentation is done in a fash-

ion to allow straightforward information sharing between pairs

of segments to improve the overall accuracy of the initial esti-

mate of the depth returned by the matching. After describing

our algorithm, we compare the performance of our algorithm

with several algorithms on a traditional benchmark.

4.1. Construction of the Representation

We begin by decomposing the image domain into a coarse rep-

resentation of right isosceles triangle bases functions of a fixed

largest possible size. Each triangle is then bisected if the vari-

ance of the gray scale image within each triangular region is

higher than a given threshold. This type of segmentation is re-

ferred to as Maubach’s bisection scheme [12].

In addition to this bisecting scheme, we introduce an addi-

tional constraint to allow for the application of a variety of stan-

dard post processing techniques: we require that there be no

nodes in the middle of a triangle’s edge. If after the bisection

scheme such a node exists, then we bisect the triangle with the

offending node at its triangle’s edge, which ensures that the tri-

angles in question satisfy our required criterion. This type of

mesh is referred to as conforming and aids in the development

of algorithms to quickly post process the depth maps created by

our reconstruction algorithm.

4.2. Calculation of Depth

After the construction of this representation of the image, we

can calculate the depth at the nodes of the triangles by employ-

ing a normalized cross correlation technique. Since window-

based stereo aggregation methods, like cross correlation, im-

plicitly assume that all pixels within the window have simi-

lar disparities, they struggle whenever windows straddle depth

discontinuities. This results in the infamous foreground fatten-

ing effect. Fortunately, the aforementioned image partitioning

scheme provides the necessary information to overcome this

difficulty.

We assume depth varies smoothly within any image segment

with homogeneous color. Fortunately, our mesh employs an

identical assumption during its construction. The size of the

image segment generated by the meshing dictates our stereo ag-

gregation window size choice, since all elements in an image

segment have similar depth. We do not assume that pixels in

the same segment share the same depth, but rather that they lie

Fig. 4. Two images, each of size 450 × 375, from the bench-

mark developed by Scharstein et al. [10] (left column), the

ground truth for these two images produced using a laser range

finder (center column), and the output of our stereo algorithm

(right column). Note that lighter gray values indicate that the

object in the scene is closer, darker gray indicate that an object

in the scene is further away, and black indicates areas of uncer-

tainty.

on a locally planar surface. This method succeeds in our system

for two reasons: first, it improves the robustness of our matching

procedure by employing entire regions instead of single points

and, second, it reduces the total number of points that must be

matched which improves the overall efficiency of the matching

procedure. Finally, we note that if a region has too low of a

variance (i.e. the largest triangle size) or if there is an occlu-

sion, then cross correlation performs extremely poorly. In this

instance, we simply skip this region and rely on the result of the

post processing step to fill in the depth in this region.

Since the representation is conformal, the depth map can

be post processed by exploiting an approximation to standard

global optimization procedures such as anisotropic diffusion,

which have been proven to improve the overall quality of depth

reconstruction [13]. Since our mesh is conformal, depth values

can pass between neighboring triangles via their nodes. Though

these finite element methods generally converge slowly, they are

proven to converge rapidly in a conformal representation [14].

In Figure 3, we show images to illustrate the steps of our stereo

algorithm.

4.3. Results

At this point, we compare the effectiveness of our algorithm in

calculating disparities. The benchmarks consist of dozens of

pictures. The two images that the benchmark has identified as

the most difficult are found in the left column of Figure 4. The

accuracy of the measurements is calculated against a ground

truth image, which can be found in the center column of Figure

4, generated by a laser range finder. Note that lighter gray values

indicate that the object in the scene is closer and darker gray

indicates than an object in the scene is further away. Black areas

correspond to points where the disparity value is unknown.
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Fig. 3. A 320 × 240 image taken from a single camera in a stereo cluster (top-left), the mesh generated for this image (bottom-left),

the pre-processed disparity image (top-middle), and the post-processed disparity image (bottom-middle), a rendering of the data

using linear interpolation between the color value stored at each node (top-right), and a rendering of the data using the BIFC scheme

and texture mapping (bottom-right). Note that lighter gray values indicate that the object in the scene is closer, darker gray indicate

that an object in the scene is further away, and black indicates areas of uncertainty.

In this domain, error is calculated by the percentage of pix-

els that differ by more than a pixel, which is approximately the

number of pixels that differ in their returned value by more than

a single centimeter. The output of our stereo algorithm on the

images found in the left column of Figure 4 calculated on two

dual core 2.33 GHz machines can be found in the right column

Process Our’s Wang Bleyer Klaus

Teddy 1-Pixel Error 7.15% 8.31% 6.54% 7.06%

Teddy Speed 42.1ms 20s 100s 14s

Cone 1-Pixel Error 7.56% 7.18% 8.62% 7.92%

Cone Speed 53.8ms 20s 100s 25s

Table 1. A quantitative comparison of our algorithm against

the top performers on the benchmark developed by Scharstein

et al. [10]. The teddy and cone image correspond to the top and

bottom rows of Figure 4 respectively. Our output was produced

with approximately 40,000 triangles in both instances.

Triangulation 3.83 ms

Disparity 15.8 ms

Post-Processing 1.78 ms

Total 21.41 ms

Table 2. Average frame rate for a typical image sequence in the

TI system on two dual core 2.33 GHz machines obtained using

TI stereo pairs each with size 320 × 240 with approximately

10000 triangles per frame.

of the same figure. A quantitative comparison of our algorithm

can be found in table 1. We include the most accurate perform-

ers on this benchmark in the same table. Wang et al. employed

a dual core 1.6 GHz machine [15], Bleyer et al. employed a 2

GHz Pentium 4 machine [16], and Klaus et al. employed a dual

core 2.21 GHz machine [17]. We arrive at comparable levels

of accuracy as the top performers, but our algorithm takes any-

where between three hundred to two thousand times less time

to produce an answer. These top performers arrive at a high

level of accuracy by relying upon variants of global optimiza-

tion technique, which are slow. We arrive at comparable levels

of accuracy at a much faster speed on CPU by taking a hybrid

approach: performing a local optimization technique (the re-

gion matching) and using a global optimization approximation

to improve the initial results (anisotropic diffusion). Table 2

describes the average speed of our algorithm on a sequence of

images taken from our system.

5. REAL-TIME COMPRESSION

Though the image partition described in the previous section

provides a straightforward method to compress the depth infor-

mation [18], if the partition is employed to compress the tex-

ture image it would result in poor visual appearance. If instead

the uncompressed texture information was employed via tex-

ture mapping, then visual quality would remain unadulterated.

Unfortunately, texture images are very large in size. An illus-

tration of the difference between the two methods can be found

in Figure 3.
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5.1. BIFC Algorithm

In this section, we present a Border-Descriptor Inter-Frame

Compression (BIFC) scheme, which employs inter-frame mo-

tion estimation. We first divide the image into macro blocks to

increase the speed. Three types of macro blocks are defined in

our scheme, (1) foreground blocks, (2) background blocks, and

(3) border blocks for areas corresponding to the edge between

the background and foreground. The border block is not consid-

ered in other bitmap-based compression methods. By employ-

ing the background subtraction, we can label each of the macro

blocks.

Similar to MPEG encoding, we divide frames over time into

two types: intra-frames and inter-frames. Intra-frames are com-

pressed via a variant of JPEG compression. Namely, in intra-

frames, only foreground and border blocks are compressed via

Fig. 5. Comparing compression for the same image sequence at

different resolutions for different compression schemes

(a) Compression

(b) Decompression

Fig. 6. Average time cost for compression on the capturing side

and decompression on the rendering side for images with large

(75%) foreground coverage.

JPEG compression. Therefore the intra-frame encoding struc-

ture consists of a sequence of macro block types, mask en-

coding, and the image encoding data. In order to perform

inter-frame compression, we assume that users do not move

too quickly between consecutive frames. This notion is made

more clear in the next subsection. Under this assumption, the

border blocks alone can be used to perform a motion estimate

since they encode the most distinct features. Foreground blocks

can then be filled in employing the border blocks. Following

the block search, DCT transforms of block residuals are done

as in JPEG compression. The inter-frame encoding structure

is defined as a sequence of macro block type, mask encoding,

image-residual encoding, and moving vector data.

5.2. Compression Ratio and Speed

To illustrate the type of compression ratio and the speed of com-

pression and decompression we consider the performance of our

algorithm at various resolutions on our two dual core 2.33 GHz

machine. The results in this paper are presented for about 75%

foreground coverage of the entire image area. The key frame

was calculated every 10 frames while the stereo reconstruction

was performed at about 30 frames per second. The macro block

size was set at 16 by 16 pixels and the search window for mo-

tion estimation was set at 32 by 32 pixels. The user movement

is considered too quick if it moves beyond this 32 by 32 pixel

search window. Figure 5 illustrates the compression ratio of the

JPEG and BIFC scheme as a function of image resolution. For

high foreground coverage the difference in the compression ra-

tio between JPEG and BIFC intra-frame compression is small.

On the otherhand, BIFC inter-frame compression has a distinct

advantage over the JPEG compression technique.

In Figure 6 we compare the time cost for compression and

decompression between JPEG and BIFC scheme for large fore-

ground coverage (about 75%). The BIFC intra-frame com-

pression has higher compression time than JPEG compression

mainly due to the calculation of block type, while the inter-

frame compression is close to or below the JPEG scheme. For

decompression, the advantage of the BIFC compression scheme

is obvious. Figure 3 illustrates the visual quality of our ap-

proach.

6. CONCLUSION

In this paper, we described a real-time stereo-vision system that

creates a highly accurate 3D reconstruction of users to use in

collaborative environments. Our novel data representation and

3D reconstruction algorithm offers a flexible, accurate, and fast

solution to real-time scene (user) capture in 3D. The reconstruc-

tion algorithm described here is amongst the top performers on

an industry wide benchmark for accuracy and it is easily one

of the fastest reconstructions available. Using dynamic high-

resolution texture mapping on lower-resolution mesh data we

can leverage between the currently available computing power,

network bandwidth, and visual quality required for face-to-face

interactions in shared virtual environments.
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Within our framework, the users are integrated into the vir-

tual environment. Different digital effects (e.g., relighting, de-

formations) can be applied in real time to manipulate what is

displayed to the remote users. The users can be immersed inside

computer generated existing or non-existing environments, such

as ancient buildings and future architectural designs, or merged

with 3D medical (e.g. MRI) or other scientific data (e.g. seismic

tomography of Earth crust) to allow interactive exploration.
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