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Abstract—This paper presents a real-time stereo algorithm
that estimates scene depth information with high accuracy.
Our algorithm consists of two novel components. First, we
apply a modified two-pass aggregation to the adaptive cost
aggregation process, use color similarity to calculate support
weight, and introduce a credibility estimation mechanism to
reduce accuracy loss during two-pass aggregation. Second, we
present an amended scan-line optimization technique, which
combines winner-take-all and dynamic programming. Our
algorithm runs at 20 fps on 320×240 video with a disparity
search range of 24. The experimental results are evaluated on
the Middlebury benchmark data sets, showing that our method
achieves the best reconstruction accuracy among all real-time
stereo algorithms.
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I. INTRODUCTION

Stereo matching estimates scene depth information from

multiple images and it is one of the fundamental computer

vision problems. Stereo research has recently experienced

somewhat of a new era because of public available perfor-

mance testing such as the most widely adopted Middlebury

benchmark data set [1], which allows researchers to compare

their algorithms against ground truth data and the state-of-

the-art algorithms.

For the Middlebury evaluation system [1], [2], [3], the

quality of stereo algorithms is evaluated by the reconstruc-

tion accuracy, that is, the average percentage of incorrect

disparity estimates. Currently, stereo matching algorithm

can be divided into three categories: good quality (error

rate below 7%), average quality (error rate between 7%

and 11%), and poor quality (error rate above 11%). Al-

most all top-performing stereo methods are based on the

global Markov RandomField (MRF) formulation that solves

stereo matching by minimizing certain energy function [4].

The lowest energy corresponding to the optimal disparity

assignment can be approximately achieved using energy

minimization techniques such as belief propagation [5] and

graph-cut [6]. Recent development in MRF stereo has sig-

nificantly advanced the state of the art in terms of accu-

racy. However, in terms of speed, global stereo algorithms

typically take from several seconds to several minutes to

compute a disparity map, limiting their applications to off-

line processing. There are many interesting applications,

such as robot navigation and augmented reality, in which

high-quality depth estimation at video frame rate is required.

We in this paper present a real-time stereo algorithm,

which is being evaluated as the top real-time performer

on the Middlebury evaluation table. The algorithm is built

upon the popular scanline-based optimization framework

which is the basis for many real-time stereo algorithms

on the Middlebury top-list. The algorithm presented in

this paper introduces two novel ideas which significantly

improve the reconstruction accuracy over existing scanline-

based approaches. First, we amend the traditional adaptive

color-weighted aggregation by using a modified two-pass

aggregation. We compute support weight in a soft fashion

using color similarity, analysis the possible accuracy loss

generated by two-pass aggregation, and then we use a cred-

ibility estimation mechanism to solve this problem. Second,

we improve the dynamic programming (DP) optimization

technique by leveraging the winner-take-all (WTA) result

as a prior, which improves the depth estimation at occlu-

sion boundaries and better preserves depth discontinuities.

Furthermore, we implement the cost aggregation scheme

on the graphics hardware to facilitate real-time processing

speed. The aggregated cost volume is transferred back to

CPU for final disparity optimization using DP. In this way

our approach makes use of both CPU and GPU in parallel

and is able to produce a high-quality depth map at video

rate. Experimental results evaluated using ground truth data

demonstrate the effectiveness of our method.

The rest of this paper is organized as follows: After

reviewing the related work in Section 2, we in Section

3 introduce our cost aggregation method using two-pass

aggregation with credibility estimation and the WTA guided

dynamic programming algorithm for disparity selection.

Section 4 contains experimental results and we conclude in

Section 5 with planned future work.

II. RELATED WORK

In general, stereo algorithms can be categorized into

local and global methods. Local algorithms are based on

correlation and can have very fast implementation [7], [8],

[9]. The central problem of local window-based algorithms

is how to determine the size and shape of the aggregation

window. That is, a window must be large enough to cover
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sufficient texture variation while small enough to avoid

crossing depth discontinuities. This inherent ambiguity leads

to problems such as noisy disparities in textureless region

and fattened object boundaries. Global methods assume

the disparity map is piecewise smooth except pixels near

depth discontinuities and minimize certain cost functions. A

popular global method is DP [10]. DP can offer optimized

solution for independent scanlines in an efficient manner.

Due to its one dimensional optimization solution and good

speed performance, DP is the algorithm of choice for

many real-time stereo applications [11], [12], [13]. Besides

DP, advanced global optimization methods such as Belief

Propagation (BP) and Graph Cut (GC) have attracted much

attention [14], [5], [15], [16], [17], [18]. Although more

accurate results are obtained, both BP and GC are typically

computationally expensive. Yang et al. [19] implemented

BP on GPU and thanks to the parallel processing capability

of modern graphics hardware, real-time performance were

achieved.

Our paper is also related to a local stereo method pre-

sented by Yoon and Kweon [20], in which a cost aggregation

scheme that uses a fix-sized support window with per-

pixel varying weight is introduced. The support weight is

computed based on color similarity and geometric distance

to the center pixel of interest. Very strong results are

obtained using winner-take-all, without relying on global

optimization. It is similar in spirit to many segmentation-

based stereo algorithms, but it avoids image segmentation

by using a continuous weighting function. Unfortunately, the

aggregation process is very computationally expensive. As

reported in the paper, it takes about one minute to process

a 384× 288 images on CPU.

Our approach is very much inspired by a recent paper

by Wang et al. [12]. To achieve real-time performance, the

authors propose a simplified approach. They integrate [20]’s

adaptive weight scheme into a DP framework and the per-

pixel matching cost is only aggregated in a one dimensional

vertical window. This approach can achieve over 50 million

disparity evaluations per second (MDE/s) when using the

graphics hardware to accelerate the computation. Compared

to traditional DP-based algorithms, their approach reduces

the typical “streaking” artifacts without using multiple DP

passes [21]. However, the quality of this algorithm is

not quite satisfactory (error percentage 9.82%). Compared

to [12], we adopt a two-pass aggregation strategy instead

of the one-pass aggregation. And a layered weighting func-

tion is used to improve accuracy. We also use the results

from winner-take-all to guide the DP optimization process.

Our proposed algorithm significantly improves the accuracy

over [12], especially in depth discontinuity regions.

III. OUR APPROACH

In this section, we present our basic stereo model. Note

that for notation clarity, our derivation will focus on rectified

two-frame stereo images. However, it would be relatively

easy to generalize our method to handle multi-view stereo.

Given a stereo image pair {I, I} , where I, I are the

reference and target images respectively, the goal of stereo

matching is to compute the dense disparity map of the

reference view. Our stereo algorithm consists of two steps:

1) adaptive cost aggregation using two-pass aggregation with

credibility estimation; 2) disparity selection by winner-take-

all guided dynamic programming. In the following, we will

present our algorithm in detail.

A. Weight computation by color similarity

We first compute the initial pixel-wise matching costs

using the absolute difference method as

C(p, d) =
∑

c∈{r,g,b}

∣Ic(p)− Ic(p)∣ (1)

where Ic, Ic are the values of color channel c in the left and

right images, p = (x, y) is a pixel in the left image. Given a

disparity hypothesis d, the corresponding pixel in the target

image is p = (x + d, y). We define a square window Wp

of predefined size centered at pixel p. For each pixel q ∈
Wp, we compute a weighting function w(p, q) that encodes

the likelihood that pixel q lies on the same surface with p.

In [20], the adaptive support weight is computed based on

the color similarity (Δcpq ) and geometric similarity (Δgpq)

between two pixels as:

w(p, q) = exp(−(
Δcpq


c
+

Δgpq

rg
)) (2)

In equation (2) 
c and 
g are parameters that control group-

ing by similarity and proximity. However, we experimentally

found that the geometric similarity has little effect on the

final result if color information is used properly. Therefore,

we ignore Δgpq and define a different weighting function

as:

w(p, q) = exp(−
Δcpq


c
) (3)

Figure 1 shows the support weights computed from equa-

tions (2) and (3) respectively with 
c = 36 and 
g = 68.

As can be seen from Figure 1 (c) we know q1, q2 and

q locate on different surfaces but Δgpq1 and Δgpq2 are

almost equal and color information is distinctive for layer

separation. Additionally, Δgpq3 is larger than Δgpq4, and

according to equation (2) w(p, q3) should be smaller than

w(p, q4), as shown in Figure 1(b). However, p, q3 and q4
have similar depths which implies q3 and q4’s contribution

to the p should be almost equal. In this example, including

the geometric similarity even reduces the power of support

weight computation.

74



q1

q2

q3

p

q4

(a) (b)

(c) (d)

Figure 1. A comparison of weight masks computed with and without
geometric similarity. (a) shows the weight mask by equation (3). (b) shows
the weight mask by equation 2. (c) displays depth of pixels in this area.
We adjust the scale factor so that the depth change is more clear. (d) shows
the close-up views at a pixel location in the Cones image. Crosses mark
pixels on the Cones image, and p is the center pixel.

B. Two-pass aggregation based on credibility estimation

After computing support weight by color similarity, we

aggregate matching cost as:

Cw(p, d) =

∑

q∈Np

w(p, q) ⋅ w(p, q) ⋅ C(q, d)

∑

q∈Np

w(p, q) ⋅ w(p, q)
(4)

where Np is the set of all pixels covered by the support

window. The complexity of this aggregation approach is

O(S2), where S is the width of the support window. This

high computational cost makes it less suitable to real-time

application. To accelerate the aggregation step, we adopt

a two-pass aggregation method proposed in [12] which

approximates the full 2D aggregation with two separate

1D windows (one horizontal and one vertical). In essence,

we first aggregate costs along the horizontal direction, and

then sum the horizontal aggregated results along the vertical

direction. This two-pass strategy reduces the aggregation

complexity from O(S2) to O(S). However, the weighted

sum function in equation (4) is not separable in theory and

this two-pass approach will inevitably introduce accuracy

loss.

From Figure 2 we know w(p, c) is not calculated directly

during two-pass aggregation, but with the aid of c’, that is:

w′(c, p) = w(c, c′)w(c′, p) (5)

By combining equations (3) and (5) we can have a clear view

of the difference between w′(c, p) and w(c, p), as shown in

(a) (b)

Figure 2. Support weight calculation in two-pass aggregation. Figure2 (b)
is the close-up view at pixels in the red rectangle in Figure 2(a). The black
rectangle in Figure 1(b) is the support window of pixel c. p is one pixel in
the support window, c’ is the center of all pixels which locate on the same
line with p.

.

.

.

c’

c

p

Figure 3. c, p and c’ in color space, they construct a triangle in rgb color
space.

c c’

p

c

c’

p

c c’ p

c c’pp c’c

(a) (b)

(c) (d) (e)

Figure 4. Several location examples of c, p and c’ in color space. In (a)
Δcpc = Δcpc′ +Δccc′ . In (b) and (c) Δcpc < Δcpc′ +Δccc′ and in
(d) and (e),Δcpc = ∣Δcpc′ −Δccc′ ∣.

equation (6).

w(c, p) = exp(−
Δcpc
rc

)

w′(c, p) = exp(−
Δcpc′+Δccc′

rc
)

(6)

Δcpc′ is the distance between p and c’ in color space, Δccc′

is the distance between c and c’. Figure 3 shows the three

pixels and their relative position in color space.

In Figure 3, Δcpc′ , Δccc′ and Δcpc construct a triangle

in color space. We know that in a triangle the sum of two

sides is larger than the third one. So w′(c, p) and w(c, p)
could not be equal unless c, p and c’ are collinear, as shown

in Figure 4(a).

From Figure 4, we know Δcpc′+Δccc′−Δcpc varies from
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0 to 2min(Δcpc′ ,Δccc′), that is the larger the Δcpc′ and

Δccc′ , the larger the accuracy loss. Therefore, we introduce

a simple but effective aggregation credibility mechanism

in two-pass aggregation to reduce the accuracy loss. We

compute the support weight w′(c, p) as well as its credibility

according to equation (7).

R(c, p) = T (exp(−
ΔCpc′

K
))T (exp(−

ΔCcc′

K
)) (7)

Where T (x) compute credibility of w′(c, p) by judging the

length of Δcpc′ and Δccc′ .It is defined as:

T (x) =

⎧

⎨

⎩

0, x < Tw1

0.5, x < Tw2

1, else
(8)

K, Tw1, Tw2 are predefined parameters. If Δcpc′ and

Δccc′ are too large that exp(−
Δc′p

K
) and exp(−Δcc′

K
) are

less than Tw1, then we will assign the credibility to 0,to

exclude w’(p, c) from aggregation. If Δcpc′ and Δccc′ are

of moderate length, then we will assign their credibility

to 0.5. Otherwise their credibility is set to be 1.0, which

means difference between w′(p, c) and w(p, c) is definitely

small even in the worst condition. In horizontal aggregation,

Δccc′ is inaccessible while in vertical aggregation the value

of Δcpc′ is unknown, so we judge w′(c, p) as well as its

credibility in two steps:

wℎ(c, p) = T (exp(−
Δcpc′

K
))w(c′, p)

wv(c, p) = T (exp(−Δccc′

K
))w(c, c′)

(9)

In addition, in our modified two-pass approach the aggre-

gated costs are calculated using:

Hw(c
′, d) =

∑
p∈H

c′
wℎ(c

′,p)wℎ(c′,p)C(c′,p)
∑

p∈H
c′

wℎ(c′,p)wℎ(c′,p)

Vw(c, d) =
∑

v∈Vc
wv(c,c

′)wv(c,c′)C(c,c′)
∑

v∈Vc
wv(c,c′)wv(c,c′)

(10)

Where Hc′ is the set of all pixels locate on the same line

with c′, Vc is the set of all pixels locate on the same column

with c. In Figure 5 we show the depths maps resulting from

our modified two-pass approach and compare it with the

result from original two-pass approach.

C. Winner-take-all guided DP

We adopt an amended scan-line optimization technique

which combines winner-take-all (WTA) and dynamic pro-

gramming (DP). DP is one of the most widely used algo-

rithms in stereo matching; it is formulated in an energy-

minimization framework [4]. The objective is to find a

disparity function d, which minimizes the following global

energy.

E(d) = Edata(d) + Esmootℎ(d) (11)

(a) (b) 

Figure 5. A comparison of two-pass aggregation approach with and
without credibility estimation. Figure(a) is generated without credibility
estimation, Figure(b) is generated with credibility estimation. Note we have
analyzed the possible error occurrence in red circle area at figure 1, and
experiment result corresponds with our prediction.

Where Edata(d) is the data term defined by equation (7),

measures how well the disparity function d agrees with the

input image pairs. Esmootℎ(d) is the smoothness term which

encodes the smoothness assumptions made by the algorithm.

In our implementation, it is formulated as:

Esmootℎ =
Widtℎ
∑

x=1


∣d(x)− d(x− 1)∣ (12)

Here 
 is a constant used to penalize depth discontinuities,

and Width is the image width. We traverse the aggregated

costs along each scanline from left to right. For pixel

p = (x, y) we need to traverse all the disparities D(p′) and

calculate the minimum energy. The corresponding formula

is:

F (p, d(p)) = C ′(p, d(p))+
d=dmax
min

d=dmin
{F(p′, d) + 
∣(d(p)− d∣}

(13)

Where p′ = (x − 1, y). From equation (13) we know the

complexity of this algorithm is O(D2), D is the disparity

search range. This is not suitable for real-time system. To

reduce the complexity of this approach, we import disparity

smoothness constrain into this DP process. The disparity

smoothness constraint means the disparity of a pixel is

usually similar to disparities of the surrounding pixels. So

for pixel p it is only necessary to consider d(p) − 1, d(p),
d(p) + 1 as the possible disparity candidates of d(p′). The

modified formula is:

F (p, d(p)) = C ′(p, d(p))+
min

d∈[d(p)−1,d(p)+1]
{F(p′, d) + 
∣(d(p)− d∣} (14)

The algorithm complexity of equation (14) is O(D). But

disparities computed by this simplified approach change

slowly at depth discontinue areas, which may probably

blur the occlusion borders. To avoid this “over-smooth”

condition, we use the result of WTA to guide this scanline

DP optimization process. Local WTA is simple and efficient

but since WTA is based on greedy strategy and computes

disparity of each pixel separately, disparity maps from WTA
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(a) (b)

(c) (d)

Figure 6. Comparison of different scanline optimization technology.
The depth results are all aggregated according to equation 10. (a) is
DP method(equation 14). (b) is generated by WTA. (c) is our combined
approach(equation 15). (d) is the ground-truth.

are not as smooth as global methods. In our approach, we

use WTA to provide an extra disparity candidate for DP.

That is for p = (x, y), we compute dx by equation (16),

and take dx−1 as the fourth disparity candidate.

F (p, d(p)) = C ′(p, d(p))+
min

d∈{d(p)±1,d(p),dx−1}
{F(p′, d) + 
∣(d(p)− d∣} (15)

dx−1 = argmin
d

C ′(p′, d) (16)

By combining WTA and scanline DP, our approach can

better handle in depth discontinuity areas. For each column,

we only need to compute dx−1 at the beginning, so algorithm

complexity of this approach is still O(D). Figure 6 shows

the depth maps produced by our combined approach and

compare it with the results of DP or WTA respectively.

As can been seen our combined approach produces more

accurate depth maps than using either DP or WTA alone.

Indeed, our combined approach inherits the advantages of

both DP and WTA. It generates smoother depth maps than

WTA, and compared to DP it improves the depth estimation

at occlusion boundaries therefore better preserves depth

discontinuities.

IV. EXPERIMENTAL RESULTS

We first evaluate the reconstruction quality of our pro-

posed approach using the benchmark Middlebury stereo data

set [1]. The second test is performed on a live captured

dynamic video sequence in order to assess the performance

of our stereo algorithm in real-time applications.

Figure 7. Resulting depth maps from Middlebury stereo data set. (left
column) ground truths; (right column) our results.

A. Experiment on Middlebury stereo data set

We run the proposed algorithm on an Intel W3350 CPU

with 3.0 GHZ and use a Geforce GTX 285 graphics card

with 1GB memory manufactured by NVIDIA. Our cost

aggregation is implemented using CUDA [25] on the GPU.

All parameters are set to be identical across all experiments.

They are: support window (35*35), two parameters in equa-

tion 5(K=2, 
c=36), and the discontinuity cost (
=3.25).The

results from all four test sequences are shown in figure 7.

Table 1 shows quantitative results from the Middlebury

evaluation table. Our approach currently ranks the first

among all real-time stereo algorithms and ranks the 34th out

of all 91 submissions (as of December 18th, 2010). Yoon’s

algorithm [20] is a slow approach, and ranks the 33rd.

The average error rate of our approach (6.65%) is slightly

lower than Yoon’s method (6.67%) and our approach runs

in real-time. RealTimeGPU represents the evaluation results

of [12]’s algorithm, which uses one-pass vertical aggregation

and traditional DP optimization. As we can be seen, even
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Avg. Avg. Tsukuba Venus Teddy Cones
Algorithm Error Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Ours 6.561 34.62 1.403 3.073 5.861 0.733 1.743 3.862 6.812 14.04 15.41 3.992 11.84 10.12

Adapt. Weight [20] 6.672 33.91 1.382 1.852 6.903 0.712 1.192 6.133 7.885 13.32 18.65 3.971 9.792 8.261

RealTimeABW [22] 7.904 41.23 1.261 1.671 6.832 0.331 0.651 3.561 10.77 18.37 23.37 4.816 12.66 10.73

RealTimeBP [19] 7.693 45.24 1.494 3.404 7.874 0.774 1.904 9.004 7.784 14.96 17.32 4.584 12.45 10.73

RealTimeVar [23] 9.055 53.15 3.366 5.486 16.86 1.155 2.355 12.85 6.181 13.11 17.32 4.665 11.73 13.76

RTCensus [24] 9.736 58.05 5.087 6.257 19.27 1.586 2.426 14.26 7.966 13.83 20.36 4.103 9.541 12.25

RealTime GPU [12] 9.827 59.17 2.055 4.225 10.65 1.927 2.987 20.37 7.233 14.45 17.64 6.417 13.77 16.57

Table I
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH OTHER HIGH-QUALITY APPROACHES

Avg. Avg. Tsukuba Venus Teddy Cones
Algorithm Error Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Without Credibility
Estimation 8.522 51.32 3.102 4.702 13.32 1.892 2.862 11.02 7.002 14.01 16.92 4.222 12.02 11.22

With Credibility Estimation
6.561 34.61 1.401 3.071 5.861 0.731 1.741 3.861 6.811 14.01 15.41 3.991 11.81 10.11

Table II
PERFORMANCE COMPARISON OF DIFFERENT TWO-PASS AGGREGATION APPROACHES

Avg. Avg. Tsukuba Venus Teddy Cones
Algorithm Error Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

DP 7.272 42.02 1.542 3.302 6.682 0.792 1.952 5.152 6.892 14.22 15.62 5.022 13.12 13.03

WTA 9.323 61.23 3.203 5.213 7.043 2.493 3.933 9.663 10.33 18.03 18.53 5.923 15.43 12.23

DP+WTA 6.561 34.61 1.401 3.071 5.861 0.731 1.741 3.861 6.811 14.01 15.41 3.991 11.81 10.11

Table III
PERFORMANCE COMPARISON OF DIFFERENT DISPARITY COMPUTATION METHODS

with 1D vertical aggregation and scanline DP optimization,

the accuracy of RealTimeGPU is not satisfactory (avg.

error=9.82%).

To better illustrate the advantages of our credibility esti-

mation mechanism, we list the results generated by different

two-pass approach in table 2. The first row is two-pass

aggregation without credibility estimation and the second

row is our modified approach with credibility estimation.

The improvement is obvious and after using credibility

estimation the average error rate is reduce from 8.52% to

6.56%.

Table 3 shows results of different disparity computation

methods. As we can see, the precision of DP method is

better than WTA, and our combined approach generates

better results than either using DP or WTA alone, especially

near depth discontinuities regions.

B. Experiment on dynamic scene

Our algorithm is also tested on live videos captured by

a bumblebee XB3 camera manufactured by Point Gray

Research. The algorithm can achieve 20 fps when handing

stereo image pairs of 320×240 pixels with 24 disparity

levels. This is equivalent to 36.87 MDE/s [12]. The disparity

maps generated from two stereo images captured in this

experiment are shown in Figure 8. As can be seen our

Figure 8. Two sample frames captured in our experiment and their
corresponding disparity maps.

approach is able to produce detailed and accurate depth maps

with clean object boundaries.

V. CONCLUSION

In this paper we present a high quality real-time stereo

algorithm. We compute support weight for each pixel using

color similarity and aggregate matching cost by a modified
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two-pass aggregation, which is based on a new credibility

estimation. We also improve the dynamic programming

optimization technique by leveraging WTA disparity map as

a prior guide, which improves the depth estimation at occlu-

sion boundaries and better preserves the depth borders. We

use CPU and GPU in parallel and produce high-quality depth

map at video frame rate. We demonstrate the effectiveness

of our algorithm by applying it to virtual reality applications

that require accurate real-time depth estimates. Experimental

results evaluated using ground truth data on Middlebury

evaluation system show that our approach currently achieves

the best reconstruction accuracy among all real-time stereo

algorithms.
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