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Abstract—Motion estimation is the key part of video 
compression since it removes the temporal redundancy within 
frames and significantly affects the encoding quality and 
efficiency. In this paper, a novel fast motion estimation 
algorithm named Clustering Based Search algorithm is 
proposed, which is the first to define the clustering feature of 
motion vectors in a sequence. The proposed algorithm 
periodically counts the motion vectors of past blocks to make 
progressive clustering statistics, and then utilizes the clusters 
as motion vector predictors for the following blocks. It is found 
to be much more efficient for one block to find the best-
matched candidate with the predictors. Compared with the 
mainstream search algorithms, this algorithm is almost the 
most efficient one, 35 times faster in average than the full 
search algorithm, while its mean-square error is even 
competitively close to that of the full search algorithm. 

Keywords-motion estimation; clustering; search algorithm; 
video compression 

I.  INTRODUCTION 
In most existing international video standards, such as the 

ISO MPEG series and the ITU-T H.26X series, motion 
estimation (ME) has been adopted to remove temporal 
redundancy within frames and thus to provide coding 
systems with high compression ratio. The popular ME 
fashion is trying to find the alike area in the reference frame 
corresponding to the one in the current frame based on 
blocks and is usually called block matching motion 
estimation (BMME) in video codecs. 

Among numerous BMME algorithms, full search (FS), 
which compares all the candidates in the search window and 
finds the best-matched block, is the one with the minimum 
error but usually with the highest computation due to the 
thorough candidate matching. In order to reduce the 
computation, varieties of fast motion estimation algorithms 
have been proposed, such as three step search (TSS) [1], new 
three step search (NTSS) [2], four step search (FSS) [3], 
diamond search (DS) [4], hexagon search (HS) [5] and some 
other algorithms. These fast algorithms apply different 
search patterns and search strategies to reduce the search 
candidates, but their accuracy inevitably degrades, especially 
in video sequences with high motion. 

Besides search patterns, fast motion estimation 
algorithms always utilize motion vector predictors to narrow 
the search range and thus to reduce the computation. 
According to the spatial correlation of block motion, the 
motion vector of one block is usually correlated to those of 

its neighboring blocks. Inspired by this, some predictive 
motion estimation algorithms have been put forward, such as 
predictive line search (PLS) [6], hybrid unsymmetrical cross 
multi-hexagon grid search (UMHexagonS) [7], predictive 
intensive direction searching (PIDS) [8], simulated annealing 
adaptive search (SAAS) [9] and other predictive algorithms. 
Predictive motion estimation algorithms use the motion 
vectors of the spatial/temporal neighboring blocks to build an 
initial predictor for the motion vector of the current block. 
These algorithms can narrow the search scope as well as the 
computation, but the search accuracy and the speed always 
ask for a tradeoff. 

Even more than the facts above that have been found, in 
fact, those blocks that are not neighbors may also have a 
similar motion due to the similar depth or object segments of 
the scene. Consequently, a frame of a normal video sequence 
usually only has several clusters of motion vectors since 
normally the adjacent frames do not involve many arbitrary 
big movements in the scene. The main contribution of this 
paper is to periodically make clustering statistics on past 
motion vectors and to provide efficient predictors with most 
possibilities for the motion estimation of the following 
blocks. It’s usually probable for one block to find the best-
matched candidate quickly with the predictors. To the best of 
our knowledge, few works have been done before on the 
clustering statistics of motion vectors for predictive motion 
estimation. 

The rest of this paper is organized as follows. In Section 
2, our motivation and the clustering feature of motion vectors 
are described. Section 3 gives the clustering definition of 
motion vectors. Section 4 introduces the proposed Clustering 
Based Search algorithm. The experiment results are 
illustrated in Section 5. Finally, Section 6 draws a 
conclusion. 

II. MOTIVATION 
Traditional motion estimation algorithms usually exploit 

the motion vector similarity in neighboring blocks. However, 
those blocks that are not neighbors may also have a similar 
motion due to the depth or object segments of the scene. 
Generally speaking, the motion vectors of blocks in the same 
segment will be correlated and the motion vectors of blocks 
at the same depth will also be correlated. The motion vectors 
of a frame in a normal video sequence will have several 
clusters, since adjacent frames will not involve many big 
arbitrary movements in the scene. 
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We count the motion vectors between two adjacent 
frames in the video sequence Aspen [10]. Fig. 1 illustrates 
the histogram of motion vectors computed by FS algorithm 
with search range (-8, 7) and block size 16×16. Each point in 
plane xoy denotes a motion vector (x, y) and the count axis 
shows the number of the blocks whose motion vector is (x, y). 
From Fig. 1, we can observe that the motion vectors follow a 
two-dimensional discrete distribution, and there exist several 
peaks i.e. the counts of some vectors and their close 
neighboring vectors are much higher than others. 

- 8 - 6 - 4 - 2 0 2 4 6
- 8

- 5

- 2

1

4

7

0
100
200
300
400
500

600

700

800

900

x-component 
of motion vector

y-component 
of motion vector

count

 
Figure 1.  The histogram of motion vectors of adjacent frames in Aspen 

sequence [10]. 

To investigate the distance between those motion vectors 
with high counts, we choose the Manhattan distance as the 
metric. We select motion vectors (-6, -5), (0, 3) and (4, -4) at 
the three peaks in Fig. 1, and regard them as the 
representative vectors of G1, G2 and G3 respectively. Then, 
the k-means algorithm is performed to classify the other 
motion vectors with count more than 150 (the average value 
of the motion vectors’ counts) into the three groups G1, G2 
and G3. Consequently, the three groups are G1={(-6, -4), (-6, 
-5), (-6, -6)}, G2={(0, 2), (0, 3), (0, 4)} and G3={(4, -3), (4, -
4), (4, -5)}. We calculate the average distance within a group 
and the average distance between groups in Table I. The 
average distance within a group is generally very low, while 
the average distance between groups is relatively high, and 
as a result, motion vectors reveal a structure of clustering. 

TABLE I.  AVERAGE DISTANCE WITHIN A GROUP AND BETWEEN 
GROUPS 

Group 
Average Distance 

G1 G2 G3 
G1 0.45 13.94 19.13 
G2 - 0.56 5.19 
G3 - - 0.59 

 
The motion vectors of a frame in a normal video 

sequence usually have only several count peaks. Therefore, 
the motion vectors only have several clusters with high 
counts. The clustering statistics could be computed from the 
motion vectors of the past blocks. Based on these clustering 
statistics, several efficient predictors with most possibilities 

are provided for the motion estimation of the following 
blocks. It’s usually much possible for one block to quickly 
find the best-matched candidate with the predictors. 

III. PROGRESSIVE  MOTION VECTOR CLUSTERING 
Let D be a dataset of motion vectors and let p and q be 

two vectors in D. The Manhattan distance [11] between p(xp, 
yp) and q(xq, yq) is defined as d(p, q)=|xp-xq|+|yp-yq|. Based on 
the Manhattan distance, we define the reachable relationship 
between two motion vectors as well as the motion vector 
clusters. The reachable definition refers to those vectors p, q 
satisfying d(p, q) 2. 

Definition 1: (directly reachable) If d(p, q)=1, q is 
directly reachable from p, denoted by p q→ . 

Definition 2: (indirectly reachable) If  d(p, q)=2 and 
 there exists a vector r in D subject to p r→ and r q→ i.e. 

d(p, r)=1 and d(r, q)=1, q is indirectly reachable from p, 
denoted by p q . 

Definition 3: (cluster) A cluster Ci is a non-empty subset 
of D satisfying the following conditions: 

q D∀ ∈ :if ( )iq rep C→ , then iq C∈  

q D∀ ∈ :if ( )iq rep C and ( )jq rep C j i→ ≠/ then iq C∈  
where rep() denotes the representative vector of a cluster. 

According to the definition of cluster, a motion vector m 
is assigned to cluster C when the following rule of clustering 
is satisfied. 

The Rule of Clustering: Let C1, C2 ... Cn be the existing 
clusters. A new motion vector m is assigned to a certain 
cluster Ci if m satisfies one of the following conditions: 

 ( )im rep C→  

( )im rep C and for ( )jrep C∀ , j i≠ , ( )jm rep C→/  
where rep() denotes the representative vector of a cluster. 

The Rule of Clustering is illustrated in Fig. 2. A motion 
vector is denoted by an integral point in the coordinates (x, y), 
a motion vector cluster is denoted by a dashed circle, and the 
representative vector of a cluster is denoted by a shaded 
point. Suppose p, q, r, s, u and t are motion vectors and C1 is 
the existing vector cluster. Initially, C1 has only one member 
i.e. C1={p} and rep(C1)=p. Since p q→ , q r→ and q s→ , 
vectors r and s are indirectly reachable from p. Vector q 
satisfies condition  of the rule and therefore q is assigned 
to cluster C1. Vectors r and s satisfy condition  of the rule 
and thus r and s are also assigned to cluster C1. Vectors u and 
t can not be assigned to cluster C1, so new clusters C2={u} 
and C3={t} are created. 
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Figure 2.  The clustering of motion vectors. 

623



For a motion vector n which can not be assigned to any 
existing clusters, a new cluster Cnew={n} with rep(Cnew)=n is 
created. After the creation of Cnew, some members of existing 
clusters C1, C2 ... Cn are assigned to Cnew when the following 
rule is satisfied. 

The Rule of Membership Change: Let motion vector m 
be a member of cluster Ci. When Cnew is created, if m 
satisfies ( )im rep C  and ( )newm rep C→ , assign m to Cnew, 
where rep() denotes the representative vector of a cluster. 

The change of the membership of the existing clusters is 
illustrated in Fig. 3. Suppose v is a motion vector and v can 
not be assigned to C1, C2 or C3. Therefore, a new cluster 
C4={v} is created and rep(C4)=v. According to the Rule of 
Membership Change, vector s becomes a member of C4. 
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Figure 3.  The change of membership of clusters. 

The representative vector of a cluster will be re-selected 
because of the change of its members and the change of the 
counts of its members. The selection of the representative 
vector of a cluster should follow the rule as: 

The Rule of Representative Vector Selection: Let C be 
a cluster and initially rep(C)=p. Vector p’ is selected as the 
representative vector of cluster C if p’ satisfies the following 
conditions: 

{ } { }p' p q | q C, p q∈ ∪ ∈ →  

( ) ( ) { } { }{ }cost C, p' min cost C,i | i p q | q C, p q= ∈ ∪ ∈ → , 
in which cost(C, i) is defined as: 

( ) ( )
( )

( ) ( )
( )j C ,d i , j 2

j C ,d i , j 2

1
cost C,i n j d i, j

n j ∈ ≤
∈ ≤

= ⋅        (1) 

In (1), n(j) denotes the count of vector j and d(i, j) 
denotes the Manhattan distance between vector i and vector j. 
The cost(C, i) indicates the average distance within cluster C 
when i is selected as the representative vector. 

The Rule of Representative Vector Selection is illustrated 
in Fig. 4. Let the count of s be 1 and the count of v be 2 at 
first. Suppose the count of s increases to 8 and the count of v 
remains 2. According to (1), cost(C4, s)=0.2 and cost(C4, 
v)=0.8. From the Rule of Representative Vector Selection, s 
will become the representative vector because cost(C4, s) < 
cost(C4, v). 
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Figure 4.  The selection of representative vectors. 

The Progressive Clustering algorithm periodically 
assigns newly generated motion vectors to the existing 
clusters. Let M={m1, m2 ... mw} be the set of newly generated 
motion vectors and n’(mj) denotes the count of mj in M. Let 
E={C1, C2 ... Cn} be the set of existing clusters. The 
procedures of the Progressive Clustering algorithm are 
described as follows: 

1. Adding new motion vectors to existing clusters. 
(1) For each motion vector mj in M, if mj is already a 

member of cluster Ck (mj Ck), increase the count of mj in Ck 
by n(mj)=n(mj)+n’(mj), in which n(mj) denotes the count of 
mj in Ck, and remove mj from M. 

(2) For each motion vector mj in M, if mj meets condition 
 in the Rule of Clustering, assign mj to the corresponding 

cluster and remove mj from M. 
(3) For each motion vector mj in M, if mj meets condition 

 in the Rule of Clustering, assign mj to the corresponding 
cluster and remove mj from M. 

After the adding above, generate U={u1, u2 ... ur} as the 
set of remaining unassigned motion vectors of M, and set the 
number of algorithm iteration num as 0. 

2. Clustering the remaining motion vectors. 
For each unassigned motion vector uj in U, create a new 

cluster C’j={uj}, add C’j to E by E=E C’j, and then check 
all the reachable vectors of uj by the following (1) and (2). 

(1) For each directly reachable vector p of uj, if p is in U 
and p is an unassigned vector, assign p to C’j according to 
the Rule of Clustering, otherwise, if p is a member of Ci 
and ( )ip rep C , assign p to C’j according to the Rule of 
Membership Change. 

(2) For each indirectly reachable vector q of uj, if q is in 
U and q is an unassigned vector, assign q to C’j according to 
the Rule of Clustering. 

3. If num is larger than a certain number (usually 10), the 
clustering algorithm terminates, otherwise, for each cluster 
Ci in E, reselect the representative vector of Ci according to 
the Rule of Representative Vector Selection. 

4. Let N={n1, n2 ... ns} be the set of members of those 
clusters whose representative vectors changed and set U as 
an empty set. 

(1) For each motion vector nk in N, if nk meets condition 
 in the Rule of Clustering, assign nk to the corresponding 

cluster and remove nk from N. 
(2) For each motion vector nk in N, if nk meets condition 

 in the Rule of Clustering, assign nk to the corresponding 
cluster and remove nk from N. 
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After (1) and (2), add the remaining motion vectors in N 
to U. 

5. If U is an empty set, the clustering algorithm 
terminates, otherwise, increase num by 1 and go to step 2. 

IV. CLUSTERING BASED SEARCH ALGORITHM 
According to the spatial correlation within frames, the 

motion of a block has a big possibility to be close to that of 
some of its neighbors. We can infer that the motion vector of 
a block will belong to one of the clusters that hold the 
neighbor blocks’ motion vectors. Therefore, the 
representative vectors of these clusters will be used as the 
predictors for the motion estimation of the block. With these 
predictors, the search range is narrowed into several small 
search areas and consequently the number of candidates to 
be searched is also reduced. Searching in the small search 
areas is probable to find the best-matched candidate, but 
under the circumstance that it is failed, searching in the 
entire search range should be performed. 

The search process for the current block is illustrated in 
Fig. 5. Vector mcL denotes the representative vector of the 
cluster to which the motion vector of the left neighboring 
block belongs, vector mcU indicates the representative vector 
of the cluster to which the motion vector of the upper 
neighboring block belongs, and vector mcmax is the 
representative vector of the cluster with the highest count. 
Vectors mcL, mcU and mcmax are generated by the Progressive 
Clustering algorithm. The proposed search algorithm utilizes 
them as the motion vector predictors for the current block. 
The search process consists of two phases: (1) with these 
predictors, only the candidates in the three size 3×3 areas are 
searched by FS algorithm to find a local minimum block 
distortion (MBD) point, (2) if the distortion of the local 
MBD point is lower than a certain threshold, the 
displacement of the local MBD point is regarded as the 
motion vector of the current block, otherwise, candidates in 
the entire search range are searched without predictors by 
Line Search algorithm to obtain the motion vector of the 
current block. 

The entire 
search range32
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Figure 5.  The search process of the current block. 

For a video frame consisting of W×H blocks, blocks are 
grouped and motion estimation will be made group by group. 
When one group has been completed, the Progressive 

Clustering algorithm will be processed. Specific steps of the 
proposed motion estimation algorithm are described below: 

1. Separate the blocks of a frame into W+H-1 groups by 
the diagonals. Blocks with the same number in Fig. 6 belong 
to one group. 
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Figure 6.  The blocks grouped by diagonals. 

2. Choose the ith group of blocks and estimate the motion 
vector for each block in the ith group. For each block in the 
ith group, search the candidates in the three size 3×3 areas by 
FS algorithm to find the local MBD point with mcL, mcU and 
mcmax as the predictors, if the block distortion of the local 
MBD point is lower than the threshold, regard the 
displacement of the local MBD point as the motion vector, 
otherwise, search the candidates in the entire search range by 
Line Search algorithm to obtain the motion vector. 

3. Assign the motion vectors of the ith block group to the 
existing vector clusters. Let M={m1, m2 ... mp} be a set of the 
motion vectors of the ith block group and E={C1, C2 ... Cn} 
be a set of the existing clusters. M is assigned to E by the 
Progressive Clustering algorithm. 

4. Check all the block groups. If there remain unsearched 
groups, i=i+1 and go to step 2, otherwise, report the motion 
vectors of the blocks in the frame. 

In this way, the Clustering Based Search algorithm 
periodically invokes the Progressive Clustering algorithm to 
assign the motion vectors of a group of blocks to the existing 
clusters and then make clustering statistics. These clustering 
statistics are utilized as the vector predictors for the next 
group of blocks. 

V. EXPERIMENT EVALUATION 
To evaluate the performance of our algorithm, we apply 

it to five high resolution video sequences: Aspen (1080p), 
Blue sky (1080p), Park joy (720p), Ducks take off (720p) 
and In to tree (720p) [10]. In our experiment, the size of a 
block is 16×16 and the search range is (-16, 15). As 1080 is 
not completely divisible by 16, our experiment only takes the 
1920×1072 pixels of the 1080p videos into account and the 
rest 8 rows of pixels are omitted. We use the sum of absolute 
difference (SAD) as the metric for block distortion. The 
block distortion threshold for our algorithm is 2048 and the 
size of small search areas in our algorithm is 3×3. We use 50 
frames of each video sequences and test our algorithm on a 
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personal computer of Intel Core2 CPU E6750 at 2.66 GHz 
and 2G RAM. 

We choose the mean-square error (MSE) as the criterion 
for measuring the performance of motion estimation 
algorithms. The MSE compares the motion compensated 
image frame with the original image frame. The lower the 
MSE, the smaller the energy of the prediction error and 
therefore the more effective the motion estimation algorithm 
is. We compare our algorithm with the FS, UMHexagonS, 
DS and PLS algorithms. Table II shows the MSE 
performance for each algorithm on the five test sequence. 
For sequences where only small motions are involved, such 
as Aspen, the MSE performance of these algorithms is very 
close. However, for the sequences with large motions, such 
as Blue sky and Park joy, our algorithm outperforms 
UMHexagonS, DS and PLS. The average MSE value of our 
algorithm is slightly higher than the value of FS and is lower 
than those of UMHexagonS, DS and PLS. 

TABLE II.  MSE PERFORMANCE COMPARISON 

Video 
Sequence 

MSE 

Our 
algorithm FS UMHexagonS DS PLS 

Aspen 21.1 18.24 21.18 23.15 19.15 

Blue sky 32.16 26.46 51.27 77.22 33.36 

Park joy 283.58 269.8 336.31 562.57 344.39 
Ducks take 

off 102.83 102 102.31 134.33 103.56 

In to tree 35.64 31.39 32.79 84.14 32.13 

Average 95.062 89.58 108.77 176.28 106.52 

 
We also do the frame-by-frame comparison of our 

algorithm with the FS, UMHexagonS, DS and PLS 
algorithms. Fig. 7 and Fig. 8 show the MSE measure versus 
frame number for Blue sky and Park joy sequences. As 
shown in these figures, the MSE values of our algorithm stay 
very close to those of FS only with small deviations when 
the sequences involves large motions. However, the MSE 
values of UMHexagonS and DS rise obviously for the 
sequences with high motions. These figures also show that 
the MSE curve of our algorithm is more approximate to the 
curve of FS than that of PLS. 

 
Figure 7.  The frame-by-frame comparison of Blue sky sequence. 

 
Figure 8.  The frame-by-frame comparison of Park joy sequence. 

For complexity comparison, we select the time cost per 
frame as the metric. Our algorithm is compared to the FS, 
UMHexagonS, DS and PLS algorithms in Table . The 
speed of our algorithm is as fast as the DS algorithm while 
the MSE of our algorithm is much lower. Our algorithm 
performs 4 times faster than the UMHexagonS and PLS 
algorithms. Compared to FS, the speedup ratio of our 
algorithm is nearly 35 times in average. 

TABLE III.  COMPARISON ON THE TIME COST OF MOTION ESTIMATION 

Video 
Sequence 

Time Cost (ms/frame) 

Our 
algorithm FS UMHexagonS DS PLS 

Aspen 77.78 3283 368.67 75.86 399.76 

Blue sky 77.87 3255 355.45 116.55 381.35 

Park joy 89.96 1460 171.67 54.12 183.34 
Ducks take 

off 47.49 1440 127.78 25.86 139.39 

In to tree 29.89 1445 145.65 28.39 152.86 

Average 64.59 2176.6 233.84 60.16 251.34 

 
From these experiment results, it is obviously that our 

algorithm has the capability to reduce the large 
computational burden of FS algorithm with negligible 
increase in the MSE performance. Our algorithm has an 
effective and efficient motion estimation performance due to 
the clustering statistics of motion vectors. The overhead of 
motion vector clustering is measured by the time cost of 
clustering. As shown in Table , the cost of clustering only 
occupies 4.5% of the total cost of motion estimation in 
average. As a result, the overhead of vector clustering is very 
low. 
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TABLE IV.  TIME COST OF CLUSTERING 

Video 
Sequence

Time Cost (ms/ frame)
Total motion 

estimation Clustering Percentage 

Aspen 77.78 5.4 6.94% 

Blue sky 77.87 4.9 6.29% 

Park joy 89.96 2.1 2.33% 

Ducks take off 47.49 0.9 1.90% 

In to tree 29.89 1.4 4.68% 

Average 64.59 2.94 4.55% 
 

Our algorithm groups blocks by diagonals, and the 
motion estimation of one block is independent to the others’ 
in the same group. Hence the blocks in a group could be 
processed in parallel without additional efforts. We also 
implement our algorithm on a NVIDIA 8800GTX graphics 
card with CUDA. CPU makes progressive clustering 
statistics, while GPU executes motion estimation for blocks. 
As shown in Table , the preliminary results on the GPU-
based implementation get around 4 times faster.  

TABLE V.  COMPARISON ON THE TIME COST OF CPU AND GPU 
ACCELERATION 

Video 
Sequence

Time Cost (ms/ frame)

CPU only CPU with GPU 
acceleration Speedup ratio

Aspen 77.78 20.1 3.9 

Blue sky 77.87 18.9 4.1 

Park joy 89.96 29.2 3.1 

Ducks take off 47.49 11.3 4.2 

In to tree 29.89 7.6 3.9 

Average 64.59 17.4 3.8 
 

VI. CONCLUSION AND FUTURE WORK 
A novel fast motion estimation algorithm, Clustering 

Based Search, is described in this paper. The main features 
of our algorithm are counting the motion vectors of past 
blocks to make clustering statistics and then utilizing the 
clusters to provide efficient predictors with most possibilities 
for the following blocks. It is usually probable for one block 
to rapidly find the best-matched candidate with the predictors. 
From the experiment results, the MSE performance of our 
Clustering Based Search algorithm is very close to that of the 
FS algorithm while its speed is nearly 35 times faster. It is 
also shown that our algorithm outperforms the 
UMHexagonS, DS and PLS algorithms, especially for video 
sequences with large motions. 

Our algorithm is preliminarily implemented on GPU with 
CUDA. The speedup of the GPU-based implementation is 
around 4 times. To develop the algorithm for variable block 
size motion estimation and fractional pixel refinement may 
be promising. We would also implement our algorithm on a 
video codec system with H.264/AVC. 
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